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ABSTRACT 12 
 13 
Image processing methods combined with scanning techniques—e.g., microscopy or micro-14 
tomography—are now being frequently used for constructing realistic microstructure models that 15 
can be used as representative volume elements (RVEs) to better characterize heterogeneous 16 
material behavior. As a complement to those efforts, the present study introduces a computational 17 
homogenization method that bridges the RVE and material-scale properties in situ. To define the 18 
boundary conditions properly, an assignment problem is solved using Euclidean bipartite matching 19 
through which the boundary nodes of the RVE are matched with the control nodes of the 20 
rectangular prism bounding the RVE. The objective is to minimize the distances between the 21 
control and boundary nodes, which when achieved enables the bridging of scale-based features of 22 
both virtually generated and image-reconstructed domains. Following the minimization process, 23 
periodic boundary conditions can be enforced at the control nodes, and the resulting boundary 24 
value problem can be solved to determine the local constitutive material behavior. To verify the 25 
proposed method, virtually generated domains of closed-cell porous, spherical particle and fiber 26 
reinforced composite materials are analyzed, and the results are compared with analytical Hashin-27 
Shtrikman and Halpin-Tsai methods. The percent errors are within the ranges from 0.04% to 3.3%, 28 
from 2.7% to 14.9%, and from 0.5% to 13.2% for porous, particle and fiber reinforced composite 29 
materials, respectively, indicating that the method has a promising potential in the fields of image-30 
based material characterization and computational homogenization.  31 
 32 
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 35 
INTRODUCTION 36 
 37 
Image processing methods combined with scanning techniques—e.g., laser scanning confocal 38 
microscopy, micro-computed tomography (μCT), scanning electron microscopy (SEM), magnetic 39 
resonance imaging (MRI) to name a few—are gaining attention due to their capabilities in 40 
determining surface and volumetric properties, chemical compositions, and mechanical and 41 
directional features of materials (Nazar et al. 1996; Huang and Wei 2010; Duval et al. 2014). 42 
Although there are various complexities in image acquisition, segmentation and rendering and 43 
needs for considerable user interaction, these methods have been paving the way to highly refined 44 
levels of data-driven material characterization (Hollister and Kikuchi 1994; Terada et al. 1997). In 45 
addition to the innovations and developments in the image acquisition systems, numerous 46 
segmentation and rendering techniques have been also developed to process the obtained image 47 
data and extract high-fidelity models (Takano et al. 2003; Legrain et al. 2011; Lopez et al. 2014; 48 
Ren et al. 2015). In most of these techniques, the solution domain is discretized with the aim of 49 
minimum data loss to reconstruct so-called realistic representative volume element (RVE), to 50 
which the mechanical and physical properties, and boundary conditions are assigned (Lian et al. 51 
2013; Bargmann et al. 2018). Boundary volume problem (BVP) can be then solved—e.g., using 52 
the finite element method in the computational homogenization framework— over the RVE 53 
boundaries to bridge the micro- and material-scale properties for the effective mechanical 54 
properties (Geers et al. 2010; Karakoc et al. 2017). However, due to unstructured nature of the 55 
reconstructed RVEs directly from the images, defining the RVE boundaries and node mapping for 56 
computational homogenization—especially, in the case of periodic boundary definitions— can 57 
turn into a nontrivial process (Lian et al. 2013; Nguyen and Noels 2014). To the authors’ 58 
knowledge, various boundary condition enforcement methods are available in the literature 59 
including the local implementation method (Tyrus et al. 2007), master/slave approach (Yuan and 60 
Fish 2008), weak periodicity (Larsson et al. 2011). Most of these methods have been successfully 61 
tested on RVEs composed of inclusions embedded in matrix; however, there still needs to be 62 
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development in enforcement methods—e.g., in case of the dominant presence of pores on the RVE 63 
boundaries (see, Figure 1) (Nguyen et al. 2012). 64 
 65 
In consideration to the challenges in data-driven material characterization, the present study 66 
introduces a computational homogenization method, through which periodic boundary conditions 67 
are enforced via total distance minimization of control and boundary node sets as shown in Figure 68 
2. This, in turn, enables computational homogenization of domains represented by arbitrary 69 
meshes—e.g., in-situ reconstructed domains via image processing methods, and bridging of scale-70 
based features of both image-reconstructed and virtually generated domains. The present study is 71 
therefore expected to advance the current state of the art towards accurate material characterization 72 
with low computational costs.  73 
 74 
METHODOLOGY 75 
 76 
As illustrated in Figures 2 and 3, the BVP is defined at the RVE scale first wherein the boundary 77 
nodes (p) on the RVE boundaries (  ) are matched with the control nodes (q), which are 78 
uniformly discretized and represented in the form of corner, edge, and surface nodes on the 79 
boundaries (  ) of its bounding rectangular prism. The grid spacing on  , is taken as the mean 80 
value dmean of the closest-pair distances on the corresponding   surface. Simply, the closest-pair 81 
distance is calculated as the Euclidean distance between the reference p node and its nearest 82 
neighbor. After this step, alpha shapes method is used to reduce the q set size. Thereafter, one-to-83 
one matching between p and q sets are carried out through a distance minimization technique 84 
known as the Euclidean bipartite matching. Eventually, periodic boundary conditions are enforced, 85 
rigid body rotations are eliminated, and the BVP is solved in the computational homogenization 86 
scheme based on the first-order strain-driven homogenization method. 87 
 88 
Control node reduction 89 
 90 
In order to reduce the excessive amount of control nodes—i.e., q node set size reduction, especially 91 
for the RVE boundaries with pores, the alpha shapes method is used (Edelsbrunner et al. 1983; 92 
Edelsbrunner 1995). As illustrated in Figure 4, the boundary nodes p obtained from the geometry 93 



4  

file is used to construct (I) control node sets as grid points by means of dmean and (II) Delaunay 94 
triangulation where the elements (polygons in 2D and polyhedrons in 3D), the circumradii R of 95 
which exceeds the alpha shape value (taken to be dmean in the present study), are discarded 96 
(Cerquaglia et al. 2017). Thereafter, the control nodes are refined by eliminating the control nodes 97 
in the region of excessive elements identified with the alpha shapes method. 98 
 99 
Euclidean bipartite matching of the boundary and control nodes 100 
 101 
The core of the proposed method is based on Euclidean bipartite matching of the boundary nodes 102 
denoted with p and with q, as depicted in Figure 2. The total distance between the node sets are 103 
minimized to determine an optimal matching and thus, to obtain one-to-one correspondence 104 
between p and q. As the first step, a cost matrix based on the Euclidean distance of each (p, q) 105 
combination is generated, which results to an N N  matrix where N is equal to the set length of 106 
p—i.e., 107 
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Then, optimal permutation of matched nodes is discerned based on their total Euclidean distances 109 
through the minimization problem  110 
  min ,T p q



 d   (2) 111 
where d is the Euclidean distance function for two nodes, T is the total Euclidean distance and   112 
is the permutations that abide a one-to-one correspondence. Under these circumstances, there 113 
should be only one matching pair for each p and q, otherwise the one-to-one correspondence 114 
condition is violated. The problem in Eq. (2) can be solved with—e.g.,  Monte-Carlo simulations 115 
generating random possible solutions and selecting the solution with the minimum cost, various 116 
heuristics for determining the optimum cost, or schemes relaxing the given problem into a series 117 
of problems for each of which an optimal solution is obtained (Rendl 1988; Hung and Rom 1980; 118 
Karakoc and Taciroglu 2017). In the present study, Monte Carlo simulations are used, for which 119 
the solution provides one-to-one matching of control and boundary nodes that exhibit the shortest 120 
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total distance T, as shown in Figure 2. Following the matching process, there are two possible 121 
options in defining the boundary conditions: (i) to use directly the boundary nodes p obtained as a 122 
result of the minimization, or (ii) further, to tie the degrees of freedom of the one-to-one matched 123 
nodes and to use the control nodes q (—i.e., p qu u ). In the present study, the latter option is 124 
preferred. 125 
 126 
First-order computational homogenization  127 
 128 
In the present study, a first-order strain driven homogenization is utilized to determine the elastic 129 
properties. As shown in Figure 5, the macro-strain Me  is known a priori where the associated 130 
macro-stress Ms  is computed through volume averaging of the stress field at the RVE scale 131 
(Hernández et al. 2014). 132 
 133 
Here, the macro-strain Mije  for  , , ,i j X Y Z  is the given parameter and is used as the driving 134 
parameter of the microscopic displacement field for the RVE so that 135 
 m M .u r u  e  (3) 136 
The first addend of Eq. (3) on the right-hand side represents the macroscopic displacement 137 
contribution, and the second represents the displacement fluctuation field u  due to heterogeneities 138 
within the RVE (Geers et al. 2010). Here, r  represents the position vector between two nodes and 139 
the overall body is assumed to be composed of repeating rectangular prism bounding the RVEs. 140 
Continuity conditions for the displacement field are satisfied at each adjacent boundary by taking 141 
the relative positions of the control node sets q, which eliminates u . 142 
 143 
In computational homogenization studies, the use of RVEs with periodic boundary conditions is a 144 
common practice, for which the corresponding corner, edge and surface nodes are matched as 145 
previously depicted in Figure 3, and suffices to represent the effective material deformation 146 
(Karakoc 2018). Following this common practice, periodic boundary conditions are applied onto 147 
the control nodes q of the rectangular prism bounding the RVE. Here, it is important that the so-148 
called “periodic offset” caused by the distance between matched nodes is inevitable. 149 
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Hill-Mandel principle and stress averaging 150 
 151 
In computational homogenization, Hill-Mandel principle gives the relationship between the micro- 152 
and material scales such that 153 
 M M m m1: : d






 s e s e , (4) 154 
for which superscripts m and M stand for micro- and material scales. The symbol (:) denotes the 155 
inner product : ij ija ba b  for second-order tensors. By using the Gauss theorem, Eq. (4) can be 156 
rewritten over   as 157 
 M M m m1: dt u








  s e , (5) 158 
where mt  is the micro-scale traction vector at  . By plugging the boundary periodicity into Eq. 159 
(5), we get 160 
  M M m M m1 1: d d ,t r t u

 

 
 

 

       s e e  (6) 161 
which can be rearranged into 162 
  M M m M m1 1: d : dt r t u

 

 
 

 

      s e e . (7) 163 
Here, the symbol   denotes the dyadic operator. The second integrand at the right-hand side 164 
vanishes in case of periodic boundary conditions. Hence, macro-scale stress Ms  can be expressed 165 
as the volume average of the micro-scale stress ms  such that 166 
  M m m1 1d d ,t r

 

 
 



    s s  (8) 167 
where   is the total volume of the rectangular prism bounding the RVE. Then, the given strains 168 

Me  and the computed stresses Ms  at the material scale can be then combined. Eventually, by means 169 
of a least-squares minimization of all six distinct deformation modes in three-dimensional space 170 
(three axial and three shear loading modes), the compliance MC is obtained as 171 
 2M M M11 66 1

( ,.., ) : ,n
i ii

C C


  e C s  (9) 172 
where i refers to the number of experiments (Karakoç et al. 2013; Sjolund et al. 2014). 173 
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CONVERGENCE 174 
 175 
In order to understand the capability of the algorithm, effect of RVE mesh size and control node 176 
number on the convergence of effective elastic properties and central processing unit (CPU) time 177 
study are investigated. For this purpose, the closed cell porous RVEs, which can be sometimes 178 
computationally expensive due to the non-proportional number of pores in the opposing surfaces, 179 
have been generated. The matrix material is selected to be epoxy resin with Em = 3000 MPa and 180 
vm = 0.38. Two sets of simulations have been carried out: (I) one set of simulations with different 181 
number of seeds per edge s={2, 2.2, 2.5, 2.9, 3.3, 4, 5, 6.7, 10, 20, 40} and corresponding mesh 182 
sizes e={46768, 49178, 50782, 53388, 57556, 68388, 69961, 86193, 102843, 185795, 558311}, 183 
three RVEs of which are depicted in Figure 6a, and (II) one set of simulations with different control 184 
node numbers q={152, 568, 1224, 2402, 2906, 3458, 3628}, three RVEs of which are shown in 185 
Figure 7a.  186 
 187 
As seen in Figure 6b, there is a positive correlation between the mesh size and CPU time. Despite 188 
this trade-off, the effective elastic properties do not vary with increasing mesh size—e.g., after 189 
RVE with 185795 elements referring to edge seeding number of 20. Even though the element size 190 
in the finest RVE mesh is almost triple reaching 558311 elements, the maximum percentile 191 
difference is low and obtained as 3.8 % for E33. However, there is extreme increase in the CPU 192 
time from 423 seconds to 1992 seconds for these two cases. Based on the results, element size is 193 
based on the edge seeding number of 20 in the present study. Thereafter, the effect of control node 194 
number on the effective elastic properties and CPU time have been investigated. The RVE is 195 
selected to be the one with 185795 elements—i.e, edge seeding number of 20. As seen in Figure 196 
7b, there is a fast convergence for both the effective elastic properties and CPU time with a 197 
maximum value of 423 seconds showing that the present framework works efficiently with even 198 
moderate numbers of control nodes.  199 
 200 
METHOD VERIFICATION 201 
 202 
Previously conducted analytical, numerical and experimental studies and their results on closed 203 
cell porous materials, particle and fiber reinforced composites, the microstructures of which are 204 
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illustrated in Figure 1, are used so as to verify the present method (Hashin and Shtrikman 1963; 205 
Halpin 1969; Kushnevsky et al. 1998; Segurado and Llorca 2002; Babu et al. 2018). 206 
 207 
Case study: Closed cell porous and spherical particle reinforced composites  208 
 209 
In order to verify the present method for closed cell porous and spherical particle reinforced 210 
composites, RVE geometries are formed based on the procedure provided by Segurado and Llorca 211 
(Segurado and Llorca 2002). In line with this procedure, two cases are considered, for which unit 212 
cubes (1 1 1  ) containing 30 non-overlapping randomly distributed reinforcing particles and 213 
voids are generated with an in-house random sequential adsorption (RSA) code (Evans 1993). In 214 
this code, if the particles or voids do not overlap with the previous ones, they remain fixed till the 215 
end of the computational process reaching the desired particle or void volume fractions 216 

30 3f 1
4 3 ii

V r


 
  
 
  of the RVEs. In this case study, Vf is taken to be within the range from 10% to 217 

28%. The generated RVE domains are then discretized by using C3D4 general-purpose tetrahedral 218 
elements of ABAQUS (Hibbitt et al. 1992). The matrix material is selected to be epoxy resin with 219 
Em = 3000 MPa and vm = 0.38 and the reinforcing particles are chosen to be glass with Ef = 70000 220 
MPa and vf = 0.20 in case of particle reinforced composites. In case of voids, Ef is taken to be 221 
arbitrarily small (—i.e., ~ 0 Pa). Due to heterogeneities in the RVEs, three numerical simulations 222 
are conducted with the ABAQUS Standard finite element solver for each case and the simulation 223 
results are compared with the analytical Hashin-Shtrikman bounds for both the closed cell porous 224 
materials and the particle reinforced composites. Under the assumption of linear elastic isotropic 225 
phases, these bounds for bulk K and shear G moduli are given as (Hashin and Shtrikman 1963; 226 
Kushnevsky et al. 1998) 227 
      

   
u m f f f fc f f f m f f

3 4 1 ,3 4 3
K K K G VK K K G K K V

  
 

  
  (10) 228 

    
     

l f m m m fc m m m f m f
3 4 ,3 4 3 1

K K K G VK K K G K K V
 

 
   

  (11) 229 

    

    
f m f f f fuc f f f f m f f f f

5 3 4 1 ,5 3 4 6 2
G G G K G VG G G K G G G K G V

  
 

   
  (12) 230 
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    

       
m p m m m flc m m m m f m m m f

5 3 4 .5 3 4 6 2 1
G G G K G VG G G K G G G K G V

 
 

    
  (13) 231 

Here, the superscripts u and l denote the upper and lower bounds whereas subscripts c, f, and m 232 
refer to composite, filling (particle or void), and matrix materials, respectively. The effective 233 
Young’s modulus, Poisson’s ratio and shear modulus values of the composite are then expressed 234 
as Ec11=Ec22=Ec33=9KcGc/(3Kc+Gc), vc12=vc13=vc23=(3Kc-2Gc)/(2(3Kc+Gc)), Gc12=Gc13=Gc23=Gc, 235 
respectively. 236 
 237 
Effective elastic properties of closed cell porous materials 238 
 239 
Void presence in materials is generally undesired and can drastically degrade the stiffness and 240 
strength properties. Therefore, to understand the effect of voids on the effective elastic properties 241 
of closed cell porous materials, all six distinct loading modes are simulated as seen in Figure 8. 242 
The least-squares minimization problem of Eq. (9) is then solved to obtain the compliance,—hence 243 
Ec11, Ec22, Ec33, Gc12, Gc13, Gc23, and vc12, vc13, vc23. 244 
 245 
Both the proposed method and the analytical solution show that there is a negative influence of 246 
voids on the elastic properties with a decrease of 28-29% for Young’s moduli, 27% for shear 247 
moduli and 5% for Poisson’s ratios within the investigated volume fraction range, as listed in Table 248 
1. The percent errors for Young’s moduli, shear moduli, and Poisson’s ratios between the proposed 249 
and analytical solutions are 0.04% - 2.9%, 0.1% - 2.5%, 0.1% - 3.3%, respectively. 250 
 251 
Effective elastic properties of spherical particle reinforced composites  252 
 253 
For the particle reinforced composite simulations, particles and matrix are assumed to be strongly 254 
bonded and only the effects of particle volume fraction on the effective elastic properties are 255 
examined. In order to deviate from the conventional computational homogenization methods, the 256 
domain is discretized so that arbitrary meshes are generated on the RVE boundaries  , as 257 
illustrated in Figure 9. Both uniaxial and shear deformation modes are simulated to obtain the 258 
effective elastic parameters listed in Table 2. 259 
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 260 
The results show the reinforcing effect of particles on the elastic properties with an increase of 67-261 
69% for Young’s moduli, 65-66% for shear moduli, and a decrease of 8-13% for Poisson’s ratios 262 
within the investigated volume fraction range. The decrease in v is due to vf < vm. The percent 263 
errors for Young’s moduli, shear moduli, and Poisson’s ratios between the proposed and analytical 264 
solutions are 3.0%-17.6%, 2.7%-15.3%, 11.2%-14.9%, respectively. 265 
 266 
Case study: Fiber reinforced composites 267 
 268 
For the verification purpose of the model for the fiber reinforced composites, Halpin-Tsai 269 
equations, which were empirically developed to determine the effective elastic properties of 270 
aligned fiber composites, are used (Halpin 1969). These equations can be expressed as 271 
 c f

m f
1 ,1

V
V

 

 





  (14) 272 

 f
f

1 ,m
m

 


  





  (15) 273 

for which the aspect ratio is  f f2 l d    with lf being the fiber length and df being the fiber 274 
diameter. In Equations (14) and (15), c , m , f  refer to composite, matrix and fiber elastic 275 
material properties, and Vf is the volume fraction. Following the investigations in the literature, Vf 276 
is taken to be within the range from 16% to 33% while AS4 carbon fibre is used as the fiber 277 
reinforcement with Ef11=225000 MPa, Ef22=15000 MPa, Gf12=15000 MPa, Gf12=7000 MPa, 278 
vf12=0.2, and the matrix material is 3501-6 epoxy matrix material with Em=4200 MPa, Gm=1567 279 
MPa and vm=0.35 (Soden et al. 1998; Babu et al. 2018). The RVEs are rectangular prisms ( 7 7 4 280 
) and the fiber aspect ratio ξ=3.5 where both matrix and fiber domains are discretized with C3D4 281 
general-purpose tetrahedral elements. 282 
 283 
Effective elastic properties of fiber reinforced composites  284 
 285 
In this case study, unidirectionally aligned fiber reinforced composite RVEs are generated with 286 
RSA code similar to the previous case study. These RVEs are then investigated and their effective 287 
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elastic properties are computed. The fibers and matrix are assumed to be strongly bonded and only 288 
the effects of fiber volume fraction on the effective elastic properties are examined. The domain is 289 
discretized so that arbitrary meshes are generated on the RVE boundaries  , as seen in Figure 290 
10. Thereafter, six different deformation modes—three uniaxial and shear deformation modes— 291 
are simulated to obtain all the effective elastic parameters that are listed in Table 3. The results 292 
show that there is a reinforcing effect of fibers on the elastic properties with a steep increase of 293 
125% for Ec11, 27% for Ec22, and 29% for Ec33; 38% for Gc12, 45% for Gc13, and 26% for Gc23; and 294 
a decrease of 6% for vc12, 10% for vc13, and 3% for vc23 within the investigated volume fraction 295 
range. The decrease in v is also experienced with increasing Vf in this case study due to vf < vm. 296 
The percent errors for Young’s moduli, shear moduli, and Poisson’s ratios between the proposed 297 
and analytical solutions are 4.4%-13%, 0.5%-13.2%, 0.5%-5.1%, respectively.  298 
 299 
CONCLUSIONS 300 
In the present study, a data-driven computational homogenization method is presented, the 301 
objective of which is to characterize effective material properties directly through their 302 
reconstructed microstructures via scanning devices (—e.g., X-ray micro-tomography, etc.). For 303 
this purpose, periodic boundary conditions are enforced on the reconstructed microstructures via 304 
total distance minimization of control and boundary node sets. Here, the minimization problem, 305 
here also referred as Euclidean bipartite matching, is solved with Monte-Carlo simulations which 306 
generate random possible solutions and select the solution with the minimum cost. This results in 307 
one-to-one matching between the node sets. Thereafter, first order strain driven homogenization is 308 
implemented, which, in turn, enables bridging scale-based features and material characterization. 309 
In order to understand the performance of the method, first, a convergence study has been 310 
conducted on porous RVEs that have non-conformal meshes on their boundaries. It is deduced that 311 
the increase in the mesh size after some threshold does not have any significant effect —e.g., the 312 
maximum percentile difference of 3.8 % between 185795 (referring to 20 seeds per edge) and 313 
558311 elements (40 seeds per edge) despite the tremendous increase in time from 423 seconds to 314 
1992 seconds. Thus, in the present study, 20 seeds per edge is also used in the method verification 315 
process. To elaborate, the method is verified by comparing the numerical results computed for 316 
realistic renderings of closed cell porous, particle and fiber reinforced composite materials with 317 
analytical Hashin-Shtrikman and Halpin-Tsai methods. The percent errors between the analytical 318 
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and computed effective elastic properties are observed to be within acceptable ranges—namely, 319 
0.04%-3.3% for porous material case, 2.7%-17.6% for particle reinforced composite material case, 320 
and 0.5%-13.2% for fiber reinforced composite material case.  These results indicate that the 321 
proposed data-driven computational homogenization method is a potentially useful tool that can 322 
utilize in-situ imaging data at the micro-scale as input, and produce effective properties at the 323 
material (meso-) scale. 324 
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Figure 1. Various engineering materials at their material scales and the illustrations of their 422 
reconstructed microstructures as representative volume elements (RVEs): (a) closed cell porous 423 
material, (b) particle reinforced composite, (c) fiber reinforced composite, (d) nonwoven material. 424 
 425 
Figure 2. Flow chart for the present algorithm and schematic illustration of the boundary and 426 
control node matching on a representative volume element RVE based on the proposed method. 427 
The term   represents the boundaries of the RVE and  represents the boundaries of 428 
rectangular prism bounding the RVE. It is noteworthy that boundaries comprise of vertices, edges 429 
and surfaces. 430 
 431 
Figure 3. Illustration of the rectangular prism bounding the RVE and control node sets (q) on its 432 
boundaries (  ). The symbols on the right-hand sides of the nodes show the matching sets for the 433 
periodicity. 434 
 435 
Figure 4: Details of the control node reduction. R refers to circumradius of the element. 436 
 437 
 Figure 5. Strain driven homogenization with imposed macroscopic strain Me  and computed stress 438 

Ms . Here, Ω and ∂Ω represent the volume and boundary of continuum, and  and  represent 439 
the volume and boundary of the rectangular prism that bounds the RVE.  440 

 441 
Figure 6. Mesh size investigations: (a) coarsest mesh (I), optimum mesh comprising the CPU time 442 
and properties (II), finest mesh (III), (b) effect of mesh size on the convergence of effective elastic 443 
properties and CPU time. 444 
 445 
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Figure 7. Control node investigations: (a) representative volume element RVE with 152 control 446 
nodes (I), 2402 nodes (II), 3628 nodes (III), (b) effect of number of control nodes on the effective 447 
elastic properties and CPU time. 448 
 449 
Figure 8. Deformation modes of the closed cell porous material: (a) top and bottom isometric 450 
views, (b) uniaxial deformation modes, (c) shear deformation modes. A deformation scale factor 451 
of 10 was used for better illustration. 452 
 453 
Figure 9. Deformation modes of spherical particle reinforced composite: (a) isometric view, (b) 454 
generated arbitrary mesh on the RVE boundaries, (c) uniaxial deformation modes, (d) shear 455 
deformation modes. A deformation scale factor of 10 was used for better illustration. 456 
 457 
Figure 10. Deformation modes of short fiber reinforced composite: (a) isometric view, (b) 458 
generated arbitrary mesh on the RVE boundaries, (c) uniaxial deformation modes, (d) shear 459 
deformation modes. A deformation scale factor of 5 was used for better illustration. 460 
 461 
 462 
 463 
 464 
 465 
 466 
 467 
 468 
 469 
 470 
 471 
 472 
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Table 1. Effect of void volume fraction Vf on the effective elastic properties of closed cell porous 473 
materials. HS refers to Hashin-Shtrikman. Perc. Diff. refers to the percentile difference between 474 
the mean values of the simulations and ones from Hashin-Shtrikman equations. 475 
 476 

Vf 
(%) 

 Ec11 
(MPa) 

Ec22 
(MPa) 

Ec33 
(MPa) 

Gc12 
(MPa) 

Gc13 
(MPa) 

Gc23 
(MPa) 

vc12 vc13 vc23 
10 RVE 1 2456.4 2420.6 2444.8 900.9 904.5 903.3 0.35 0.35 0.35  RVE 2 2463.3 2430.7 2477.7 904.1 903.9 903.3 0.35 0.35 0.35  RVE 3 2497.5 2397.0 2451.5 900.3 906.9 896.6 0.36 0.36 0.35  Mean 2472.4 2416.1 2458.0 901.8 905.1 901.1 0.35 0.35 0.35  Std Dev 22.0 17.3 17.4 2.0 1.6 3.9 0.02 0.02 0.01  HS-Lower 2457.6 2457.6 2457.6 903.9 903.9 903.9 0.36 0.36 0.36  Perc. Diff. (%) 0.6 1.7 0.04 0.2 0.1 0.3 1.4 1.7 3.3 15 RVE 1 2242.5 2243.5 2251.7 823.6 829.7 828.5 0.34 0.35 0.34  RVE 2 2279.0 2280.2 2243.3 844.1 840.1 833.3 0.35 0.35 0.35  RVE 3 2281.6 2267.7 2296.5 847.1 850.9 845.3 0.35 0.35 0.34  Mean 2267.7 2263.8 2263.8 838.3 840.3 835.7 0.35 0.35 0.34  Std Dev 21.9 18.7 28.6 12.8 10.6 8.7 0.00 0.00 0.00  HS-Lower 2212.4 2212.4 2212.4 819.4 819.4 819.4 0.35 0.35 0.35  Perc. Diff. (%) 2.4 2.3 2.3 2.3 2.5 2.0 1.0 0.7 1.9 20 RVE 1 2062.3 2029.5 2052.0 759.0 763.2 759.7 0.34 0.34 0.34  RVE 2 2059.8 2010.8 2049.2 753.7 748.7 751.1 0.34 0.34 0.34  RVE 3 1989.6 1930.0 1980.4 738.0 744.3 737.0 0.34 0.34 0.33  Mean 2037.2 1990.1 2027.2 750.3 752.1 749.3 0.34 0.34 0.33  Std Dev 41.3 52.9 40.5 10.9 9.9 11.5 0.00 0.00 0.00  HS-Lower 2004.7 2004.7 2004.7 746.8 746.8 746.8 0.34 0.34 0.34  Perc. Diff. (%) 1.6 0.7 1.1 0.5 0.7 0.3 0.1 1.0 2.3 25 RVE 1 1871.3 1848.7 1818.4 679.0 683.1 685.4 0.33 0.33 0.33  RVE 2 1903.9 1841.6 1869.5 709.3 707.1 700.6 0.34 0.34 0.33  RVE 3 1800.8 1795.5 1763.3 673.2 665.3 664.4 0.33 0.33 0.33  Mean 1858.7 1828.6 1817.1 687.2 685.2 683.5 0.33 0.33 0.33  Std Dev 52.7 28.9 53.1 19.4 21.0 18.2 0.01 0.00 0.00  HS-Lower 1805.1 1805.1 1805.1 676.3 676.3 676.3 0.33 0.33 0.33  Perc. Diff. (%) 2.9 1.3 0.7 1.6 1.3 1.1 0.8 0.6 1.4 28 RVE 1 1793.9 1703.2 1735.5 656.5 653.8 650.5 0.34 0.33 0.32  RVE 2 1720.0 1724.8 1709.2 648.8 644.1 643.8 0.33 0.33 0.33  RVE 3 1810.8 1783.4 1776.8 675.3 675.3 666.2 0.33 0.33 0.32  Mean 1774.9 1737.1 1740.5 660.2 657.7 653.5 0.33 0.33 0.32  Std Dev 48.3 41.5 34.1 13.6 15.9 11.5 0.01 0.00 0.00  HS-Lower 1729.6 1729.6 1729.6 649.4 649.4 649.4 0.33 0.33 0.33  Perc. Diff. (%) 2.5 0.4 0.6 1.6 1.3 0.6 0.2 0.2 2.1  477 
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Table 2. Effect of particle volume fraction on the effective elastic properties of spherical particle 478 
reinforced composites. HS refers to Hashin-Shtrikman. Perc. Diff. refers to the percentile 479 
difference between the mean values of the simulations and ones from Hashin-Shtrikman equations. 480 
 481 

Vf 
(%) 

 Ec11 
(MPa) 

Ec22 
(MPa) 

Ec33 
(MPa) 

Gc12 
(MPa) 

Gc13 
(MPa) 

Gc23 
(MPa) 

vc12 vc13 vc23 
10 RVE 1 3753.2 3733.3 3729.3 1366.4 1361.9 1357.4 0.36 0.37 0.37  RVE 2 3809.2 3750.5 3772.8 1371.7 1377.3 1369.6 0.37 0.36 0.37  RVE 3 3775.3 3798.8 3792.7 1384.0 1392.8 1378.2 0.36 0.37 0.36  Mean 3779.2 3760.8 3764.9 1374.0 1377.3 1368.4 0.36 0.37 0.37  Std Dev 28.2 34.0 32.4 9.0 15.4 10.5 0.00 0.00 0.00  HS-Lower 3648.6 3648.6 3648.6 1331.1 1331.1 1331.1 0.37 0.37 0.37  Perc. Diff. (%) 3.5 3.0 3.1 3.1 3.4 2.7 1.6 1.2 1.5 15 RVE 1 4266.5 4242.9 4265.3 1549.8 1543.1 1568.5 0.36 0.36 0.36  RVE 2 4326.9 4265.3 4306.5 1540.0 1557.4 1535.5 0.36 0.36 0.36  RVE 3 4168.1 4148.4 4149.6 1497.1 1512.1 1506.9 0.35 0.36 0.36  Mean 4253.8 4218.8 4240.5 1529.0 1537.5 1537.0 0.36 0.36 0.36  Std Dev 80.1 62.0 81.4 28.0 23.2 30.8 0.00 0.00 0.00  HS-Lower 4023.3 4023.3 4023.3 1472.8 1472.8 1472.8 0.37 0.37 0.37  Perc. Diff. (%) 5.4 4.6 5.1 3.7 4.2 4.2 2.7 2.3 2.0 20 RVE 1 4853.3 4873.5 4931.8 1732.7 1717.8 1776.3 0.35 0.34 0.35  RVE 2 4920.3 4944.5 4940.9 1760.5 1794.8 1806.8 0.34 0.35 0.35  RVE 3 5003.4 4983.4 5055.6 1781.8 1829.1 1825.7 0.34 0.34 0.35  Mean 4925.7 4933.8 4976.1 1758.4 1780.5 1802.9 0.34 0.35 0.35  Std Dev 75.2 55.7 69.0 24.6 57.0 24.9 0.00 0.01 0.00  HS-Lower 4439.1 4439.1 4439.1 1630.4 1630.4 1630.4 0.36 0.36 0.36  Perc. Diff. (%) 9.9 10.0 10.8 7.3 8.4 9.6 5.3 4.6 4.0 25 RVE 1 5630.5 5705.4 6191.6 2057.0 2100.9 2130.1 0.35 0.31 0.31  RVE 2 5683.1 5820.2 5631.5 2087.1 2019.4 2055.3 0.33 0.34 0.34  RVE 3 5776.8 5966.4 5851.2 2117.7 2116.1 2216.0 0.32 0.34 0.34  Mean 5696.8 5830.6 5891.5 2087.2 2078.8 2133.8 0.33 0.33 0.33  Std Dev 74.1 130.8 282.2 30.4 52.0 80.4 0.01 0.02 0.02  HS-Lower 4903.3 4903.3 4903.3 1806.9 1806.9 1806.9 0.36 0.36 0.36  Perc. Diff. (%) 13.9 15.9 16.8 13.4 13.1 15.3 7.1 8.1 8.8 28 RVE 1 6201.6 5985.4 6131.5 2148.5 2247.3 2129.8 0.33 0.34 0.33  RVE 2 6567.9 6643.9 6631.7 2391.3 2390.8 2438.7 0.32 0.33 0.32  RVE 3 6341.2 6167.5 6338.8 2252.2 2218.1 2209.2 0.34 0.32 0.32  Mean 6370.2 6265.6 6367.3 2264.0 2285.4 2259.3 0.33 0.33 0.32  Std Dev 184.9 340.1 251.3 121.8 92.4 160.4 0.01 0.01 0.00  HS-Lower 5251.3 5251.3 5251.3 1939.6 1939.6 1939.6 0.35 0.35 0.35  Perc. Diff. (%) 17.6 16.2 17.5 14.3 15.1 14.2 7.1 8.0 9.1  482 
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Table 3. Effect of fiber volume fraction on the effective elastic properties of fibre reinforced 483 
composites. Perc. Diff. refers to the percentile difference between the values of the simulations 484 
and ones from Halpin-Tsai equations. 485 
 486 

Vf 
(%) 

 Ec11 
(MPa) 

Ec22 
(MPa) 

Ec33 
(MPa) 

Gc12 
(MPa) 

Gc13 
(MPa) 

Gc23 
(MPa) 

vc12 vc13 vc23 
16 RVE 8880.4 5052.5 5010.7 1993.3 2089.7 1862.9 0.32 0.31 0.38  Halpin-Tsai 10205.2 5423.9 5423.9 2025.5 2025.5 1914.5 0.32 0.32 -  Perc. Diff. (%) 13.0 6.8 7.6 1.6 3.2 2.7 0.5 3.9 - 17 RVE 10337.9 5246.6 5156.3 2089.9 2127.6 1874.1 0.31 0.31 0.38  Halpin-Tsai 10872.0 5549.4 5549.4 2074.8 2074.8 1950.6 0.32 0.32 -  Perc. Diff. (%) 4.9 5.5 7.1 0.7 2.5 3.9 1.9 2.3 - 19 RVE 10403.0 5292.2 5249.6 2104.2 2221.3 1921.5 0.31 0.31 0.38  Halpin-Tsai 11499.3 5665.8 5665.8 2121.0 2121.0 1984.2 0.32 0.32 - 
 Perc. Diff. (%) 9.5 6.6 7.3 0.8 4.7 3.2 0.6 2.8 - 20 RVE 11415.6 5361.2 5397.6 2151.7 2362.8 1954.3 0.32 0.30 0.38  Halpin-Tsai 12142.2 5783.3 5783.3 2168.0 2168.0 2018.2 0.31 0.31 -  Perc. Diff. (%) 6.0 7.3 6.7 0.8 9.0 3.2 1.7 4.3 - 23 RVE 12390.0 5585.9 5552.8 2255.9 2465.6 2032.9 0.31 0.30 0.38  Halpin-Tsai 13747.8 6069.6 6069.6 2284.3 2284.3 2101.4 0.31 0.31 - 
 Perc. Diff. (%) 9.9 8.0 8.5 1.2 7.9 3.3 1.0 3.0 - 25 RVE 13999.0 5771.3 5782.4 2410.3 2650.3 2100.3 0.31 0.30 0.37  Halpin-Tsai 15049.1 6294.2 6294.2 2377.3 2377.3 2167.0 0.30 0.30 -  Perc. Diff. (%) 7.0 8.3 8.1 1.4 11.5 3.1 1.5 2.4 - 27 RVE 14391.6 5971.6 5927.4 2477.8 2643.9 2184.2 0.30 0.29 0.37  Halpin-Tsai 16291.0 6502.7 6502.7 2465.1 2465.1 2228.1 0.30 0.30 -  Perc. Diff. (%) 11.7 8.2 8.8 0.5 7.3 2.0 2.0 3.1 - 

29 RVE 16757.7 6090.6 6164.2 2569.6 2887.7 2230.6 0.30 0.29 0.37  Halpin-Tsai 17523.1 6704.1 6704.1 2551.2 2551.2 2287.5 0.30 0.30 -  Perc. Diff. (%) 4.4 9.2 8.1 0.7 13.2 2.5 1.0 2.3 - 30 RVE 15688.3 6169.1 6228.0 2565.5 2885.9 2221.2 0.30 0.29 0.36  Halpin-Tsai 17851.9 6757.0 6757.0 2574.0 2574.0 2303.1 0.30 0.30 -  Perc. Diff. (%) 12.1 8.7 7.8 0.3 12.1 3.6 0.7 3.3 - 33 RVE 19945.3 6418.7 6484.8 2755.6 3023.3 2340.0 0.30 0.28 0.37  Halpin-Tsai 20171.7 7119.7 7119.7 2733.1 2733.1 2410.7 0.29 0.29 -  Perc. Diff. (%) 1.1 9.8 8.9 0.8 10.6 2.9 3.4 5.1 -  487 
 488 
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