
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Addad, Rami; Cadette Dutra, Diego; Bagaa, Miloud; Taleb, Tarik; Flinck, Hannu
Fast Service Migration in 5G Trends and Scenarios

Published in:
IEEE Network

DOI:
10.1109/MNET.001.1800289

Published: 01/03/2020

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Addad, R., Cadette Dutra, D., Bagaa, M., Taleb, T., & Flinck, H. (2020). Fast Service Migration in 5G Trends and
Scenarios. IEEE Network, 34(2), 92-98. Article 9055744. https://doi.org/10.1109/MNET.001.1800289

https://doi.org/10.1109/MNET.001.1800289
https://doi.org/10.1109/MNET.001.1800289

Fast Service Migration in 5G Trends and Scenarios
Rami Akrem Addad1, Diego Leonel Cadette Dutra2, Miloud Bagaa1, Tarik Taleb1,4,5

and Hannu Flinck3
1 Aalto University, Espoo, Finland

2 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
3 Nokia Bell Labs, Espoo, Finland

4 Centre for Wireless Communications (CWC), University of Oulu, Oulu, Finland
5Computer and Information Security Department, Sejong University, Seoul, South Korea

Abstract—The need for faster and higher-capacity networks
that can sustain modern, high-demanding applications has driven
the development of 5G technology. Moreover, low-latency com-
munication (1ms - 10ms) is a key requirement of 5G systems.
Multi-access Edge Computing (MEC) can be leveraged to attain
the 5G objectives, since it allows the shift of part of services
towards the vicinity of users, allowing the infrastructure to host
various services closer to its end-users. Motivated by the evolution
of real-time applications, we propose and evaluate two different
mechanisms to improve the end-user experience by leveraging
container-based live migration technologies. The first solution is
aware of the users’ mobility patterns, while the other is oblivious
to the users’ paths. Our results display a closer to 50% reduction
on downtime, which shows the efficiency of the proposed solutions
compared to prior works based on either a similar underlying
technology, i.e., LXC or Docker.

Index Terms—5G, Migration, Containers, NFV, MEC, SDN
and Network Softwarisation.

I. INTRODUCTION

The fifth generation of mobile communications will provide
more than just a high data rate based on IP technologies,
allowing the connection of billions of devices with fine-grained
requirements [1]. Moreover, specific vertical industry services,
e.g., automotive systems, e-health, public safety, and smart
grids, have different service level agreements (SLAs) that must
be taken into consideration to reach the envisaged 5G systems.
Such an ambitious purpose demands an overall re-architecture
of current 4G mobile networks. The new proposed architecture
will allow the deployment of multiple logical networks over
a shared infrastructure through the decoupling of the logical
network from the physical infrastructure [2].

The adoption of Network Function Virtualization (NFV) [3]
and Software-Defined Networking (SDN) [4] will help to
concretize all elements mentioned before, as they represent the
enabling technologies that have completely transformed mod-
ern network infrastructures. With SDN, network softwarization
is able to provide a programmable network while using the
NFV paradigm allows running Virtualized Network Functions
(VNF) as software components on top of a virtualization
system (e.g., Virtual Machines - VMs - or Containers) hosted
in various clouds; allowing high flexibility and elasticity to
deploy network services and functions. These VNFs will run

on top of cloud computing environments distributed over the
globe, which offers cost-effective services, scalability fea-
tures, and multi-tenancy support, while possibly reducing both
capital expenditures (CAPEX) and operational expenditure
(OPEX) of 5G systems.

However, this architecture can be harmful to 5G systems’
high data rates and low latency requirements if the NFV
infrastructure is purely centralized, i.e., instantiating VNFs at
faraway clouds introduces bandwidth limits and a higher end-
to-end delay. The concept of Multi-access Edge Computing
(MEC) [5] can overcome the limitation of centralized NFV
deployments as it allows instantiating various VNFs, e.g.,
on top of containers, in the vicinity of users. The closer
VNFs to the end-users are the higher data rates and lower
latency we get. Furthermore, it is unusual for MEC nodes
to dispose of enough computational resources for hosting
standard virtualization technologies typically used in large
data-centers, i.e., VM monitors or hypervisors. Therefore, due
to the advantages in terms of management facilities, quick
deployment and startup time [6], container technologies define
an alternative technology in the MEC environment. Moreover,
these technologies also allow faster replication [7], live service
migration, and scaling methods than traditional VMs [8].

Even when considering the availability of several mecha-
nisms and technologies such as the MEC architecture and the
containers technology, users nowadays are everything except
motionless, which induces a serious lack of flexibility and
may take users far away from the original MEC node where
their service started running. To overcome this problem, a
new concept, dubbed Follow Me Cloud (FMC) [9], has been
introduced. The FMC concept allows the mobility of services
between different edges for placing them closest to end-users,
which ensures low latency (1ms − 10ms) and high capacity
(more than 100 Mbps). The stateful migration technique is
used to enable the FMC concept by ensuring service continuity
in case of the mobility of a service to a new mobile edge [10].

Meanwhile, autonomous vehicles and unmanned aerial vehi-
cles (UAVs) are expected to be pillars for next-generation ser-
vices and one of the 5G verticals. These emerging paradigms
will leverage on MEC enabled infrastructure and container
technologies, as they require a configurable network with
high data rate and end-to-end latency below a user-specified
threshold. By themselves, neither 5G systems or MEC ar-978-1-5386-4633-5/18/$31.00 c© 2018 IEEE

chitecture mechanisms can ensure the required QoE for the
end-users, been because of the UE’s unpredictable paths or
its mobility rate. Besides, the challenges facing autonomous
vehicles, trains or UAVs can be a real threat to passengers’
safety, demanding low latency connectivity.

Towards addressing the problem of service interruption
related to known/unknown paths when migrating services
between edge clouds, and based on the above-mentioned
observations, the contributions of this paper are:

• The introduction of two migration solutions, the first
solution assumes that the trajectories of mobile users
are known, while the second solution is oblivious to
the users’ trajectory. We use the FMC concept in both
solutions to ensure high availability and ultra-low latency;

• The design and the introduction of three different strate-
gies for optimizing the disk migration related to the first
solution related to the predefined path;

• The consolidation and the evaluation of these two solu-
tions by leveraging the container technology to reduce
the migration time as well as minimizing the services’
interruption (downtime).

The remaining of this paper is organized as follows, Sec-
tion II presents the motivation and background of this research.
In Section III, we describe the types of migration evaluated in
this paper and how they are deployed in our test environment.
In Section IV, we present and discuss the results of our exper-
imental evaluation. Finally, the paper concludes in Section V.

II. MOTIVATION & BACKGROUND

Live migration is the process through which we can trans-
fer a running virtual instance between computer hosts, both
its disk and current memory pages. Furthermore, while we
may execute the disk copy phase with a running instance,
the second phase, memory copy, must stop the virtualized
instance, which creates a period where it will be unresponsive,
also know as downtime. As, the number of memory pages,
as well as the available bandwidth, are directly correlated
with the instance’s downtime duration, we can reduce the
downtime using the concept of migration iteration. We can
divide the copy of memory pages into several steps, each one
of them, except the last one, can be done without stopping
the virtualization instance and takes only the changes relative
to the previous iteration. In our proposals, we named each
one of these intermediate steps pre-dump phases, while the
last one is named dump-phase stopping the instance. Our pro-
posed solution leverages on the container technology dubbed
Linux Containers (LXC) and CRIU (Checkpoint/Restore In
Userspace) tool [11], instead of the legacy VM technology, as
containers ensure a Linux system without the additional VM
overhead. The checkpointing procedure consists in collecting
and saving the state of all processes in the container. This
action occurs during the last iteration, i.e., dump-phase, of
the iterative migration or during the memory pages copy for
a basic live migration. The restore procedure re-spawns these
processes from a dump file we generate during the checkpoint.

Other researchers have investigated live migration based on
lightweight containers. Among them, we highlight the works
of Yang [12], who presented a generic checkpoint/restore
mechanism and evaluated its performance using Docker (con-
tainer technology). Each of the checkpoint and restore phases
took 2183 ms and 1998 ms, respectively, when considering a
256MB container size. For this reason, in this paper, we used
the LXC container technology instead of Docker. Machen et
al. [13] presented a multi-layer framework for migrating active
applications in MEC. The authors leveraged the follow-me
edge concept to enable both lightweight live migration (LXC)
and pseudo-heavy live migration (KVM case). The authors
expect these approaches to be at the core of an upcoming new
generation of networks. They evaluated the containerized part
of their work using LXC with different applications, e.g., video
streaming, face detection, and game server. They were able to
considerably reduce the total migration times albeit with a 2s
downtime on average for a blank container. The increase in
the downtime was due to the non-use of the iterative approach
in the live migration process. Moreover, the authors disregard
the impact of the known/unknown path on their results.

Concerning the previously cited works, in this study, we
introduce a complete framework that handles both the known
and unknown paths while optimizing all steps of the migration
process, mainly the disk copy and the memory synchronization
for achieving the 1 ms latency vision for the upcoming 5G and
beyond mobile systems.

III. FAST SERVICE MIGRATION PATTERNS IN MEC
ENVIRONMENTS

In this section, we describe our architecture for the proposed
lightweight container migration framework, then we present
the two proposed solutions for the asynchronous migration
procedure. However, in more complex environments, VNFs are
distributed similarly to micro-services architecture introducing
traffic steering complexity. Addad et al. [14] proposed a
method to handle all VNFs chain migrations, i.e., under the
name of Service Function Chaining migrations, that takes
into consideration both the synchronization the VNF chain’s
instances and the network resources consumption.

A. Main architecture and problem formulation

Fig. 1 depicts a three-layer cloud-based architecture for 5G
networks. It supports scalable, distributed deployment models
that aim to meet the 5G requirements, in terms of low latency
and high data rate, for new mobile broadband and IoT services.
The proposed architecture complies with ETSI-NFV standards
and takes into account the orchestration and the management
of the Core and MEC layers. The Core layer consists of a
centralized computational power that can include data centers
with powerful computing capabilities from different vendors,
e.g., Amazon, Microsoft, or private cloud solutions based on
open-source projects such as OpenStack. Orchestrated by the
top layer, the MEC layer features the Radio Access Network
(RAN) with high spectral efficiency and bandwidth. In the

NFV model, the Core and MEC layers form a distributed NFV
infrastructure (NFVI) and would be controlled by one or more
Virtualized Infrastructure Managers (VIMs). In the envisioned
architecture, containers host the components of VNFs man-
aged by numerous VNF Managers (VNFMs) that ensure the
life-cycle management of all VNF instances spreading over
multiple administrative domains (horizontal for MEC-to-MEC
and vertical for Centralized Cloud-to-MEC).

Moreover, this distributed computing model allows users
in the ”users layer” to be close to the compute capabilities
according to their mobility. In our presented use-cases, the
users may be onboard of high-speed vehicles or UAVs, where
their paths can be either pre-determined/predictable [15] or at
a random path. The path-aware case allows us to trigger the
migration process earlier, before reaching the edge of the cell,
while in the path-oblivious solution the actual migration has to
be completed before a given deadline, e.g., reaching the edge
of the cell.

The main focus is the implementation of the live migration
itself in several aspects to ensure a seamless migration across
edge clouds, without taking into account other use-case-
specific aspects, such as the signal strength received by each
vehicle, user equipment (UE) or UAV. Moreover, we noticed
that the ETSI-NFV orchestrator (NFVO) architecture should
be augmented to handle fine-grained live migration decisions.
Based on if the request is latency-sensitive or known/unknown
path, the newly integrated module in the NFVO decides the
best target location for the migration. The NFVO ensures all
securities and communications requirements between VNFM
source, VNFM destination, VIM source, and VIM destination.
Given the ”single domain” limitation expressed by both
VNFMs and VIMs, the NFVO coordinates either directly with
the VIM to request migration action from a MEC source to
a MEC destination or through both the usage of VNFM and
VIM elements, as both VNFM and VIM are considered as the
executive part of the proposed approach.

Fig. 2 presents a flowchart that details our live migration
strategies. We divided our proposed solution into two main
parts: the disk and the memory migration phases. Initially, the
need for a migration action is detected by the management
plane, which can be a part of the ETSI-NFV’s NFVO archi-
tecture. The management component can verify if the service
is serving an instance with an unknown path, referred to by
number 0 in Fig. 2 or in the case of known paths a series of
methods are used, wherein the color of the rhombus signifies
an action in a given part of the proposed architecture:

• The memory migration check (number 1 in Fig. 2) is the
initial test where the availability of the clone image (base
image and the application) is verified in the target MEC
host. If available, a cloning process is started, followed
by a memory migration;

• The partial migration check (number 2 in the same figure)
is the next in case of non-availability of the clone image.
Verification is done in the target MEC to find the base

image, e.g., in the case of Ubuntu: trusty or xenial. Once
found, cloning of the base image starts followed by a
copy of the application data from the source MEC to the
target MEC and a memory migration;

• The full migration check (refereed to by number 3
in Fig. 2) represents the final step and the worst-case
scenario as the entire file system (rootfs), the application
and the memory need to be transferred because of their
absence in the target MEC.

However, for end-user with unknown paths, we must rely
on the latency test as our second solution requires the use of a
shared storage system, which may negatively impact latency-
sensible applications. Since the container destination host
delay to the shared storage can be bigger than the application
tolerance, the migration can harm the service’s QoS/QoE. To
mitigate this issue, we can migrate latency-sensitive services
to other MEC, even if that increases the migration time but
offer a lower end-to-end delay.

In what follows, a detailed explanation related to
known/unknown paths will be discussed. Initially, the prede-
fined path will be presented, followed by the unknown path
scenario.

B. Statefull service migration based on a predefined path

Hereafter, we present our solution for UE with predefined
paths, previously discussed the path knowledge allow us
to anticipate the different source and target MECs for any
migration along with the mobility path of the UE. Moreover,
we can implement the migration between MECs without the
use of shared storage. It is worth mentioning that all previous
checking, i.e, memory migration, partial migration, and full
migration, works for the predefined path solution, as this
solution is an optimization of the disk migration procedure,
which is required to be transferred in known path solution. In
the following section, we introduce an iterative live migration
solution based on the CRIU [11] tool.

As described before, if both memory migration and partial
migration checks failed, the pre-defined path solution starts
first copying the container’s file system along with the user
files from the current MEC host to the destination MEC node
using the rsync utility without service disruption. However, in
case of a successful partial migration check, the application
copy is the unique mandatory transfer. Otherwise (i.e. memory
migration), no data transfer is required. Second, the memory of
the container is iteratively copied from the source MEC host
to the destination MEC host. In this step, the CRIU utility
will be used for iteratively dumping the container’s memory
- while it is running - into a tmpfs-mounted directory at the
source MEC host. Each dump is then copied to the destination
host via the network into the tmpfs-mounted directory at the
destination MEC host. Finally, the container will be restored at
the destination MEC host. In this manner, we devise a control
operation which is based initially on (number 4 in Fig. 2):

• a well-defined page number to guarantee the best time
(downtime) possible;

Fig. 1. Three layers cloud-based architecture.

• or use a fixed iteration number to avoid the scenario of
the infinite loop where page numbers will never have a
number below our threshold (the rate of modifying the
dirty page is greater than the link speed).

C. Statefull service migration based on undefined path
In most real-world applications, the service provider (cloud

service provider) does not know the movement patterns of
the users. Accordingly, we propose a more generic solution
that considers the paths of users to be unknown a priori.
Under this condition, the copy of the file system and memory
from the source MEC to the destination MEC could be a
challenging process. We address this issue with a solution,
named lightweight containers migration with a shared file sys-
tem, that leverages an alternative, fast and efficient migration
process. This pattern could be observed in Fig. 2 (number
0) when we consider an unknown path in addition to non-
latency-sensitive services. First, we eliminate the need to copy
files over the network during the migration phase, storing the
container’s file system along with the system images in a
shared storage pool. This approach allows us to focus on the
page memory migration process in the iteratively unload of
the container’s memory using CRIU on the source node and
then immediately restoring the container to the target node.
This approach uses more network resources while reducing the
total migration time for LXC, thus the verification of latency-
sensitive applications. We use the same logic as the pre-defined
path is followed for handling the memory copy.

IV. EXPERIMENTAL EVALUATION

We evaluate our envisioned container migration scenarios,
using virtualized nodes, each node running Ubuntu 16.04 LTS

with the 4.4.0-64-generic kernel, a 16 cores CPU, and 32GB
of main memory. The interconnection among the nodes is set
at 1Gb/s. We configure two testbeds container environment
using LXC 2.8 and CRIU 3.11 to our evaluations:

• The first testbed consists of two VM hosts, each one
representing a different Edge Cloud, i.e., an independent
Infrastructure as a Service – IaaS – provider. Our con-
tainer host is running on top of the first VM. We also
deployed a third host representing the management plane
previously discussed;

• The second testbed consists of three VMs. The first VM
is the source MEC host, whereas the second one is the
destination MEC host. Meanwhile, the third VM is the
Network File Storage (NFS) server that we use to store
the containers’ file-system. Moreover, we ensure that
in the testbed the three VMs can communicate among
themselves to enable container migration. We use the
communication between the MEC nodes and the NFS
server for disk migration, while the direct communication
between MEC nodes is used to migrate the memory
content.

For every container migration, we evaluate the total migra-
tion time and the container downtime. The latter directly corre-
sponds to the application of responsiveness/availability during
the migration process. We conducted two sets of experiments,
repeating them ten times each. The first one was a blank Linux
container migration, with a file system size equal to 350 MB.
We paid close attention to the container’s network reachability
throughout the migration process to observe the impact caused
by adding persistent data. The second one was the migration
of a video streaming server NGINX running on top of a
container, whereby the file-system size was 590 MB. In both

Fig. 2. Detailed live migration flowchart.

experiments, three strategies of migrations were evaluated:
full migration, partial migration, memory migration for the
predefined path case, and the shared migration as part of the
unknown path situation.

A. Migration induced downtime
This experiment outputs the downtime, standard deviation,

95% confidence interval (CI), and coefficient of variation (CV)
results for both blank and the video-streaming containers con-
sidering memory migration, partial migration, full migration
as part of the predefined path solution and shared-file system
migration as an unknown path solution. Detailed values are
presented in Table I. As expected, the results for the video-
streaming container are larger when compared to the blank
container’s results concerning all migration strategies. The
difference in these results is due to the additional copies of
the network connections status and the NGINX internal control
data to the target cloud. We also noticed that the addition of
the NGINX HTTP server introduced more variability in our
experiments, nevertheless, this represented an increase in the
CVs of less than 37.5%, 48.3%, 42.5 and 44.8% for memory
migration, partial migration, full migration, and shared file
system migration, respectively. From Table I, we can clearly
observe that the downtime for the memory migration, partial
migration and full migration related to the predefined path
solution are quite similar which consolidate our proposal, i.e.,
those strategies are built to optimize the disk migration part
of the predefined path, thus the migration of memory pages is
not affected.

TABLE I
DOWNTIME COMPARISON IN CASE OF DIFFERENT MIGRATION

APPROACHES.

Migration types Strategies Mean Time (s) Std dev CI 95% Coef Var
Pre-defined path Blank Memory-Mig 1.17 0.077 0.058 0.066

Video Memory-Mig 1.238 0.218 0.165 0.176
Blank Part-Mig 1.111 0.0645 0.049 0.058
Video Part-Mig 1.382 0.166 0.126 0.120
Blank Full-Mig 1.125 0.0640 0.048 0.057
Video Full-Mig 1.327 0.177 0.134 0.134

Unknown path Blank Shared f.sys Mig 1.825 0.123 0.092 0.067
Video Shared f.sys Mig 2.454 0.073 0.055 0.030

In Fig. 3, we present a breakdown of the downtime to
each migration procedure, the figure features the mean and
the 95% CI of the times collected during the experiment
for each approach, only the final iteration in addition to the
restore phase was shown. Still in this figure, the memory
migration, the partial migration, the full migration, and the
shared migration can be viewed in the X-axis, while the Y-
axis presents the time in seconds. Compared to the known path
solutions, i.e., memory migration, partial migration, and full
migration, the downtime for the shared file system migration
increases. Our preliminary investigation suspects the network
side because the target host restores procedure uses a remote
file system which incurs an additional latency in both the final
iteration and the restore procedures that form the downtime.

B. Total migration time evaluation

Our previous experimental results showed that our proposed
approaches reduce the downtime caused by the migration

Fig. 3. Downtime comparison in case of different migration processes.

procedure. However, to enable its use for ultra-short latency
services, we also need to address the total migration time.
We addressed this evaluation using the same experimental
scenarios of this section and plot the results in Fig. 4 for
both the blank (red) and video-streaming (blue) containers. In
Fig. 4, the Y-axis is in seconds. For each bar, we also plotted
the 95% CI of the mean.

Fig. 4. Total migration time experienced in case of different approaches.

We present in Table II the mean total migration time, the
Std deviation, the 95%CI, and the CV for the blank and video-
streaming containers. For the pre-defined path solutions, the
memory migration was the fastest as there is no need for
disk copy, only a final ”rsync” was leveraged to ensure the
synchronization between the source and destination MECs,
thus the additional 7s in the total migration time.

TABLE II
TOTAL MIGRATION TIME COMPARISON IN CASE OF DIFFERENT MIGRATION

APPROACHES.

Migration types Strategies Mean Time (s) Std dev CI 95% Coef Var
Pre-defined path Blank Memory-Mig 8.990 0.271 0.204 0.03

Video Memory-Mig 9.855 1.617 1.219 0.164
Blank Part-Mig 16.885 2.605 1.964 0.154
Video Part-Mig 38.918 2.67 2.013 0.069
Blank Full-Mig 19.518 0.379 0.286 0.019
Video Full-Mig 31.609 1.394 1.051 0.044

Unknown path Blank Shared f.sys Mig 2.831 0.269 0.203 0.095
Video Shared f.sys Mig 3.678 0.206 0.156 0.056

We focus on empty containers to show the impact of adding
services have on migration time, from these results, we can
observe that for all the pre-defined path migrations, the long
migration time was due to the file system copy, which we
avoided in the shared file system migration scenario. We must
also highlight that for the video streaming, container size
only increased the total migration time in the case with local
storage, mainly due to the file system copy. Furthermore,
for the shared file system scenario, the longer migration
time of the video container, in comparison with the blank
one, is due to the greater number of memory pages copied.
Moreover, the partial migration strategy also induces a longer
total migration time when we compare to the full migration
procedure. Thus, we can conclude that sending the whole disk,
i.e., rootfs or file system, through the network is faster than
cloning the base image, e.g., trusty for Ubuntu distribution,
followed by the transfer of the application’s meta-data and
data over the same network. However, we must highlight that
partial migration is a more promising solution as it limits the
bandwidth consumed during the migration process, as we only
transfer the application’s data.

C. Impact of the number of pages on the migration downtime

To avoid any bias from the underlying hardware technol-
ogy on our experimental evaluation, during the last iteration
we gathered the number of pages copied, and compute its
mean, standard deviation (STD), and the 95% CI for both
the memory migration procedure and the shared file system
migration. We transferred for the blank container on aver-
age 500.7 and 517.8 pages for the memory and shared file
system approaches, respectively. The standard deviation for
both approaches were 2.83 and 17.56, with 95% CI of 2.31
and 14.30, respectively. For the video streaming container, the
mean number of transferred pages was 706.6, and 551 with
STDs of 61.07 and 16.8, respectively for the memory and
shared file system approaches. Thus, we can conclude that the
behavior exhibited for the ”memory” and ”shared file system”
solutions are quite similar for both the blank container and
our video streaming container, despite, the disparate downtime
performance observed. The higher downtime for the shared
file system solution is caused by the multiple small writes
over the network. Meanwhile, the memory solution was able
to drastically reduce the downtime as it keeps the number of
copied pages in the last iteration small.

We also qualitatively evaluated the impact of the network
bandwidth on experimental results where our best experi-

mental scenario was 500.7 (2, 050, 867 Bytes) and 706.6
(2, 894, 234 Bytes) pages transferred for the blank container
and video container, respectively. As the amount of trans-
ferred data is unable to fully utilize a Gigabit link most
of the downtime improvements are the consequences of our
implementation and not the network itself since the network
performance for small transfers is constrained by the TCP
slow start and packet header/trail overhead. Moreover, even a
simplistic analysis that disregards these issues, the data transfer
would take around 164 ms for the blank container, and 231 ms
for the video container assuming a Fast Ethernet connection
(100Mbps), while for a Gigabit Ethernet (1Gbps) the time
spent copying the pages over the network was of the order
of 16.4 ms for the blank container and 23.1 ms for the video
container.

V. CONCLUSION

In this paper, we proposed and evaluated four migration
approaches based on the container technology to enable the
Follow Me Edge concept using MEC, to ensure high avail-
ability and support ultra-low latency for real-time applications.
While the first three approaches were used for the predefined
path solution, the last approach was for the generic ”unknown
path” scenarios. The Follow Me Edge allows the system
to guarantee a lower latency between the mobile user and
the service provider, which is a fundamental requirement for
Vehicular Networks (VN) and 5G networks. We have evaluated
the proposed solution using real testbed experiments. Our
results showed that while the shared file system approach
delivered the shortest migration time, it also imposed the
highest downtime. Meanwhile, we obtain a larger migration
time in the approaches without a shared file system, because
of the file system copy, which we did while the container
was still running. We also showed that our iterative migration
approach was able to achieve an average downtime of 1.111s,
an improvement of 61.039% in comparison to Yang [12], and
50% better than Machen et al. [13].

Finally, it is important to note that in the future, we plan to
extend our evaluation to improve its performance by leveraging
Artificial Intelligence techniques to decide the ideal time to
carry out and enforce a migration operation.

ACKNOWLEDGMENT
This research work is partially supported by the European

Union’s Horizon 2020 research and innovation program under
the MATILDA project with grant agreement No. 761898. It
is also partially funded by the Academy of Finland Projects
CSN and 6Genesis under grant agreement No. 311654 and
No. 318927, respectively.

REFERENCES

[1] NGMN Alliance, “5G White Paper,” February 2015. [Online]. Available:
https://www.ngmn.org/uploads/media/NGMN 5G White Paper V1 0.pdf

[2] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz,
J. Lorca, and J. Folgueira, “Network Slicing for 5G with SDN/NFV:
Concepts, Architectures, and Challenges,” IEEE Communications Mag-
azine, vol. 55, no. 5, pp. 80–87, May 2017.

[3] P. Mekikis, K. Ramantas, L. Sanabria-Russo, J. Serra, A. Antonopoulos,
D. Pubill, E. Kartsakli, and C. Verikoukis, “NFV-enabled Experimental
Platform for 5G Tactile Internet Support in Industrial Environments,”
IEEE Transactions on Industrial Informatics, pp. 1–1, 2019.

[4] E. Datsika, A. Antonopoulos, N. Zorba, and C. Verikoukis, “Software
Defined Network Service Chaining for OTT Service Providers in 5G
Networks,” IEEE Communications Magazine, vol. 55, no. 11, pp. 124–
131, Nov 2017.

[5] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
Multi-Access Edge Computing: A Survey of the Emerging 5G Network
Edge Cloud Architecture and Orchestration,” IEEE Communications
Surveys Tutorials, vol. 19, no. 3, pp. 1657–1681, thirdquarter 2017.

[6] Wubin, Li and Ali, Kanso, “Comparing Containers versus Virtual
Machines for Achieving High Availability,” in 2015 IEEE International
Conference on Cloud Engineering, Tempe, AZ, 2015, pp. 353-358.

[7] I. Farris, T. Taleb, A. Iera, and H. Flinck, “Lightweight service repli-
cation for ultra-short latency applications in mobile edge networks,” in
2017 IEEE International Conference on Communications (ICC), May
2017, pp. 1–6.

[8] Y. C. Tay, K. Gaurav, and P. Karkun, “A performance comparison of
containers and virtual machines in workload migration context,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
Workshops (ICDCSW), June 2017, pp. 61–66.

[9] A. Aissioui, A. Ksentini, A. Gueroui, and T. Taleb, “On Enabling 5G
Automotive Systems Using Follow Me edge-Cloud Concept,” IEEE
Transactions on Vehicular Technology, vol. PP, no. 99, pp. 1–1, 2018.

[10] R. A. Addad, D. L. C. Dutra, T. Taleb, M. Bagaa, and H. Flinck,
“MIRA!: An SDN-Based Framework for Cross-Domain Fast Migration
of Ultra-Low Latency 5G Services,” in 2018 IEEE Global Communica-
tions Conference (GLOBECOM), Abu Dhabi, UAE, Dec 2018.

[11] T. CRIU, “Criu (checkpoint and restore in user space) main page,”
2016. [Online]. Available: https://criu.org/Main Page

[12] Yang Chen, “Checkpoint and Restore of Micro-service in Docker
Containers,” in Proceedings of the 3rd International Conference on
Mechatronics and Industrial Informatics.

[13] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Live
Service Migration in Mobile Edge Clouds,” IEEE Wireless Communi-
cations, vol. PP, no. 99, pp. 2–9, 2017.

[14] R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, and H. Flinck,
“Towards studying Service Function Chain Migration Patterns in 5G
Networks and beyond,” in 2019 IEEE Global Communications Confer-
ence, IEEE GLOBECOM, Waikoloa, HI, USA, Dec 2019.

[15] A. Nadembega, A. Hafid, and T. Taleb, “A destination and mobility
path prediction scheme for mobile networks,” IEEE Transactions on
Vehicular Technology, vol. 64, no. 6, pp. 2577–2590, June 2015.

Rami Akrem Addad is currently pursuing the
doctoral degree at Aalto University, Finland, in the
Department of Communications and Networking,
School of Electrical Engineering. He received the
Licentiate degree and the Master degree from the
University of Sciences and Technology HOUARI
BOUMEDIENE, Algeria in 2015 and 2017 re-
spectively, both degrees with high distinction and
honors. He has been involved in European Project
ANASTACIA Horizon 2020 for addressing cyber-
security concerns by leveraging SDN, NFV and

Cloud architectures. His research interests include 5G network architecture,
cloud-native technologies and approaches, network softwarization and slicing
mechanisms, MEC, NFV, SDN, and distributed systems.

Diego L. C. Dutra is currently working as a
professor at Federal University of Rio de Janeiro
(UFRJ), Brazil, where he is also a member of
the COMPASS Laboratory. He received a B.Sc. in
Computer Science from UFF/Brazil, his M.Sc. and
D.Sc. degrees in Systems Engineering and Computer
Science Program from the Federal University of Rio
de Janeiro, Brazil, in 2007 and 2015, respectively.
He has worked as a postdoctoral researcher in the
COMPASS/UFRJ and MOSA!C Lab/Aalto, from
2015 to 2016 and 2016 to 2017, respectively. His

research interests include computer architecture, high-performance computing,
virtualization, cloud computing, wireless networking, and Software-Defined
Systems.

Miloud Baga received the bachelors, masters, and
Ph.D. degrees from the University of Science and
Technology Houari Boumediene Algiers, Algeria, in
2005, 2008, and 2014, respectively. He is currently
a Senior Researcher with the Communications and
Networking Department, Aalto University. His re-
search interests include wireless sensor networks,
the Internet of Things, 5G wireless communication,
security, and networking modeling.

Tarik Taleb received the B.E. degree (with distinc-
tion) in information engineering in 2001, and the
M.Sc. and Ph.D. degrees in information sciences
from Tohoku University, Sendai, Japan, in 2003,
and 2005, respectively. He is currently a Professor
with the School of Electrical Engineering, Aalto
University, Espoo, Finland. He is the founder and
the Director of the MOSA!C Lab. He is the Guest
Editor-in-Chief for the IEEE JSAC series on network
Softwarization and enablers.

Hannu Flinck received the M.Sc. and Lic.Tech.
degrees in computer science and communication
systems from Aalto University (formerly, Helsinki
University of Technology) in 1986 and 1993, re-
spectively. He was with Nokia Research Center
and the Technology and Innovation Unit of Nokia
Networks in various positions. He is a Research
Manager with Nokia Bell Labs, Espoo, Finland.
He has been actively participating in a number of
EU research projects. His current research interests
include mobile edge computing, SDN, and content

delivery in mobile networks, particularly in 5G networks.

