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Abstract—This paper proposes an explainable machine learn-
ing tool that can potentially be used for decision support in
medical image analysis scenarios. For a decision-support system
it is important to be able to reverse-engineer the impact of
features on the final decision outcome. In the medical domain,
such functionality is typically required to allow applying machine
learning to clinical decision making. In this paper, we present
initial experiments that have been performed on in-vivo gastral
images obtained from capsule endoscopy. Quantitative analysis
has been performed to evaluate the utility of the proposed method.
Convolutional neural networks have been used for training
the validating of the image data set to provide the bleeding
classifications. The visual explanations have been provided in
the images to help health professionals trust the black box
predictions. While the paper focuses on the in-vivo gastral image
use case, most findings are generalizable.

Keywords: Explainable artificial intelligence, Convolutional
neural networks, Black box explanations, LIME

I. INTRODUCTION

In domains such as scientific research, medicine, forensics,
finance, and education [1], it is typically important to justify
explain the decisions made by the model in order to justify the
results (Figure 1). Explainable Artificial Intelligence (XAI) has
emerged as a scientific discipline that studies the predictions
of any artificially intelligent agent, classifier, or regressor. For
example, when providing image classification-based decision
support, it might be beneficial for the user if the system
highlights the super pixels with positive weight for a particular
class to give a justification for why the model thinks that it
should be present in that class. Such explanations increase
trust in the decisions made by the classifier even if the
predicted class is wrong as it depicts that it is not behaving
in an unreasonable manner. The proposed approach tries to
provide the global understanding for the machine learning
models by providing explanations for individual instances in
the context of medical (in-vivo gastral) image analysis. The
approach is model-agnostic, and can also be used to enhance
the understanding of models in a fest data set context. To
understand the rationale for a decision made by a black
box machine learning model with sophisticated layers, it is
important to layout fundamental factors that have informed the
decision. Below are several important aspects that motivate the
requirement of XAI functionality.

1)  System testing: a black box is per se not trustworthy;
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Explaining the decisions made by a machine learning model using

an XAI approach [2]

2)

3)

systematic testing is required to assure the model’s
decisions can be considered reasonable from a human
perspective.

System as a teacher: machine learning models excel
at finding correlations in massive amounts of high-
dimensional data; this ability exceeds human capabil-
ities by far. Hence, humans can learn from ML-based
systems if the systems are capable of explaining the
decisions taken at any instance.

Legal compliance: many decisions can potentially
have disastrous consequences that result in legal
litigation, huge financial and reputation penalties,
and even cause the loss of human life. If the black
box machine learning model is able to explain the
driving factors for a decision, then a human-in-the-
loop approach can avoid machine errors that would
have been easily detectable by humans.

Below are the major contributions of this paper:

1Y)

We describe a machine learning-based diagnosis
decision-support system for the semi-automatic as-
sessment of in-vivo gastral images obtained from
capsule endoscopy.



2)  We supplement the ML-based system with LIME-
based explanation capabilities.

3)  We introduce an architecture/pipeline for the inte-
grated classification and explanation of capsule en-
doscopy image frames.

4)  We provide an open source implementation of code
that allows for the evaluation of the core explainable
machine learning functionality of the architecture.

The rest of the paper is organized as follows. In Section II
we provide the literature review of contemporary explainable
models as a motivation for this research. Section III describes
the proposed method for image classification and explanation.
An overview of the system implementation is provided in Sec-
tion IV. The experimental results are presented in Section V.
Finally, the presented work and its limitations are discussed
in Section VI, before Section VII concludes the paper by
outlining future research directions.

II. LITERATURE REVIEW

Although there is an increasing number of works on in-
terpretable and transparent machine learning algorithms, most
research is primarily directed at explanations for technical
users. Recently published papers provide comprehensive sur-
veys on XAl research [3]. Anjomshoae et al. [4] provide a
systematic literature review of works on explainable intelligent
agents. A systemantic review of XAI methods for explaining
black-box models is given by Guidotti et al. [5]. Machine
learning models can be considered reliable but they lack in
explainability. An early approach for explaining the decision
of machine learning models is based on the notion of the
contextual importance and utility of features [6], [7], [7].
With the rise of deep learning as a mainstream data analysis
method, additional approaches emerged providing ML model
explanations, for example; LIME (Local Interpretable Model-
Agnostic Explanations) [8], CIU (Contextual Importance and
Utility) [6], ELI5 [9], Skater [10], SHAP (SHapley Additive
exPlanations) [11] etc. These model interpretation techniques
provide model prediction explanations with local interpre-
tation, model prediction values with shape values, building
interpretable models with surrogate tree based models and
much more.

A. Explainability of deep learning models

In [12] an explainable deep learning approach for image
classification has been studied. The work also proposes two
approaches for deep learning explanation of sensitivity in
regard to input changes, and second decomposes the deci-
sion for its responsible input variables. Another interesting
review has been provided by [13] about machine learning,
information visualization and analytics along with future di-
rections and current challenges of explainable deep learning.
It has explained six application opportunities (a) providing
external human knowledge (b) user driven generative models
(c) progressive visual analytic (d) Training set reduction (e)
robustness enhancement for Al and (f) deep learning visual
analytics with advanced architectures.

An interpretation of XAl in a comprehensive form has been
studied in [14]. The work has been broadly grouped into three

classes to understand, diagnose and refine respectively. Rele-
vant examples from current state-of-the-art has been provided
along with future possibilities. Basic conceptual and example
application have been provided by [1] for the areas of security,
medicine, transportation, finance military and legal advices
for example. This DARPA project is really an interesting
literature to follow the motivation and contemporary state of
work of XAI In [15] has studied plant stress phenotyping
using machine vision based deep learning explainable system.
A soybean plant has been studied for foliar stress using feature
maps with unsupervised learning to measure stress severity.
About 25,000 images have been considered for fungal and
bacterial diseases along with nutrition deficiency or injury with
promising accuracy.

B. Explainability in the medical domain

Local Interpretable Model-agnostic Explanations (LIME),
a novel explanation technique developed by Ribeiro et al. [8]
was proposed to explain the classifier’s predictions in a faithful
and interpretable way. It learns the interpretable model in a
local manner around the prediction [8]. The flexibility of
the model is demonstrated by providing the explanations for
different models for text and images. It helped with both
experts and non-experts users in making decisions between
models while assessing their trust and to improve the untrust-
worthy models by having an insight into predictions. Andreas
et al. [16] explained the need of the explainable Al in the
medical domain to help the medical professionals to make
the decisions transparent, explainable and understandable. It
will help in facilitating the machine learning implementation
in medical domain by helping in trusting the decisions. The
author also discussed the challenges of explainable Al in
digital pathology in his another paper [17] where they use the
artificial intelligence to understand the decisions in context
of an application task for making decisions transparent and
explainable.

In [18] a systematic review on deep learning in medical
imaging and radiation therapy has been provided. The work
gives an overview of the history and present status of research,
identifies challenges along with strategies, and finally lays out
future research directions.

C. Machine learning methods for WCE

[19] proposes a modern technique to detect bleeding signs
by employing color features out of regions of digital images
by computing skewness, energy, mean, and standard deviation.
Initially, the order histogram using the RGB color plane
is considered in contrast to gray scale to obtain bleeding-
related features. They are considered in pathology images via
content based retrieval systems. Basically, the strength of the
aforementioned paper is to use a content-based retrieval system
for the color features of digital images to analyse bleeding
in capsule endoscopy. All possible subsets are considered
involving the feature options in detail to search for best
accuracy results and it achieves 89% of accuracy.

A clustering-based approach using the K-nearest neighbors
(KNN) algorithm to detect bleeding in CE images is presented
in [20]. The algorithm considers the R/G ratio of pixel intensity
instead of RGB matrices of colored images. Afterwards it



Fig. 2. Example of imbalanced data classification for CE bleeding detection.
Blue and brown points are non-bleeding and bleeding instances respectively

calculates mean, maximum, minimum, skewness and kurtosis
of R/G elements to obtain the spatial attributes’ variation for
R/G components. A publicly available data set is tested for
this approach and achieves an accuracy of 98.5%, sensitiv-
ity of 98%, and specificity of 99%. A more sophisticated
bleeding detection idea which is based upon probabilistic
neural network (PNN) is presented in [21]. It computes the
classification function to filter out bleeding instances using
distinguishing features of WCE images. A specificity 85.6%
and a sensitivity 93.1% are reported to have been achieved.
A support vector machine (SVM)-based approach is proposed
in [22] for bleeding diagnosis decision support provided to
gastroenterologists. It is able to achieve a sensitivity of 94%
and a specificity of 83%.

III. METHODS - APPLYING LIME TO EXPLAIN
CLASSIFICATION DECISIONS IN CAPSULE ENDOSCOPY

Currently, in medical domain, XAI functionality is a nec-
essary requirement for many machine learning-based med-
ical research, education and clinical decision making sce-
narios. Systems for solving the medical domain’s explain-
ability/interpretability problem can be distinguished into two
types; post-hoc systems and ante-hoc systems. Post-hoc sys-
tems help in providing local explanations for a particular
decision made by machine learning so that it can be made
interpretable on demand rather than explaining the whole
systems behavior. One of the algorithms that enables post-
hoc explainability is LIME. Ante-hoc systems are interpretable
by design and referred to as glass-box approaches in the
literature [16]; examples are decision trees, linear regression
and fuzzy inference systems. In an applied science context,
LIME has already been used for explaining machine learning
models for the heat failure detection in air handling units [23].

The image classification problem for the CE procedure
can be visualized as an imbalanced data distribution problem
shown in Figure 2. Here, dark brown dots on the upper
right edge signify bleeding instances and blue dots show
non-bleeding majority negative class instances. The solid and
broken lines are various options of classifiers depending upon
different priority weight assigned to bleeding instances.

The complete classification and explanation process has
been depicted in Figure 3, which describes the classification
procedure by machine learning model as well as explanation
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Fig. 4. The Architecture for the proposed model

and visualization by LIME for each image frame. The image
data set is trained with a machine learning model (CNN in our
example) The trained model is given to our proposed model
for providing classifications and explanations underlying these
classifications. The overall explanations for the whole test data
can be provided to the medical professionals for assisting
them in decision making. The overall recommendation and
explanation is provided by the health-care professional by
making an aggregate ranking system for providing the severity
of the intestinal bleeding in the patient. The architecture of
the proposed model is depicted in Figure 4 where the whole
process can be divided into four segments: Pre-processing,
applying the CNN model, explanation-generation using LIME,
and decision-assistance for healthcare professionals.

IV. IMPLEMENTATION

We implemented a prototype that realizes the learning and
explanation pipeline of the architecture in an offline manner



with a Python-based technology stack'.

e Neural network: TensorFlow. TensorFlow [24] is an
open source platform for machine learning. We use
TensorFlow to train the neural network that classifies
the gastroenterological images.

e Local interpretable model-agnostic explanations:
LIME. LIME [8] is the original Python implementa-
tion of the LIME explanation technique. LIME takes
the neural network as generated by TensorFlow and
the result of a specific frame to generate a matrix
representation of the regions that triggered the cor-
responding classification.

The code and its documentation are available at

https://github.com/Madhikermi/CNN_LIME.

V. RESULTS
A. Use Case: Wireless capsule endoscopy

Wireless Capsule Endoscopy (WCE) is a non-invasive
procedure to visualize a patient’s entire gastroenterological
tract for signs of bleeding or polyp [25]. A disposable capsule
containing radio frequency transmitter, battery, imaging sensor,
an illuminator, and an optical dome is swallowed by the patient
for the procedure after 8 hours of fasting (empty stomach).
It gets pushed down the digestive tract by peristalsis while
scanning interior mucosa and capturing images at a speed of
about two images/second. Images are transmitted to an outside
receiver worn by the patient on their waist. Altogether the
procedure captures about 55,000 square images of size 256 x
256 while travelling through the patient’s digestive tract. Tradi-
tionally these captured video frames are examined manually by
the physician to check for potential bleeding symptoms. This
manual procedure is time-consuming, tedious, and dependent
upon extended concentration of the doctor, who is required
to watch thousands of images in the form of a video. Using
machine learning techniques, this process can be automated
with convincing accuracy in bleeding detection, which saves
manual effort as well as time. In machine learning, negative
and positive data refers to non-bleeding and bleeding images.
Actually, bleeding classification in WCE is an example of
imbalance data classification problem where negative examples
outnumber positive data by a big margin, sometimes 1000:1.
To handle the data imbalance problem there are two basic
class of techniques: data-oriented and algorithm-oriented. If the
initial data processing involves majority class undersampling
or minority class oversampling then it is defined under data
oriented approach category. If the data distribution analysis is
performed by algorithm itself then it belongs to algorithmic
category. As an example ensemble model or by considering
features of data distribution is a type of algorithm oriented
approach.

B. Image data set

The data set of 3,295+600 images was obtained from [26]
as shown in table I. The images are representative of the
medical application scenario and include normal as well as

UIn fact, Python mostly provides a developer abstraction of the underlying
tools; much of the code of the underlying libraries is C and C++.

Fig. 5. Sample CE images (First three columns correspond to non bleeding
and normal case and right most column shows example bleeding images)

.

~/

Fig. 6. Annotating the red lesions in capsule endoscopy images

bleeding cases. Set 1 consists of 3,295 images of which 90%
of the data have been used for training and rest of the 10% data
have been used for testing. For fast and consistent computation,
all 3,895 images have been re-sized to 150 x 150 pixels. The
labels of the images were created based on the segmentation
of the same data set as performed by [26]. The sample CE
images from the data set are shown in Figure 5.

TABLE 1. DATA SET DESCRIPTION OF NORMAL AND BLEEDING
IMAGES CONSIDERED FOR TRAINING AND TESTING SETS (COELHO ET
AL [26])

Data sets Normal Bleeding Total
Set | - training 1969 1024 2993
Set 2 - testing 195 107 302

Total 2164 1131 3295

C. Black box predictions and explanations

The code trains on the Red Lesion Endoscopy data set
that is provided at https://rdm.inesctec.pt/dataset/nis-2018-003.
Note that we train on labels and not on graphical annotations.
The labels were created from the annotated images provided
in the repository and the labels were used for training our



Fig. 7. The bloody regions are shown to give the glimpse of the areas due
to which the image is classified as bloody image

Fig. 8.

Explanations for black box model by LIME

CNN model. First, we prepared our data and then we split data
and labels into train and validation sets (randomly assigned).
For each set, separate bleeding and non-bleeding images with
Data length: 3295; label length: 3295 Training data length:
2993; validation data length: 302. The data set is trained
using a CNN model with 50 epochs with batch size of 16
and achieves a validation accuracy of 97.92%. Then we try
to read the images from the validation data set that have
been classified as bleeding images and finally providing the
explanations for bleeding images with the help of LIME. It
provides explanations for bleeding images by marking the
boundaries of the bloody areas in the image. Figure 6 gives
the annotations for a particular instance of the bleeding image.
Figure 7 tries to explain the black box decision for particular
bleeding image instances by highlighting the features or areas
due to which the image is classified as bleeding image. The
explanations provided by LIME are depicted in Figure 8 in the
form of highlighted boundaries around the important features
of the images which contributed in making the decisions
by black box model. The LIME has been tested for all the
bleeding images in the validation data set and the results are
shown in Figure 9. The prediction probabilities for bleeding
class have also been calculated for few of the sample bleeding
images as shown in table II.

TABLE II. PREDICTION PROBABILITIES FOR BLEEDING CLASS FOR

FEW OF THE SAMPLE VALIDATED IMAGES

Images Prediction Probability
Image 1 0.3362

Image 2 0.9999

Image 3 0.3933

Image 4 0

Image 5 0.5084

VI. DISCUSSION

The provide approach to XAl for medial image analysis can
help medical professionals to trust the decisions made by the
black-box models and also help them explaining the decisions
to the patients in the form of visualizations. According to our
knowledge, such XAI approaches have not yet found their way
into state-of-the-art literature in the medical domain. While the
generated LIME explanations are in many cases “correct” from
a human perspective, in some of the cases the explanations do
not seem fully plausible, as can be seen in Figure 9. A likely
reason is the small size of the training data, as well as the only
minimally customized machine learning model generator. The
explanations have been provided to the partner hospital, which
has provided positive feedback as to the value of the approach
and research direction.

Machine learning in the context of medical decision mak-
ing must take explainability into account, to ensure that
machine errors do not cause disastrous consequences that
can be prevented by a human-in-the-loop approach, which
requires that medical professionals must have a possibility to
understand how and why a machine decision has been made.
Further, transparent algorithms can appropriately enhance the
trust of medical professionals in artificial intelligence systems.
If machine learning models complement human intelligence,
and even overrule it in some cases, the decisions needs to be
understandable and interactively influenced by humans. Highly
autonomous systems cannot be deployed unless the machine
learning decisions can be presented in a way that allows for
human interpretation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed and prototyped an ex-
plainable machine learning tool that can potentially be used
by medical experts as a decision-support system to detect
gastroenterological bleeding faster and in a more reliable
manner. However, the following work should be conducted
to allow for real-world applicability of the presented tool:

1)  Strengthen the architecture’s implementation and
technical evaluation. In this paper, we have pre-
sented the implementation of a prototype of the
machine learning-explainability part of the proposed
tool chain. However, a more systematic assessment
of the capabilities of class label-based classifications
and LIME in contrast to graphical annotation-based
machine learning in terms of classification accuracy,
explainability, and labelling effort needs to be made.
Also, the full architecture should be implemented to
allow for a practical/use case-oriented evaluation.



Fig. 9. LIME explanations provided in the form of boundaries for bloody regions from the validated CE data set



2) Evaluate the tool’s applicability in user studies
with medical experts. While we have provided a
prototype that shows the workings of a tool to help
solve the real-world challenge of automating diagno-
sis support for gastroenterological bleeding detection,
its exact usability has not been assessed in practice
(or practice-like scenarios). User studies with medical
experts should be conducted as future research to
detect potential pitfalls and shortcomings.

3) Provide a full application that can be used out-
of-the-box by wmedical practitioners. The intro-
duced tool implements an end-to-end pipeline for
classifying and explaining gastroenterological images
for bleeding detection, but does not come with a
graphical user interface that is tailored for simple
and safe use by medical practitioners. Implementing
such a user interface and assessing it (see Point 1.),
is important future research domain.

4)  Enable learning from expert feedback. Ideally, the
tool would allow experts to provide online feedback
if image sequences are incorrectly classified (in par-
ticular: false negatives) to continuously improve the
accuracy of the machine learning model.

5)  Generalize to other medical image analysis scenar-
ios. The presented architecture and implementation
can potentially be utilized for other medical image
analysis scenarios that require a combination of ML-
based classification and decision explanation. Apply-
ing the architecture and implementation to other sets
of medical images, evaluating and refining it in the
light of further medical decision support and automa-
tion scenarios can lead to a more widely applicable
solution. Also, given that the binary-decision prob-
lem at hand may not require deep machine learning
methods in a practical setting, more complex medical
image classification scenarios should be studies that
inevitably depend on black-box models.
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