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Abstract—Network slicing offers numerous benefits, particu-
larly the ability to deliver highly customizable services to new
industry sectors that have been unserved or inadequately served
by current mobile network operators. Among new industry use
cases that are targeted by the fifth generation (5G) mobile
systems, there exist scenarios that go beyond what the current
device-centric mobility approaches can support. The mobility
of low latency communication services, shared by a group of
moving devices, e.g., autonomous vehicles that share sensor data,
is a prime example of these cases. These use cases’ demands for
ultra-low latency can be addressed by leveraging the Multi-Access
Edge Computing (MEC) concept, techniques for live migration
of virtual resources, Software Defined Networking (SDN), and
network slicing. In this paper, we define different slice mobility
patterns, different methods for grouping users, and different
triggers for network slice mobility. Furthermore, we evaluate the
mobility of services and network slices based on the simultaneous
migrations of multiple containers.

Index Terms—5G, Network Slice, Network Softwarisation,
Migration, NFV, SDN, and MEC

I. INTRODUCTION

The 5th generation mobile networks (5G) will go beyond
providing only high data rates for mobile users, as it will be a
platform for a wider communication ecosystem for the Internet
of Things and machine-type communications applications [1].
The services of new vertical industries, e.g., automotive, e-
health, public safety, and smart grids impose unique require-
ments that will push the envelope for high performance,
scalability, and availability. To achieve such ambitious goals,
5G has been re-architected from the ground up in comparison
to the previous mobile network generations. Decoupling log-
ical network functions from the physical infrastructure forms
the basis of deployment of self-contained, programmable and
customizable networks [2].

The Network Function Virtualization (NFV) and Software
Defined Networking (SDN) are the fundamental technologies
to implement the separation of logical network functions
from the infrastructure leading to network softwarization [3].
SDN offers programmability of the connectivity between the
network functions while NFV provides means to define, in-
stantiate and manage virtualized network functions that are
required to create multiple logical (virtual) networks. The
sharing of the same underlying infrastructure among isolated

and self-contained networks leads to the key concept of
network slicing [4].

Network slicing is an active research field within the aca-
demic community and among the different standards develop-
ment organizations (SDOs), such as the Next Generation Mo-
bile Network Alliance (NGMN), Third Generation Partnership
Project (3GPP), and International Telecommunication Union
– Telecommunication Standardization Sector (ITU-T). In the
scope of this paper, we define a network slice as an end-to-end
(E2E) logical network running on top of common underlying
(physical or virtual) network, fully isolated, with indepen-
dent control and management, and flexibly programmable
on-demand to meet service level agreements (SLA) of a
specific service. A network slice consists of computing and
storage resources, associated with virtual networks, possibly
composed of multiple virtual sub-network segments; and may
span across multiple technological as well as administrative
domains. Mobile users can connect to multiple slices simulta-
neously depending on the type of service they are using [5].
Furthermore, for latency-sensitive services, MEC [6] provides
powerful service delivery with minimal delay. In a MEC
environment, MEC servers, as well as network access points,
can be sliced to serve multiple slices with very different service
characteristics.

However, as users move with their mobile devices from
one domain to another, their ongoing mobile communication
and service sessions running on at least a network slice may
suffer a drop in QoS if not a total disconnect. This may
happen if their ongoing network service has to be served by
instantiating a totally new network slice of the same type
at the destination network (new radio resources, backhaul,
computing, and storage). This leads to a network slice that has
to support moving its computation around following its users’
mobility pattern, additionally, the slice itself may need to
adjust its resource allocation, adding more resources or freeing
unused ones, these requirements lead us to the definition of
the concept of slice mobility.

Each instantiated network slice should ensure service conti-
nuity for its end-users. Intuitively, a simple service replication
would solve the issue, yet not all services are stateless (i.e.,
service that do not save user session/context). It is worth noting
that the migration of stateless services is less demanding



than the migration of stateful (i.e., service that saves user
session/context) services [7]. To support migration of stateful
services, separate mobility mechanisms must be designed and
implemented to ensure consistency of the service context.
In addition, the resources of a slice could become saturated
and over-consumed due to a sudden increase in the service
demand, thus actions for slice scaling or breathing should
be supported. Fortunately, the same actions that are needed
for slice mobility suit well for slice scaling. Based on these
observations, the contributions of this paper are:

• The introduction of a number of slice mobility patterns
to optimally manage and use slices with their allocated
resources, while leveraging the ideas of Follow me Edge
concept introduced earlier in [8]–[10].

• The examination of service migration capabilities needed
for slice mobility inside one Infrastructure as a Service
(IaaS) cloud domain, that we then extend to cover slice
mobility across multiple IaaS domains.

• The definition of several key slice mobility triggers
and User Equipment (UE) grouping methods to enable
efficient slice mobility needed for the described slice
mobility use cases.

• A preliminary evaluation of two key enabling technolo-
gies for slice mobility patterns: system virtualization
with containers and SDN to allow a fast and seamless
allocation of resources to a network slice.

The remainder of this paper is structured as follows. Sec-
tion II summarizes the fundamentally related research work.
Section III gives an overview of different slice mobility use
cases. Section IV introduces the key slice mobility triggers and
the different methods for grouping users besides slice mobility
patterns. Section V focuses more on the enabling technologies
for the proposed solution and the primary evaluation setup
for the proof of concept. Finally, the paper concludes in
Section VI.

II. RELATED WORK

The authors of [11] focus on extensions for NFV orchestra-
tion that provide tailored support for mobility and QoS/QoE
for network slices whilst ensuring efficient utilization of the
substrate network resources. They present several ways to clas-
sify and select mobility management (MM) schemes based on
the context of the service or type of a network slice. Terminal
speed, session continuation requirements, and stability of the
endpoint addresses are the main criteria for selecting a mobil-
ity scheme. The authors propose slice specific MM schemes
through the creation of context-dependent configurations of
the instantiated network functions. Our envisioned approach
differs from this one by focusing on moving slices along
with their services based on mobility triggers and grouping
of respective UEs.

As previously discussed the migration process is one of the
key enablers of the proposed slice mobility concept, where
a running virtual instance (i.e., Virtual Machines (VMs) or
containers) is migrated across different host machines (i.e.,

within the same IaaS platform or across multiple IaaS) without
disrupting the service. Clark et al. [12] introduce the writable
working set concept and use it to design a pre-copy based
migration procedure that enables the live migration of VMs for
the Xen Virtual Machine Manager (VMM). Mann et al. [13]
present a network architecture that provides a layer-agnostic
and seamless live and off-line VM mobility across multiple
data centers. They leverage SDN and use the principle of
location independence in order to handle the inter-data center
limits. They obtain better results compared to the default
layer 2 networks; in some tests, their solution outperforms the
default approach by up to 30%. Tay et al. [14] evaluate the
migration performance of Containers and VMs showing that
the use of system containers can achieve the same, or even
better, capabilities than a VM without its high overhead.

With respect to first cited work, in this study, we introduce
the slice mobility patterns, and jointly emphasize the key
enabler triggers and the grouping methods of the end users.
While the remaining listed related works are used as a basis for
enabling the desired slice mobility. Seeing that new use-cases
entrance will beget a highly mobile environment, increase the
core network traffic and reduce the latency, this work is a
must for achieving the 1 ms latency dream for the upcoming
5G mobile systems and beyond.

III. SLICE MOBILITY USE CASES

Network slicing enables customization of network services
and resources for the needs of different use cases. The same
underlying infrastructure is shared among the different slices
that add their own customized network functions and services
to implement a dedicated service network. The services in
a slice will have their own dedicated share of e.g. RAN
resources, edge computing resources, and control plane re-
sources that will be concatenated to form an end-to-end slice.
Such a dedicated slice can be customized for a number of
use cases. For example, to support autonomously moving
equipment with mobility patterns and latency requirements
that differ from a regular mobile phone, e.g. drones, robotic
vehicles, or a fast-moving train carrying mobile users enjoying
infotainment services. To ensure that the user mobility patterns
match with the coverage and availability of the resources allo-
cated to the slice, we introduce the concept of slice mobility
that is implemented by carefully coordinated and organized
live migrations of Virtual Network Functions (VNFs). In this
section, we discuss use cases that clearly show the need for
the proposed slice mobility paradigm that 5G networks should
adopt. The first two use cases form a new mobility pattern not
perceived before in the previous generation, they also express
the perfect need for a mobile slice to follow the users (cars, and
UAVs), ensure specific resource availability and continuous
delivery during the mobility time. While the last use case
is proposed to illustrate another aspect of the slice mobility
patterns related to the partial mobility which will be detailed
in the next section.



A. Drone Traffic Control

Unmanned aerial vehicles (UAVs) are the perfect example
to illustrate devices with predictable paths and high mobility,
showcasing the slice mobility use case. As an initial scenario,
let us assume that Jonathan is a young researcher working on
UAVs, and his mission is to perform a self-swarming control
test over two university campuses. Jonathan has ordered a
customized slice for his drone experiment. In addition to
offering the connectivity to the drones, the slice is hosting
virtual flight controllers for all the involved drones. The virtual
flight controller is a software application that controls a cor-
responding drone and receives location information from the
drone and radio usage information from the network. Virtual
flight controller application is instantiated in a container. Each
drone has its own instance of the controller and the controllers
need to cooperate to group the drones into swarms in an
orderly manner so they move as a group to the same direction.
In his experiments, Jonathan noticed two possibilities: the first
one is that the swarms of drones can have a synchronized
mobility pattern where the swarm moves as a tight group
outside the current service area or a second one where the
drones move in smaller groups or one by one out from the
initial service area depending on how tight the swarm is.
In both situations, the containerized flight controller must
follow its drone in order to provide the required low latency
and accurate control of the drones. This use case leads to
the notions of migrating the slice as a whole (i.e. full slice
mobility) or the slice gets split into two service areas.

B. Autonomous Vehicles Support

Autonomous vehicles are thought to be one of the key
verticals that would benefit from the upcoming 5G systems.
Autonomous vehicles are expected to be served by mobile
operators or car manufacturer-operated network slices. Safety
of the passengers and the other public on the road mandates
highly-reliable and low-latency connectivity to be an integral
part of a slice for autonomous vehicles. A missed signal
from the virtual data and processing analytics of a connected
car (vDPACC) can cause an imminent danger situation that
could result in physical damage or even a death. In addition
to the support of low latency and high reliability, the slice
must also have a redundancy that can be implemented at
the VNF- and connection-level inside a slice or by a backup
slice. The latter approach would lead to simpler overall service
orchestration and configuration. When such a slice is relocated,
the backup slice also needs to be modified or even moved as
well. The slice mobility management mechanism must take
into account the availability of backup connections, as well as
the redundancy of the VNFs of the slice when migrating the
slice and its services. The backup slice should not be relocated
at the same time as the primary slice to ensure availability of
the service.

C. Rapidly Changing Video Streaming Need

In this use case, a city hall is taking place in a form of a
webinar. All the residents of the city have been invited due to

the importance of the decisions to be made. The community
has arranged its own slice for this mass meeting. The webinar
is also attended by an audience on a train departing from the
railway station of the city. The train leaves according to its
schedule and enters soon to a neighboring area, or a tunnel,
that has much less capacity to offer. The city hall videos
streaming slice needs to be complemented with a new and
temporal slice in the new service area that the train is passing
by. This new slice solves the bottleneck by accommodating
a special Content Delivery Network (CDN) capacity with a
video streamer that aggregates multiple separate unicast video
streams into a limited number of shared streams that are
distributed to the traveling audience of the webinar. Once the
train enters into an area with better infrastructure, the purpose-
built video CDN slice can be released and the original slice
can continue to serve the audience. This use case shows the
need for slice splitting and slice merging leading to the concept
of slice breathing discussed in the following sections.

IV. KEY ENABLER TRIGGERS, GROUPING ATTRIBUTES,
AND SLICE MOBILITY PATTERNS

As was discussed in the use case section slice mobility
comes in a number of different variants or mobility patterns
depending on how the slice is to be modified due to the
changes in its service consumption, thus categorizing slice
mobility patterns is a challenging issue. Based on what was
introduced earlier, we identify following slice mobility pat-
terns: full slice mobility, slice splitting, slice merging, slice
shrinking and slice breathing. Slice mobility actions are based
on a number of triggers characterizing the slice dynamics
and its service consumption. We start by introducing the
slice mobility triggers that initiate slice mobility actions. The
mobility triggers, as well as slice mobility actions, operate
on a set of different groupings depending on a service or its
resources. We elaborate the key grouping attributes offered by
the 5G network specifications that provided the bases for slice
mobility patterns and mobility triggers.

A. Slice Mobility Triggers

In this step, we will identify, discuss and present several
key triggers to enable different slice mobility patterns. Triggers
broadly relate to the users’ mobility, the availability of physical
resources and network resources at the hosting edge cloud
or federated cloud, resource efficiency utilization, service
reliability, and security.

1) Group mobility trigger: This trigger can be considered
as the main catalyst for slice mobility in a real-life environ-
ment. The group mobility trigger could be applied to all use
cases cited-above (i.e., drone, autonomous cars, and video
streaming). In this trigger, a group of users simultaneously
move from a location to another one. For example, passengers
on board a metro or train move simultaneously from a location
to another (as in the use case of video streaming in a highly
moving entity), which requires full slice mobility. The signal
strength can be measured by the users and reported back to the
access points. These measurements can be correlated and acted



upon already on the access points or deeper in the network,
such as at the mobility management entity in the evolved
packet system, access management function in the 5G core,
or at the life cycle manager controlling the slice. The entity in
charge of correlating these measurement reports will pull the
group mobility trigger that will, in turn, launch the process of
slice mobility to follow the mobility of that particular group of
users, using the same slice and its services that were reported
by the measurements.

2) Resource availability trigger: Edge clouds tend to al-
ways have fewer resources, i.e. network, processing, and
storage capacity, than the centralized cloud. Due to the limited
resources at the edge, the system level resource consumption
must be monitored carefully. Once the upper limit of allowed
total used capacity is reached, a ”limited resources availabil-
ity” trigger will be generated with a parameter indicating
that the highest allowed resource consumption level of a
certain type of system resources is reached. This trigger is
sent to the slice life-cycle management to initiate migration
of services from the highly-loaded edge cloud(s) towards
the centralized cloud while keeping at the edge only delay-
sensitive services. Alternatively, the services of the highly-
loaded edge cloud could be migrated towards neighboring
edge clouds if they have the necessary system-level resources
available. Once the resource consumption level decreases
below a given parametrized threshold, the edge cloud should
send a ”resource availability” trigger to indicate that there
is room to accommodate more users and services for that
particular type of resources.

Let’s consider that the users are static and the network
resources are exhausted by the requested data from a given
group of users. In this situation, a scale-out operation needs
to be considered. However, the slice is limited by the available
physical resources of the edge cloud and the number of
different slice migration strategies that need to be considered
with potential impacts on the service QoE. One possible trade-
off is to migrate some users or services to other edges or to the
centralized cloud that is further away even if that may reduce
their QoE.

3) Reliability trigger: The reliability trigger would be typ-
ically generated by the operation and maintenance protocols
and supporting operations, administration and maintenance
(OAM) systems of the access point or the edge cloud that
monitors the healthiness of the connectivity. In case of a major
disaster, there would be an abrupt interruption of connectivity
towards the users or neighboring edge nodes or even to the
centralized cloud. The services should be therefore simultane-
ously evacuated from one location to another as long as there is
still some capacity left for that. All unnecessary actions should
be deferred until the system snapshot has been replicated. This
trigger will cause full slice mobility where all slices served
by this access point or edge cloud node need to be migrated
elsewhere to ensure the integrity of all valuable data.

4) Security trigger: Security is of vital importance for the
networks since a compromised entity or service may result in a
considerable damage to the whole infrastructure. For instance,

in case a denial of service (DoS) attack occurs in a specific
location ”A”, the services should be then shifted from that
location to a more secure one. An intrusion detection system
(IDS) could send a security trigger to start a slice mobility for
the compromised slice. When the IDS detects an anomaly in
a slice, this trigger is sent to the orchestrator that initiates the
migration process for that slice.

5) Request overload trigger: Service request trigger is
based on the number of simultaneous service requests stem-
ming from groups of users requesting the services available
in an existing slice. As a potential number of requests is
likely to overload the requested service and eventually to cause
a trigger for limited availability of resources, this overload
trigger is sent prior to any hard resource limitations and to
initiate smooth overload control and potential redistribution of
the service across neighboring nodes.

6) Service consumption trigger: The resource consumption
of individual services needs to be monitored. Based on the
type of the service and its resource consumption, a trigger
is generated if the service consumption is under or above
predetermined levels. Note that the previously-discussed re-
source availability trigger deals with the aggregate system level
resources whereas this trigger copes with the performance of
a single service.

B. Grouping Attributes

The key mobility triggers for slice mobility are not alone
sufficient to efficiently manage the slice mobility patterns. In
addition to triggers, we need means to group various relevant
objects (e.g. services, users, and network functions) so the
mobility of the slices of resources consumed by those groups
can be separately and efficiently managed. Next, we will
investigate various grouping attributes to support slice mobility
patterns.

1) Grouping By User Subscription Type: Grouping users
by using their distinctive subscription types are one of the
simplest grouping attributes. In 5G, this identifier is called
subscription permanent identifier (SUPI) and it is globally
unique throughout the 3GPP system [15]. Another useful
identifier in 5G is generic public subscription identifier (GPSI)
that identifies a 3GPP subscription for different data networks.
With these subscription identifiers, we can separate for ex-
ample IoT users of a given service provider from mobile
broadband users of the same or different providers, or pre-
paid users from enterprise users. Because this grouping is very
coarse, it will be performed in combination with other types
of groupings.

2) Grouping By Access Type: Users can be grouped by
the access type they use. Access types could be 3GGP (e.g.
4G, 5G, 5G small cell) or non-3GPP (e.g. WiFi and Wi-Max)
accesses or multi-access. This grouping attribute is coarse and
often needs to be complemented with other grouping attributes.

3) Grouping By Network Slice Type: 3GPP defines three
standard types of slices:

• eMBB (enhanced Mobile Broadband) slice,



• URLLC (ultra- reliable low latency communications)
slice,

• MIoT (massive IoT) slice.
A UE can be connected at the same time to multiple slices.
A slice is associated with a slice identifier, called network
slice selection assistance information (NSSAI) that contains
information about the slice type [15]. When a UE connects to
the 5G network, it will use this identifier to express which slice
it wants to join. NSSAI is also used in binding services and
5G network functions to a particular slice. It is very critical
for slice mobility to identify that particular slice that will be
modified or moved as it impacts multiple bindings between
multiple entities. Unfortunately, NSSAI is unique only within
one operator domain which introduces additional complexity
when a slice is moving across operator boundaries.

4) Grouping By Service Area: Grouping of the consumed
resources only is not enough because service area and service
availability limitations may exist. A trivial example would be
the case of a user ”A” that is consuming an ultra-low latency
service. If user ”A” is a static user or his mobility pattern is
restricted to a single service area, this user cannot be grouped
with other users that are allowed to use the low latency service
in other service areas.

5) Grouping By Access Characteristics: Grouping users
by their experienced access characteristics constitute one of
the essential groupings attributes to identify a slice mobility
pattern. Access characteristics take into account the radio
metrics of the access, throughput, and frequency of handovers.
For example, in our third use case where passengers are
traveling in a high-speed train and receive video service over
a network slice, one useful grouping of the users would be
based on users experiencing same radio characteristics, same
radio frequencies, same handover frequency and using same
access points in addition to receiving the same service.

6) Grouping By Geographical Location: Geographical Lo-
cation is an obvious grouping method that is applicable to
all above-mentioned used cases. Geographical location-based
grouping is often combined with the other grouping methods,
particularly with the mobility pattern grouping. In Geograph-
ical Location-based grouping, users, services or slices are
classified based on their current location.

C. Slice Mobility Patterns

We classify slice mobility patterns into the following cat-
egories: i) full slice mobility; ii) partial slice mobility which
includes slice breathing, slice splitting, and slice merging; and
iii) slice mobility optimizer which contains slice shrinking
pattern. In the remainder of this section, each slice mobility
pattern is described, highlighting its respective triggers. As
discussed earlier, slice mobility events are generally triggered
by the mobility of a group of end-users, the availability of the
needed resources in the cloud or by the security aspects of the
requested services.

1) Full Slice Mobility: In this use case, we consider a group
of users moving to a different location; e.g., a swarm of UAVs
moving from the service area of an edge cloud 1 to the service

area of another edge cloud 3 (Fig. 1). This group mobility
will trigger a service migration process of the entire services
and associated resources used by this group. This leads to the
notion of full slice mobility as all resources and the services
of a slice are impacted by the mobility and are migrated from
the original resource location to a new one. Several triggers
may be used to indicate the need for this type of mobility.
The most important ones are group mobility, limited resource
availability, and reliability triggers.

Fig. 1. Full Slice Mobility Pattern

2) Partial Slice Mobility: Full slice mobility is an expensive
operation but some of the mobility patterns can be supported
with less tedious operations. In partial mobility, only some
identified resources of a slice are to be migrated. Thus, two
possible cases results, either the network slice will be extended
to allow more coverage (Slice Breathing) or a different net-
work slice will be considered in the destination. Concerning
the second situation, we consider two cases: i) either existing
slices; or ii) newly- created slices. Both of these divergent
cases yield two types of slice mobility, namely Slice Splitting
and Slice Merging.

a) Slice Breathing: Another use case, depicted in
Fig. 2(a), when the group of users ”C” attached to the existing
slice (slice 1) causing skewed resource consumption, over-
consuming a subset of the offered services of the slice 1.
A slice breathing operation will be triggered, causing repli-
cation of the content of highly-loaded micro-services (e.g.
containers), followed immediately by user redirection to this
newly-created (sub-)slice to guarantee seamless continuity of
the services.

The slice breathing operation can be based on several
triggers. Clearly, group mobility trigger, resource availability
trigger, service overload trigger, and service consumption
trigger can be used to initiate a slice breathing mobility pattern.
To summarize, in the slice breathing operation, a slice is
temporarily expanded by combining service replication and
service migration processes with redirection of users to another
slice to match a sudden need for scaling a slice.

In the case of unworkability of slice breathing operations,
slice splitting and slice merging are adopted depending on the



(a) Slice Breathing (b) Slice Splitting

(c) Slice Merging

Fig. 2. Partial Slice Mobility Patterns

situations.
b) Slice Splitting: In the slice splitting case, we opt to

create a new slice for the upcoming group of users as shown
in Fig. 2(b). This action will be permitted by doing an inter-
slice service mobility to ensure the availability of the service
in the newly-added slices by exploiting the ability of inter-
data-center multiple migrations.

The group mobility trigger, the resource availability trigger,
the security trigger, the service overload trigger, and the re-
quest overload trigger will be part of the envisaged triggers for
the slice splitting use case. However, for these slice mobility
patterns, the system should consider the service consumption
behavior of end-users as a trigger to choose between slice
splitting or slice merging. Effectively, if the requested service
is not a delay-sensitive service, the system may opt for a
slice splitting action, wait until the creation of the new slice,
and start the mobility process by performing migration and
replication actions.

c) Slice Merging: On the other hand, considering the
availability of interoperability between two slice providers
(i.e., two IaaS), the system may optimize the distribution of the
new containers forming a set of slices and allowing an inter-
slice connectivity. This kind of slice mobility could be very
useful in case of no network coverage from the initial slice
provider. A multiple migrations process added to a replication
process should be envisaged to enable this use case.

The slice merging mechanism presented in Fig. 2(c) is a
quite similar mechanism to slice splitting with the exception

of the creation phase of the slice because in this case ultra
short latency services will be considered, which means that
we cannot tolerate the extra time for the slice creation. Due
to this constraint, a slice merging mechanism is employed. In
case of different slice providers, an interoperability contract is
intuitively assumed to be established between these different
providers.

Fig. 3. Slice Shrinking

3) Slice Mobility Optimizer: Slice Mobility Optimizer
mechanisms aim for avoiding the waste of unused resources as
a result of the mobility of users, a reduced usage of services,
and/or the end of the service usage.



a) Slice Shrinking: In Fig. 3, we illustrate the case of a
group of users that moved and are served by a different slice
(i.e., either existing one or newly created) in their new location
(i.e. Edge Cloud 3 & 4). The remaining users are served by
Edge Cloud 2, and resources originally used in Edge Cloud 1
will be released, resulting in the shrinkage of the original slice.
Slice shrinking is a cleaning mechanism that should follow
each case where existing resources are migrated to a new host
to release all previous resources that became obsolete during
the migration process.

After deciding which slice mobility pattern to execute, the
system should run a control algorithm that determines the
optimal number of virtualization instances and sets the rules
for slice shrinking. For instance, in Fig. 3, we have two
containers serving the groups of users A & B. The system
can use the number of requests that container 1 or 2 is able
to handle. If either of them is able to provide the required
service with respect to the SLA terms negotiated before, it
can take over the services provided by the other one, that will
be ultimately turned off.

Table I summarizes the relationships between the slice
mobility patterns and the different mobility triggers. The slice
shrinking pattern is not included in the table as it is supposed
to be an automatic process activated after each slice mobility
pattern to free resources that become unused after resource
migration.

TABLE I
RELATIONSHIP BETWEEN KEY ENABLER TRIGGERS & SLICE MOBILITY

PATTERNS

Triggers / Slice Mobility Full Slice Mobility Slice Splitting Slice Merging Slice Breathing
Group Mobility Yes Yes Yes Yes

Resource Availability Yes Yes Yes Yes
Reliability Yes No No No
Security No Yes Yes No

Service Overload No Yes Yes Yes
Service Consumption No Yes Yes Yes

V. ENABLING TECHNOLOGIES & EVALUATION SETUP

This section presents our preliminary evaluation of two key
enabling technologies for Slice Mobility: system virtualization
with containers and SDN. These technologies allow a fast
and seamless allocation of resources to a network slice,
while a complete evaluation of the behavior of the migration
procedure under different physical setups and user mobility
patterns are outside the scope of this work we do evaluate
a performance of parallel migrations to better understand its
current performance bottlenecks. Our focus on the parallel
migration arises from our perceived need to support multiple
simultaneous migrations during a slice reconfiguration caused
by user mobility across domains.

Fig. 4 portrays the testbed environment envisioned to emu-
late the slice mobility patterns, targeting the third use case
of Section III. In this use case, a slice consists of a set
of streaming functions that are used for streaming video

Fig. 4. Testbed setup

services. The testbed consists of two physical servers (i.e.,
two administrative IaaS domains) as depicted in Fig. 4. Both
servers run Ubuntu version server and have KVM as a hy-
pervisor. Server 1 hosts two VMs; one acts as the source
cloud for the slice mobility while the other VM acts as an
SDN controller that manages the communications between the
different servers and their clients. As SDN controller, we used
ONOS (Open Network Operating System). However, any other
SDN controller could be used as well. The second physical
server, server 2, hosts only one VM that plays the role of
the destination cloud. Both servers and all VMs are running
Ubuntu 16.04 LTS with the 4.4.0-64-generic kernel with 4
CPU cores and 4 GB of memory. The connection between the
servers is 1Gbps. An additional host is used for accessing the
testbed from an external network.

As previously explained in Section II, the container technol-
ogy offers better overall performance compared to VMs. The
use of system level container, i.e., Linux Container (LXC),
technology allows us to support a wider range of applications
with the proposed framework. In our environment setup, we,
therefore, use the container technology LXC 2.8 and CRIU
2.6. We created three containers; each of them is running an
NGINX server to stream videos to three different clients.

In the performance evaluation, we chose the full slice
mobility pattern as it is the most complicated and computation-
heavy scenario. The migration process triggers the migration
of running instances in parallel from the source cloud to the
destination cloud. To automate the orchestration process, we
built a framework to handle the parallel container migrations.
We considered the resource availability trigger to enable the
parallel migrations. We used a mix between the grouping
by service area method, and the grouping by geographical
location method since our clients are static and are served
from their respective video streaming servers. By leveraging
the SDN paradigm, we created an overlay networking on top of
the physical network. Such an action allowed us to design an
isolated network topology over multiple physical data centers,
and at the same time, carrying out inter-data-center (i.e., inter-
IaaS) parallel migrations.



For enabling the full slice mobility, the test is performed
using the iterative migration approach [16]. We adopt the pre-
copy logic to perform the whole operations of live migration
starting with the copy of the disk until the memory copy.
Then, the SDN controller handles the path redirection phase
and finally the container is restored to that target node.

Fig. 5. Subsequent Migrations vs Parallel Migrations

Fig. 5 respectively shows the duration of 2, 3 and 4 sub-
sequent migrations vs the same number, however, leveraging
parallel migrations. The test is performed with identical sizes
of containers in order to carry out fair tests while comparing
the parallel migrations to the subsequent one. In Fig. 5, the X-
axis represents the number of LXC migrated containers while
the Y-axis represents the migration time in seconds. For each
bar (i.e., parallel and sequential migration), we plotted the 95%
confidence interval of the mean.

The mean total migration time for two subsequent mi-
grations was 40.7123s and the 95% confidence interval for
this experiment was 2.0007s. For the parallel migrations, we
obtained a mean total migration time of 24.3023s and 1.9764s
as its 95% confidence interval. Regarding the migration of
three instances, we achieved a mean total migration time of
60.1735s and 27.3984s, respectively, for both sequential and
parallel migrations. Finally, on the subject of four instances
migrations scenario, the mean total migration time is 81.9131s
for the sequential migrations with 95% confidence interval
of 2.6310s, while these values are 43.4268s and 9.0867s,
respectively, for the parallel migrations. The results obtained
through this evaluation reveal that the parallel migrations for
enabling a prompt slice mobility are more efficient when
compared to the legacy sequential migration strategy.

VI. CONCLUSION AND REMARKS

The network slicing paradigm unquestionably offers a pow-
erful apparatus to support verticals’ services. According to

this paradigm, a group of users is associated with dedicated
computing, storage, and network resources tailored for a given
vertical use case. The use of specialized resources in a slice
implies that such resources are not available everywhere in
the network but require careful resource allocation policies
and control. Therefore, there is a strong need to extend the
notion of mobility that is traditionally limited to user devices
or services only without much concern of combined resource
availability needed for network slicing. With network slicing,
the user and service mobility events become more correlated
leading to new mobility patterns. In this article, we introduced
slice mobility patterns with corresponding grouping methods
and relevant mobility triggers.

The proposed mobility patterns leverage MEC to offer ultra-
short latency communication infrastructure, SDN for fast flow
resumption, live migration to ensure the high-availability of
services and the Follow me Edge concept to support end-users’
mobility. The proposed framework is validated using a realistic
testbed. Interesting results were obtained, implying total time
migration evaluation depends on the used video streaming
delivery content. The obtained results also demonstrate the
dominance of the proposed parallel migrations when compared
to the legacy sequential migrations strategy. Based on the
achieved results and the presented key enabler triggers in
addition to the grouping methods, it can be concluded that
a mechanism to select the right combination of techniques to
be used for efficiently ensuring a slice mobility pattern action
is indispensable. For the authors, a future research direction
would be to investigate Artificial Intelligence techniques for
smart and cost-efficient triggering and grouping methods for
slice mobility patterns.
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