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a b s t r a c t

This paper introduces a novel approach for controlling the exterior ballistic properties of spin-stabilized
bullets by optimizing their internal mass distributions. Specifically, the properties of interest are the
bullets’ stability characteristics that are examined through dynamic and gyroscopic stability parameters.
New analytical expressions for aerodynamic quantities are also derived to address the compressibility of
air. These expressions are utilized in a bullet model that enables efficient computation of the stability
parameters for a given mass distribution. The bullet model is used in the formulation of nonlinear
optimization problems that provide optimal mass distributions with respect to given goals, i.e., desired
stability characteristics. The bullet types investigated in this paper are a long range bullet and a limited
range training bullet. In the optimization of the mass distribution of the long range bullet, the goal is that
the bullet stays stable for as long as possible. The mass distribution of the training bullet is optimized
such that the bullet is stable at launch but becomes unstable shortly afterwards. The global optimal
solutions obtained with the new approach fulfill the desired stability characteristics better than currently
used uniformly filled bullets. Overall, the optimization approach reveals a new goal focused philosophy
for bullet design compared to current trial and error design practices.
© 2018 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The design of an unguided airborne vehicle such as a bullet is
focused on making the final construction to fulfill the requirements
set at the beginning of the design process. Aerodynamic shape
optimization approaches have been used for supporting, e.g., the
aerodynamic design of aircraft. For a recent review of such ap-
proaches, see Ref. [1]. On the other hand, analytical studies exist in
the literature with the focus on bullets. McCoy [2] and Davis et al.
[3] provide a comprehensive list of work concerning the systematic
experimental analysis of properties of existing projectiles.
Computational fluid dynamics (CFD) studies of existing bullets (see,
e.g. [4e6]) are utilized in order to shed light on flow field details. An
example of papers with a new perspective is [7] concerning the
control of a projectile utilizing an oscillating internal mass.
Exceptional exterior geometries of projectiles are studied from the

point of view of limited range [8], manufacturing quality [9] and
flow control [10].

In spite of the widespread use of CFD and aerodynamic optimi-
zation, bullet design is most often simply a chain of trial and error
experiments. The design work carried out consists merely of ana-
lyses of ad hoc candidates based on the traditions of a manufacturer
combined with the experience of an individual designer. The initial
analysis is nowadays typically carried out by applying some engi-
neering level software (e.g., [11]; see also [12]). Cumbersome wind
tunnel tests or CFD computations are usually not performed, and the
design process most often proceeds with test firings. At the end of
the process, the new design may end up in production or the
development work is aborted due to some difficulties that are not
solvable with available analysis tools. In this paper, a reverse
perspective to the designwork is adopted such that desired exterior
ballistic properties concerning stability characteristics of spin-
stabilized bullets are first set, and the design is then advanced sys-
tematically towards this goal by means of optimization.

The linear analysis of the equations of motion provides several
quantities that can be utilized in the characterization of desired
inflight behavior of bullets [2]. In this paper, dynamic and
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gyroscopic stability parameters are applied for indicating the
maturity of bullet design. With fixed values for the initial launch
velocity and spin rate, the exterior shape and the internal mass
distribution of a bullet may be varied in order to achieve the desired
flight performance. However, the control of the bullet shape is not
examined in this paper because the combined analysis is too
excessive since an adequate analysis of aerodynamics of a new
bullet design is extremely laborious and still partly unsolvable.
Particularly this holds true for the Magnus effect as the impacts of
minor modifications in the bullet base area should be detected. In
addition, the bullet shape is not solely determined by demands
concerning the inflight phase performance. The bare variation of an
internal mass distribution enables improving the performance of
existing bullet geometries. The shell manufacturing process re-
mains untouched which makes the exploration of the mass distri-
bution particularly appealing from the production point of view.

This paper introduces a novel approach for optimizing internal
mass distributions of spin-stabilized bullets in order to achieve
desired stability characteristics. It contains a bullet model consisting
of a discretized mass distribution, dynamic and gyroscopic stability
parameters originating from the frequency domain analysis of line-
arized equations of pitching and yawing motions (see, e.g. [2,13]) as
well as of new analytical expressions for aerodynamic quantities
derived in this paper. Here, the novelty is the modification of the
Slender Body Theory (SBT) [14] to take into account the compress-
ibility of air. A correction term is introduced to the SBT such that the
resulting expressions correspond to both existing theories and
experimental results widely available in the literature. These ex-
pressions provide representative values as well as proper trends and
dependences for aerodynamic forces and their impact points as the
Mach number or themain dimensions of the bullet are varied. In this
paper, the center of gravity moves along the center line of the bullet
as the solution progresses during the execution of optimization al-
gorithms, and the aerodynamicmoments are revised simultaneously
with that respect. The moments and their changes play a pivotal role
because the stability of the bullet is studied.

Due to the analytical representation of the required quantities,
the bullet model enables efficient computation of the stability pa-
rameters of a bullet for a given discretized mass distribution. The
bullet model is used in the formulation of nonlinear optimization
problems that provide optimal mass distributions for two types of
bullets with different desired exterior ballistic properties, i.e., sta-
bility characteristics. The bullet types are a long range bullet and a
limited range bullet referred to as a training bullet.

The mass densities of the discrete cells of the bullets’ core are
treated as decision variables of the optimization problems. The
objective functions and constraints of the problems are defined
separately for the bullet types and reflect mainly the desired sta-
bility characteristics. The optimization problems are solved with an
interior-point algorithm [15] and a global search algorithm [16]
using ready-made functions of MATLAB [17]. In this way, the global
optimal solutions are obtained.

The mass distribution of the long range bullet is optimized to
keep the bullet stable with the lowest velocity possible. This goal
reflects the desired behavior of flying as far as possible without
excessive dispersion. The mass distribution of the training bullet is
optimized to possess a neutral stability at the launch followed
shortly by a phase of severe instability and thus a decrease of the
flight velocity. A limited range as a consequence reflects the desired
behavior of the training bullet. The resulting optimal mass distri-
butions differ significantly from uniform cores used in currently
manufactured bullets. The optimal bullets also fulfill the desired
stability characteristics significantly better than currently used
bullets. Moreover, the optimal mass distributions can be rational-
ized based on fundamentals of aerodynamics and exterior ballistics

which implies the validity of the new optimization approach. The
validity is also confirmed through a sensitivity analysis in which
optimal solutions are computed with varied values of aerodynamic
quantities provided by the new analytical expressions derived in
this paper. The sensitivity analysis reveals the robustness of the
optimization approach, i.e., the minor variations of the aero-
dynamic quantity values do not affect the basic shape of the
resulting optimal mass distributions. Thus, the expressions for the
aerodynamic quantities are applicable to the optimization of bul-
lets’ mass distributions.

The analytical exploration ofmass distributions of bullets enabled
by the new approach has not been presented in the existing litera-
ture. Although the approach is applied in this paper only for deter-
mining optimal mass distributions of two types of bullets having
specific desired stability characteristics, it is flexible in the sense that
the objective function and constraints of optimization problems can
be easily modified to correspond to different desired characteristics.
For instance, such characteristics could be related to the magnitude
of the steady angle of attack and thewind or turbulence sensitivity of
a bullet. Overall, compared to current trial and error practices
employed in bullet design, the optimization approach reveals a new
goal focused philosophy for supporting bullet design e first the goal
of a design process, i.e., the desired exterior ballistic properties, are
set and then this goal is achieved through optimization. The
approach can also be applied to other types of projectiles such as
artillery shells or kinetic energy penetrators.

This paper is structured as follows. First, the bullet model
including also new analytical expressions for aerodynamic quan-
tities is presented in Section 2. Optimization problems dealing with
the long range and training bullets are formulated and their nu-
merical solution is described in Section 3. Resulting optimal mass
distributions are presented in Section 4. The nature of the optimal
distributions as well as the features and possible extensions of the
optimization approach are discussed in Section 5. Finally,
concluding remarks are given in Section 6.

2. Bullet model

This section introduces a bullet model for computing the values
of stability parameters of a bullet with a given mass distribution. In
the model, the core of the bullet is discretized. The derivation of
mappings from the discretized mass distribution to the stability
parameters is based on the aerodynamic and stability analysis of
the spin-stabilized bullet.

In this paper, the flight of a bullet is analyzed at discrete flight
velocities. Thus, the values of the stability parameters are calcu-
lated with several velocities and corresponding spin rates. The rate
at which bullets decelerate is assumed to be independent of their
mass distribution. The initial velocity of a bullet, denoted by v0, is its
velocity at launch, i.e., at the moment when the bullet exits the
muzzle. The initial velocity is chosen tomatch the bullet type under
consideration. The initial spin rate p0 in rad/s is

p0 ¼ 2pv0
R

(1)

where R is the twist rate of a firearm. The spin rate p as a function of
the velocity v is

p ¼ p0

ffiffiffiffiffi
v

v0

3

r
(2)

Here, the functional form of Eq. (2) is derived by the authors
based on the results of numerical trajectory computations conducted
with a six degrees of freedom (6-DOF) model. Equation (2) states
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that the velocity decreases faster than the spin rate. This trend co-
incides with the dependence of v and p revealed by the numerical
computations and is also pointed out in Ref. [2]. In addition, since the
flight time of bullets is short, the slightly varying value of the axial
moment of inertia is assumed to have no effect on the approximate
connection between v and p. Therefore, Eq. (2) is considered
adequate for the purposes of mass distribution optimization.

2.1. Discretized mass distribution

The bullet is assumed to be rotationally symmetric around its
longitudinal centeraxis, i.e., spinaxis. This reflects the commonshape
of bullets. It is also assumed to consist of a shell and a core. The bullet
model is implemented in the three-dimensional Cartesian space ℝ3,
but due to symmetry, the bullet can be illustrated by its cross-section
in two dimensions, see Fig. 1. The bullet consists of three parts; the
nose and the boat tail are cone-shaped, and the body is cylindrical.

The bullet is divided into computational cells that are rotationally
symmetric around the spin axis. The tip of the bullet is placed on the
origin of the coordinate system, and the spin axis is along the x-axis.
The shell is considered as one cell with fixed mass density and
thickness, and the core is split into several cells. The division into cells
is illustrated in Fig.1. The dimensions of the bullet are determined by
thebullet type investigated. Thenumberof cells thecore isdiscretized
to is denoted by n. A higher number leads to a more detailed pre-
sentation of the bullets’mass distribution. Formally, the mass distri-
bution is representedasavectorr ¼ ðr0; … ; rnÞwhichcontainsmass
densities ri of every cell the bullet is divided into, including the shell.
The density of the shell is the first element of the vector, i.e., r0.

With a fixed exterior geometry, the mass distribution affects the
moments of inertia, the center of gravity and the total mass of the
bullet. They are essential factors as the aerodynamics and stability
of the bullet are studied. A computationally efficient manner for
determining their values with the given mass distribution vector r
is presented in Appendix A.

2.2. Bullet aerodynamics

The forces and moments under consideration in the aero-
dynamic analysis are normal force, zero-yaw drag, lift force,
pitching moment, Magnus moment, and pitch damping moments.
The closed-form expressions for aerodynamic quantities, i.e., co-
efficients and coefficient slopes are presented below. The quantities
are affected by the dimensions, the velocity, and the center of
gravity of the bullet as well as the atmospheric conditions. The
mass distribution contributes to the applied aerodynamicmoments
via the location of the center of gravity along the spin axis.

The new expressions for the aerodynamic quantities are based
on the analytical relations resulting from the SBT [14] but are
modified by taking into account the flow compressibility indicated

by the Mach number Ma. A compressibility correction term
ffiffiffiffiffiffiffi
Ma

p
is

applied. The use and the form of the term are justified based on the
experimental data for bullets [2,18]. This term ensures that there
are no singularities (cf [19]) involved in the velocity region
considered in the optimization studies of this paper. Typically
applied air compressibility correction terms result in discontinuous
behavior and thus do not provide proper values of the aerodynamic
quantities through the transonic velocity regime [19].

It should be noted that the influence of the yaw angle on bullet
aerodynamics is not considered in this paper. This would come into
question in the case of a limited range training bullet in order to
ensure the high yaw angle instability. However, such an analysis
would require CFD computations as well as 6-DOF trajectory
computations. These types of extensions to the current optimiza-
tion approach are discussed in Section 5.

2.2.1. Normal force coefficient slope
For supersonic velocities (Ma � 1), the normal force coefficient

slope is

CNa
¼

ffiffiffiffiffiffiffi
Ma

p ffiffiffiffi
l
d

r
dB
d

(3)

and for subsonic velocities (Ma<1)

CNa
¼

ffiffiffiffi
l
d

r
dB
d

(4)

where Ma is the Mach number, l the length, d the body diameter
(reference length), and dB the base diameter of the bullet. The
compressibility correction term

ffiffiffiffiffiffiffi
Ma

p
is included in Eq. (3) in order

to make the CNa
ðMaÞ trend to follow the typical behavior of the

normal force coefficient slope acknowledged in the literature [2,18].
The bullet length ratio l=d in Eq. (3) is square-rooted. Then, the
equation gives the same value for the slope (i.e., 2) as the SBT at the
Mach number 1 with the l=d -ratio of 4 that is typical for currently
used bullets [20]. On the other hand, the value of the slope for a
very short bullet approaches the value zero as expected. Further-
more, Eq. (3) provides reasonable slope values for length ratios up
to 10 [21]. Differently from the SBT, the diameter ratio dB=d in Eqs.
(3) and (4) is not squared since, based on the experimental results
[2,5,18], the non-square form reflects the real-life phenomenon
more closely in the small scale of bullets.

2.2.2. Zero-yaw drag coefficient
For supersonic velocities (Ma � 1), the zero-yaw drag coefficient

is

CD0
¼ CDmaxffiffiffiffiffiffiffi

Ma
p (5)

and for subsonic velocities (Ma<1)

CD0
¼ CDmax

3
(6)

where the transonic peak value of the drag coefficient is CDmax
¼ffiffiffiffiffiffiffi

d=l
p

. The inverse of the body slenderness ratio d=l as square-
rooted reveals the general phenomenon that stream-lined bodies
possess lower aerodynamic drag.

For blunt geometries (d=l � 1), the maximum zero-yaw drag
coefficient is in the supersonic region limited up to

CD0
¼

ffiffiffiffiffiffiffi
Ma

p
(7)

Fig. 1. Cross-section of the bullet and the discretization of its core. The shell is one cell
and the rest of the cells form the core. The cells are rotationally symmetric around the
x-axis. l refers to the length of the bullet, d to the body diameter and dB to the base
diameter.

J. Lahti et al. / Defence Technology 15 (2019) 38e5040



and in the subsonic region CD0
¼ 1 [22]. Equations (5)e(7) are

based on the computational, experimental and analytical results for
the drag coefficient presented in, e.g., [2,18,22].

2.2.3. Lift force coefficient slope
The lift force coefficient slope is

CLa ¼ CNa
� CD0

(8)

where CNa
is the normal force coefficient slope and CD0

is the zero-
yaw drag coefficient. Equation (8) is based directly on definition for
the aerodynamic forces.

For the normal force, Eq. (3) gives a coefficient slope value of
CNa

ðMaÞ ¼
ffiffiffiffiffiffiffi
Ma

p
in the case of a blunt, cylinder-like bullet geometry

with the ratio values dB=d ¼ 1 and l=d ¼ 1. Recall that the upper
bound of the zero-yaw drag coefficient for a blunt geometry in the
supersonic region is CD0

ðMaÞ ¼
ffiffiffiffiffiffiffi
Ma

p
(see Eq. (7)) which according

to Eq. (8) leads to a slope value CLa of zero. This value is of a
reasonable order for the blunt geometry discussed because the
external shape of such a geometry resembles a sphere which in
practice produces only drag without lift associated. In addition, an
expected negative value for the lift force coefficient slope is ob-
tained as the length of the bullet approaches the value zero.

2.2.4. Pitching moment coefficient slope
The pitching moment coefficient slope in the supersonic speed

regime (Ma � 1) is

Cma
¼ 2

V � SB
�
l� xcg

�ffiffiffiffiffiffiffi
Ma

p
Sd

(9)

and the formula for subsonic velocities (0:5 � Ma<1) is

Cma
¼ 2

ffiffiffiffiffiffiffi
Ma

p V � SB
�
l� xcg

�
Sd

(10)

where V is the volume of the bullet, S the body reference area (S ¼
pd2=4), SB the base area, and xcg the location of the center of gravity
along the spin axis. At smaller Mach numbers (0<Ma � 0:5) the
value obtained at Ma ¼ 0:5 is used.

Equations (9) and (10) are slightly modified versions of the
connections given by the SBT. With the compressibility correctionffiffiffiffiffiffiffi
Ma

p
, Eqs. (9) and (10) yield Cma ðMaÞ -dependence which corre-

sponds to the general trend given by, e.g., the Prandtl-Glauert
method [19]. The inclusion of the compressibility correction term
is rationalized based on the experimental and computational re-
sults for the pitching moment coefficient slope [2,18].

2.2.5. Magnus moment coefficient slope
The Magnus moment coefficient slope is

Cnbpa ¼
�
Ma
2

� 1
�

l
4dB

�
l� xcg

�
d

(11)

The value obtained at Ma ¼ 2:5 is used when Ma � 2:5.
Equation (11) is derived using the experimental and computa-

tional data concerning bullet and projectile aerodynamics [2,4,18].
The characteristic time to be applied with the coefficient slope is
defined as t� ¼ d

2v. The equation addresses the dependencies of the
coefficient slope on the Mach number as well as on the center of
gravity, the length, the body diameter and the base diameter of the
bullet. The Magnus force is assumed to arise particularly at the
bullet boat tail area due to the viscous phenomena, and the
asymmetry of the boundary layer is expected to accumulate with
the increasing body length and the steepening boat-tail angle. The
experimental and computational results [2,4,18] show that the

contribution of the boundary layer asymmetry nearly vanishes at
high Mach numbers. The functional form of Eq. (11) is identified
such that it reflects this phenomenon.

2.2.6. Sum of pitch damping moment coefficients
In the supersonic speed regime (Ma � 1), based on the SBT

[14,21] the sum of pitch damping moment coefficients is

Cmq þ Cm _a
¼ �2CNa

�
l� xcg

d

�2

(12)

and for subsonic velocities (Ma<1),

Cmq þ Cm _a
¼ �CNa

�
l� xcg

d

�2

(13)

In the subsonic speed region, the SBT formulation is applied
without themultiplier 2 in order tomake Eq. (13) correspond better
with the existing experimental results [2,18].

2.3. Stability analysis

The stability analysis of a spin-stabilized bullet is based on the
linearized 6-DOF equations of pitching and yawing motions. The
stability of the bullet is characterized by gyroscopic stability and
dynamic stability, and they are measured using corresponding
stability parameters. The discussion in this subsection is based
on [2].

The gyroscopic stability parameter is

Sg ¼ I2x p
2

2rairIySdv2Cma

(14)

where Ix is the axial moment of inertia about the spin axis, Iy the
transverse moment of inertia about any axis perpendicular to the
spin axis (see Appendix A for the computation of the moments), S
the body reference area, d the body diameter, v the velocity, p the
spin rate and Cma

the pitching moment coefficient slope of the
bullet. Air density is denoted by rair. The classical gyroscopic sta-
bility criterion for spin-stabilized bullets is

Sg >1 (15)

The dynamic stability parameter is

Sd ¼
2
�
CLa þ md2

2Ix
Cnbpa

�
CLa � CD0

� md2

2Iy

�
Cmq þ Cm _a

� (16)

where CLa is the lift force coefficient slope,m the total mass, Cnbpa the
Magnus moment coefficient slope, CD0

the zero-yaw drag coeffi-
cient and ðCmq þ Cm _a

Þ the sum of the pitch damping coefficients of
the bullet.

Gyroscopic stability is a necessary condition for dynamic sta-
bility, i.e., a dynamically stable bullet is always gyroscopically sta-
ble. The dynamic stability criterion for the spinning bullet is

Sg � 1
Sdð2� SdÞ

(17)

If the value of the dynamic stability parameter is inside the in-
terval 0< Sd <2 and the value of the gyroscopic stability parameter
obeys Eq. (18), then the bullet is both dynamically and gyroscopi-
cally stable, i.e., the bullet is stable. The stable region S (also called
‘dynamically stable region’ in the literature) is now defined using
the stability parameters as
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S ¼
��

Sd; Sg
�
2ℝ� ℝ

���� 0< Sd <2; Sg � 1
Sdð2� SdÞ

	
(18)

The stable region is illustrated in Fig. 2.

3. Optimization problems for mass distributions

The bullet model presented in Section 2 is next employed in the
optimization of the mass distributions of a long range bullet and a
limited range training bullet. Optimization problems are formu-
lated for both types of bullet using the mass distribution vector r as
a decision variable. The objective functions and constraints reflect
the desired stability characteristics. Throughout the paper, a value
of 1.225 kg/m3 is used for the air density rair. The Mach number is
computed based on the speed of sound having a value of 340m/s.

3.1. Long range bullet

A long range bullet is intended to fly as far as possible without
excessive dispersion. Therefore, the goal is to find a mass distri-
bution such that the bullet stays stable with the lowest possible
velocity. That is, the values of the gyroscopic and dynamic stability
parameters should be inside the stable region S defined by Eq. (18)
with the lowest possible velocity.

Decision variables of the optimization problem are the velocity
when the bullet changes its state from stable to unstable, referred
to as the unstable velocity vuns, and the elements of the mass dis-
tribution vector r excluding the shell of the bullet r0. These ele-
ments, i.e., the mass densities ri of the cells of the discretized core,
are constrained between rlb ¼ 1:225,10�3 g=cm3 and rub ¼
20 g=cm3. The lower bound is determined by the air density and
the upper bound corresponds to densest metals available in the
construction of the bullet. The number of cells in the core is n ¼
400. The upper bound for the unstable velocity vuns is the initial
velocity v0 and the minimum bound is zero. The objective function
of the optimization problem to be minimized is the unstable ve-
locity vuns, i.e.,

min
ri;vuns

vuns (19)

The optimization problem is constrained so that the bullet must
be stable at the beginning of its flight. In other words, with the

initial velocity v0 and the corresponding initial spin rate p0, the
values of the stability parameters at the launch of the bullet, i.e., the
initial stabilities, denoted by S0g and S0d, must lie inside the stable
region defined by Eq. (18). As the bullet exits the stable regionwith
the unstable velocity vuns, the values of the stabilities with that
velocity, denoted by Sunsg and Sunsd , must be on the boundary of the
stable region, which defines the second constraint. The total mass
of the bullet is constrained to the value of 20 g. To summarize, the
constraints are

S0d; S

0
g

�
2S (20)



Sunsd ; Sunsg

�
2vS (21)

m ¼ 20 (22)

0 � vuns � v0 (23)

rlb � ri � rub ; i ¼ 1;…;n (24)

The constraints (20) and (21) follow from Eq. (18) defining the
stable region. Here, vS refers to the boundary of the stable region.
The values of the stability parameters at the launch and the un-
stable velocity are calculated using Eqs. (14) and (16). The mass
distribution vector r affects the moments of inertia Ix and Iy as well
as the center of gravity xcg as described in Appendix A, and their

values are used when calculating the stability parameters


S0d; S

0
g

�
and



Sunsd ; Sunsg

�
. Varying the ‘unstable velocity’ decision variable

vuns has an impact on the stability parameters Sunsd and Sunsg .
The parameters of the long range bullet are presented in Table 1.

These parameter values are typical for long range bullets used with
common sniper rifles. The initial spin rate is defined by the rifling of
the firearm according to Eq. (1). The twist rate is selected to be 10
inches per one revolution.

3.2. Training bullet

The limited range training bullet should remain stable only for a
short amount of time of its flight and then become unstable. When
examining the values of the stability parameters, the bullet should
be in the stable region S, depicted in Fig. 2, at the beginning of the
flight. When the velocity has decreased to a certain fixed velocity
vref , referred to as the reference velocity, the values of the stability
parameters should be as far as possible from the stable region. A
value of 600m/s is used for vref through the whole analysis of the

Fig. 2. The stable region S.

Table 1
Parameters of the bullet model used for the long range bullet.

Parameter Symbol Value Unit

Base area SB 44.2 mm2

Base diameter dB 7.5 mm
Body diameter d 8.6 mm
Body reference area S 58.1 mm2

Density of the shell r0 9 (g$cm�3)
Initial spin rate p0 19 790 (rad$s�1)
Initial velocity v0 800 (m$s�1)
Length l 44.5 mm
Lower bound of the density rlb 1:225,10�3 (g$cm�3)
Mass m 20 g
Number of cells n 400 e

Thickness of the shell e 0.5 mm
Twist rate R 10 (in$rev�1)
Upper bound of the density rub 20 (g$cm�3)
Volume V 1.7 cm3
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training bullet. The effect of the reference velocity on optimization
results is discussed in Appendix B.

The objective function of the optimization problem is the dis-
tance between the values of the stability parameters at the refer-
ence velocity vref , referred to as the reference point and denoted by

Srefd ; Srefg

�
, and the nearest point of the boundary of the stable

region, denoted by


Xbnd
d ;Xbnd

g

�
. Decision variables are the ele-

ments of the mass distribution vector r excluding the shell r0 and

the nearest point, i.e.,


Xbnd
d ;Xbnd

g

�
. The core consists of 400 cells.

Bounds of the elements of the mass distribution vector are
rlb ¼ 1:225,10�3 g=cm3 and rub ¼ 20 g=cm3. The maximization of

the distance between


Srefd ; Srefg

�
and



Xbnd
d ;Xbnd

g

�
leads to the

objective function

max
ri

min
Xbnd
d ;Xbnd

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Srefd � Xbnd

d

�2 þ 

Srefg � Xbnd

g

�2r
(25)

Initial stabilities S0d and S0g must be in the stable region with
the initial velocity v0 and the corresponding initial spin rate p0.
The stability parameters Srefd and Srefg at the reference point are
constrained to be outside the stable region as the bullet is sup-
posed to be unstable at the reference velocity vref . The decision
variables



Xbnd
d ;Xbnd

g

�
must be on the boundary of the stable

region. The total mass of the bullet is constrained to the desired
value of 10 g. To summarize, the constraints of the optimization
problem are

S0d; S

0
g

�
2S (26)



Srefd ; Srefg

�
;S (27)



Xbnd
d ; Xbnd

g

�
2vS (28)

m ¼ 10 (29)

rlb � ri � rub ; i ¼ 1;…;n (30)

The constraints (26)e(28) follow from Eq. (18) defining the
stable region. The values of the stability parameters at the launch
and at the reference velocity vref are calculated using Eqs. (14) and
(16). As in the case of the long range bullet, the mass distribution
vector r affects themoments of inertia Ix and Iy as well as the center
of gravity xcg as described in Appendix A, and their values are used

when computing the stability parameters


S0d; S

0
g

�
and



Srefd ; Srefg

�
.

The parameters of the training bullet are listed in Table 2. They
are chosen to match common assault rifles and their bullets. The
bullet is smaller compared to the long range bullet and has also
lower initial velocity v0 and spin rate p0. The initial spin rate is
determined according to Eq. (1). The twist rate is 12 inches per one
revolution.

3.3. Numerical solution

Computations are carried out and the optimization problems are
solved using MATLAB R2015b [17] and its Optimization and Global
Optimization Toolboxes. Since both problems are nonlinear and
constrained, the fmincon function of Optimization Toolbox is used.
The fmincon function is set to search the optimumwith an interior-
point algorithm [15]. As neither optimization problem is convex,

fmincon is only guaranteed to converge to a local optimum. In order
to obtain the global optimal solution, a global search algorithm [16]
via the GlobalSearch function of Global Optimization Toolbox is also
employed. The underlying idea of the global search algorithm is to
generate numerous potential initial iteration points, from which
the interior-point algorithm is selectively run.

The optimization of the training bullet is a maxmin problem
including two optimization tasks. The nearest point of the stable

region


Xbnd
d ;Xbnd

g

�
is not computed directly via optimization al-

gorithms, since this would lead to a large computational load.
Instead, 300 points on the boundary of the stable region between
Sd values of 0.1 and 1 are pre-computed. Then, within every iter-
ation of the interior-point algorithm, the value of the reference

point


Srefd ; Srefg

�
and the distances between this value and the pre-

computed points are calculated. At each iteration, the pre-
computed point having the shortest distance to the reference

point is selected to be the nearest point


Xbnd
d ;Xbnd

g

�
. Based on

preliminary numerical experiments not discussed in this paper, the
use of the pre-computed points does not affect the resulting
optimal solutions significantly but speeds up the optimization
considerably. The interval of Xbnd

d values, 0:1<Xbnd
d <1, and the

amount of the pre-computed points, 300, are also selected based on
these preliminary experiments.

4. Optimal mass distributions

4.1. Long range bullet

The optimal mass distribution of the long range bullet is pre-
sented in Fig. 3. The optimal value of the objective function is vuns ¼
536:7, i.e., the bullet becomes unstable at that velocity. In the
optimal solution, almost all of the mass is packed to the rear part of
the bullet alongside the shell, and the front and middle parts are
empty. The solid mass at the rear has the highest density allowed,
i.e., 20 g/cm3.

Table 2
Parameters of the bullet model used for the training bullet.

Parameter Symbol Value Unit

Base area SB 35.3 mm2

Base diameter dB 6.7 mm
Body diameter d 7.6 mm
Body reference area S 45.4 mm2

Density of the shell r0 9 (g$cm�3)
Initial spin rate p0 14 430 (rad$s�1)
Initial velocity v0 700 (m$s�1)
Length l 29.5 mm
Lower bound of the density rlb 1:225,10�3 (g$cm�3)
Mass m 10 g
Number of cells n 400 e

Reference velocity vref 600 (m$s�1)
Thickness of the shell e 0.5 mm
Twist rate R 12 (in$rev�1)
Upper bound of the density rub 20 (g$cm�3)
Volume V 0.9 cm3

Fig. 3. The optimal mass distribution of the long range bullet. The color of a cell
represents mass density. Darker color indicates higher density.
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The values of the stability parameters during the flight of the
bullet with the optimal mass distribution are presented in the

�
Sd;

Sg
�
-coordinate system in Fig. 4. The values at the launch are

S0d ¼ 0:97 and S0g ¼ 3:68, so the bullet is clearly stable with its initial
velocity and spin rate. At the unstable velocity, the values are Sunsd ¼
0:10 and Sunsg ¼ 5:14. The bullet turns unstable at a low positive
value of the dynamic stability parameter, as the gyroscopic stability
increases during the flight.

4.2. Training bullet

The optimal mass distribution of the limited range training
bullet is presented in Fig. 5. The optimal value of the objective
function, i.e., the distance between the reference point at the
reference velocity of 600m/s and the nearest point of the boundary
of the stable region is 0.253. In the optimal solution, all the mass is
packed at the front and rear parts of the bullet, leaving the middle
part empty. The mass at both ends has the highest possible density,
i.e., 20 g/cm3.

The values of the stability parameters during the flight are
shown in Fig. 6. The bullet is only stable at the launch when it lies
on the boundary of the stable region with the initial stabilities S0d ¼
0:54 and S0g ¼ 1:26. When its velocity decreases, the bullet
immediately exits the stable region and turns unstable. At the
reference point, the values of the stability parameters are
Srefd ¼ 0:18 and Srefg ¼ 1:44.

Recall that the value chosen for the reference velocity is 600m/s.
However, the nature of optimal mass distributions remains similar
despite the choice of the reference velocity when considering su-
personic velocities. This argument is verified in Appendix B where

optimal mass distributions with different values of the reference
velocity are presented.

5. Discussion

5.1. Nature of the optimal mass distributions

The optimization approach conveniently provides optimal mass
distributions with respect to desired stability characteristics as
demonstrated in Section 4. The optimal mass distribution for the
long range bullet is to have all the mass at the rear end of the bullet
against the shell (see Fig. 3). On the other hand, the optimal mass
distribution of the limited range training bullet has the mass
packed to both ends of the bullet (see Fig. 5).

For both bullets, the optimal mass distributions affect the sta-
bility parameters mainly via the Magnus effect, which connects the
horizontal and vertical planes aerodynamically due to the frictional
phenomena of the flow [2]. Thus, the angle of attack in the vertical
plane (the angle between the spin axis and the velocity vector of
the bullet) leads to an aerodynamic moment affecting the bullet in
both the horizontal and vertical planes. The Magnus force is
assumed to have an impact on especially the rear part of the bullet,
and by changing the center of gravity, the magnitude of the
moment the Magnus force causes can be controlled. The Magnus
moment is smaller when the center of gravity is near the rear of the
bullet and bigger when near the front. Thus, with the aforemen-
tioned assumption and the simplifications associated with the
underlying aerodynamic theory [14], the optimal mass distribution
for the long range bullet results in having all the mass in the rear
end, and the training bullet has the center of gravity near to the
center of the bullet. However, the optimal solutions are also
affected by other aerodynamic forces and moments, and they do
not result solely from the Magnus effect. For example, the contri-
bution of pitch damping moments behaves vice versa with respect
to the center of gravity compared to the Magnus moment.

The effect of the aerodynamic quantities provided by the
analytical expressions presented in Section 2.2 on optimal mass
distributions is studied through a sensitivity analysis. The optimal
mass distributions are determined one by one with each of the

Fig. 4. The values of the stability parameters during the flight of the long range bullet
with the optimal mass distribution. Dots represent the values of the stability param-
eters with decreasing velocities from the initial velocity v0 ¼ 800 m/s and have an
interval of 50m/s. The unstable velocity vuns ¼ 536:7 m/s is plotted with an asterisk.

Fig. 5. The optimal mass distribution of the training bullet. The color of a cell repre-
sents mass density. Darker color indicates higher density.

Fig. 6. The values of the stability parameters during the flight of the training bullet
with the optimal mass distribution. Dots represent the values of the stability param-
eters with decreasing velocities from the initial velocity v0 ¼ 700 m/s and have an
interval of 50m/s. The reference velocity vref ¼ 600 m/s is plotted with an asterisk.
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quantities having a value of 10% above or below the value acquired
from the analytical expressions, and also with every quantity hav-
ing 10% higher or lower value. The results of the sensitivity analysis
are presented in Appendix C. The basic shape of the resulting
optimal mass distributions remains similar despite the varied
values of the aerodynamic quantities. Thus, the optimization
approach is robust regarding changes in these values, and the new
expressions (3)e(13) are deemed to be valid when they are used in
the optimization of bullets’ mass distributions.

To conclude, the features of the optimal mass distributions ob-
tained with the optimization approach can be explained and
rationalized based on fundamentals of aerodynamics and exterior
ballistics. Furthermore, the optimal shape of the mass distributions
is not sensitive with respect to changes in the values of the aero-
dynamic quantities. Therefore, the new approach offers a valid way
to support the design of mass distributions of bullets.

5.2. Comparison to bullets with a uniform core

The optimal mass distributions differ significantly from those of
currently manufactured bullets. Typically, bullets have a shell and a
uniformly filled core usually made of lead [23]. Both the optimal
solutions obtained in Section 4 include only the densest possible
material allowed by the constraints (24) and (30) of the optimiza-
tion problems, and the mass is packed to one or both ends of the
bullet.

The values of the stability parameters for uniformly filled bul-
lets, having otherwise identical parameters as the ones used in the
optimizations, are presented for the long range bullet in Fig. 7 and
for the limited range training bullet in Fig. 8 for comparison. Here,
the training bullet with a uniform core refers to an actual bullet for
which a limited range modification is sought. As the unstable ve-
locity vuns of the long range bullet with a uniformly filled core is
612.5m/s and with the optimized mass distribution 536.7m/s, a
significant difference is observed implying that the bullet with the
optimal mass distribution stays stable longer during the flight.
With, e.g., a velocity of 550m/s, the bullet with the optimal mass
distribution is inside the stable region whereas the uniformly filled
long range bullet is clearly outside the region, see Figs. 4 and 7. The
training bullet with a uniform core is slightly unstable at the
reference velocity 600m/s, i.e., the reference point is near the

stable region. With the optimal mass distribution, the training
bullet is further outside the stable region and, thus, more unstable
at the reference velocity. Furthermore, with, e.g., a velocity of
650m/s, the bullet with the optimal mass distribution is outside
the stable region, but the uniformly filled bullet is still inside the
stable region, see Figs. 6 and 8.

5.3. Practical challenges of the optimal mass distributions

In real-life, mass distributions of bullets cannot be selected as
freely as the formulations of the optimization problems introduced
in Sections 3.1 and 3.2 allow. The manufacture of bullets may be
difficult and too expensive, if their core contains holes or if their
mass density varies greatly from one cell to another. Feasible mass
densities may also be restricted to those of available materials.
Furthermore, the interior ballistics has not been considered in this
paper. The usability of a bullet poses structural limitations on its
mass distribution. In particular, there are strong forces affecting the
bullet at launch that set restrictions on the mass distribution. For
example, the rear component of the optimal mass distribution of
the training bullet would need more filling to support the shell in
order to endure the forces the bullet experiences during the launch.

The above limitations regarding bullet design can be imple-
mented bymodifying upper and lower mass density bounds for the
cells of a bullet's core denoted by rlb and rub in Eqs. (24) and (30).
The bounds can be defined separately for each cell if needed by
specifying individual lower and upper bounds for the correspond-
ing elements of the mass distribution vector r. For instance, too
sparse cells in critical areas of the core can be avoided without
limiting densities elsewhere by increasing the lower bounds for the
elements corresponding to these areas. The mass densities of spe-
cific cells of the core can also be fixed to selected values prior to the
optimization by using equality constraints. By utilizing these types
of modified constraints, limitations posed by manufacturing tech-
niques and real-life use of bullets can readily be taken into account
in the optimization approach.

The use of mass density bounds discussed above and the opti-
mization of mass distributions with commonly used bullet mate-
rials are illustrated in Appendix D. First, optimal mass distributions

Fig. 8. The values of the stability parameters during the flight of the training bullet
with a uniform core. Dots represent the values of the stability parameters with
decreasing velocities from the initial velocity v0 ¼ 700 m/s and have an interval of
50m/s. The reference velocity vref ¼ 600 m/s is plotted with an asterisk.

Fig. 7. The values of the stability parameters during the flight of the long range bullet
with a uniform core. Dots represent the values of the stability parameters with
decreasing velocities from the initial velocity v0 ¼ 800 m/s and have an interval of
50m/s. The unstable velocity vuns ¼ 612:5 m/s is plotted with an asterisk.
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are determined such that the upper bound of mass density is set to
correspond to steel, i.e., 7.85 g/cm3 and the lower bound to the
density of titanium, i.e., 4.51 g/cm3. Second, the same lower bound
is used but the upper bound 11.34 g/cm3 is specified by the density
of lead.

5.4. Extensions of the optimization approach

The bullet model included in the optimization approach utilizes
the closed-form representations for the aerodynamic coefficients
and coefficient slopes as well as for the stability parameters based
on the linearized equations of motions. Furthermore, the flight of
bullets with optimal mass distributions is analyzed only at discrete
velocities. Therefore, a potential avenue for future research is to
investigate effects of the optimal mass distributions on flight per-
formance in more detail by carrying out full 6-DOF trajectory
simulations. Such simulations would provide the time history for
the flight velocity, the spin rate and the yaw angle of the bullet with
the optimal distribution.

The optimization approach could be applied to improve the
flight performance of bullets with respect to terminal effects. The
linear theory provides several relations for the launch and flight
phase disturbances [2]. These relations could be used in the
formulation of mass distribution optimization problems for mini-
mizing the disturbances which should ensure the desired terminal
effects. The optimal mass distributions are determined in Section 4
for fixed parameters corresponding to established properties of
currently used bullets. Thus, another line of future work is
combining the optimization of the mass distribution and the
external geometry details of a bullet. In this case, the dimensions of
the bullet can also be treated as decision variables. However, the
analytical expressions for the aerodynamic quantities presented in
this paper are not alone sufficient for evaluating the properties of
bullets with varying dimensions. Furthermore, current CFD tech-
nology is too computationally demanding to be utilized in this kind
of optimization. Multi-objective optimization could also be
employed in order to take into account, e.g., material expenses in
bullet design. The multi-objective optimization approach could
reveal designs and structures of bullets such that their
manufacturing is cost-efficient and flight performance is desirable.

In the future, the underlying ideas of the optimization approach
presented in this paper could be applied in a simulation-optimization
context. In thisway, benefits enabled by the optimization and the use
of6-DOFsimulationscanbemerged.Thiskindof studycouldconcern,
e.g., the mass distribution of a limited range training bullet such that
the influence of the yaw angle on bullet aerodynamics is taken into
account when maximizing the overall velocity deceleration. Other
properties of bullets, e.g., the effect of launch disturbance or inflight
wind sensitivity on the impact point dispersion (e.g. [24]), could also
be considered in 6-DOF simulation-optimization.

The optimization approach could also aid designwork concerning
bullets or projectiles containing an internal translating mass system
or a non-solid core. An actively altered internal mass distribution
might provide means to control the bullet flight [7]. On the other
hand, allowing some passive deformations in the internal mass, one
might be able to adjust the stability properties and thus the inflight
behavior of a bullet. Naturally, the optimization of such cores would
require modifications to the bullet model presented in this paper.

6. Conclusions

The novel approach towards the optimization of internal mass
distributions of spin-stabilized bullets was introduced. The mass
distribution is optimized with respect to desired exterior ballistic
properties that are expressed in the form of stability characteristics

indicated by the gyroscopic and dynamic stability parameters. New
analytical expressions for aerodynamic quantities were derived to
address the compressibility of air. The approach contains a bullet
model that allows for efficient computation of the stability pa-
rameters for a given discretized mass distribution. The model was
employed in two nonlinear optimization problems for two types of
bullets, i.e., a long range bullet and a limited range training bullet.
Objective functions and constraints of these problems reflect the
goal of a bullet design process, i.e., the desired stability character-
istics whereas the discretized mass distribution is treated as a de-
cision variable. The numerical solution of the problems was carried
out with an interior-point algorithm and a global search algorithm.
In this way, the global optimal mass distributions are obtained.

For the long range bullet, the optimal mass distribution was
determined such that the bullet stays stable for as long as possible.
The mass distribution of the training bullet was optimized according
to the goal that the bullet is stable only for a short amount of time at
the beginning of the trajectory. The resulting optimal mass distri-
butions accomplish the pursued stability characteristics better than
currently used bullets with a uniform core. Furthermore, the shapes
of the optimal distributions are rationalized based on fundamentals
of aerodynamics and exterior ballistics, and the validity of the new
expressions of the aerodynamic quantities in the optimization of
bullets’ mass distributions is confirmed through sensitivity analysis.

The analytical exploration of mass distributions of bullets
enabled by the new optimization approach has not been presented
earlier in the literature. The approach is flexible in the sense that it
readily permits versatile possibilities to modify and extend the
optimization problems formulated in this paper. For instance, in the
future along an increase of computing power, the combination of
the mass distribution and the external shape details could be taken
into account when designing a bullet that fulfills preferable sta-
bility and other prospective characteristics in the best possible way.
Overall, the inherent idea of the optimization approach can be seen
as a new goal focused philosophy for bullet design. That is, the goal
of the design process is first defined, and then optimization is uti-
lized in order to fulfill the predefined goal. The optimization
approach clearly holds a lot of promise for improving bullet design
and the design of other unguided airborne vehicles such as artillery
shells or kinetic energy penetrators.

Nomenclature

CD0
Zero-yaw drag coefficient

CDmax
Drag coefficient peak

CNa
Normal force coefficient slope

CLa Lift force coefficient slope
Cma

Pitching moment coefficient slope
Cnbpa Magnus moment coefficient slope

Cmq Pitch damping moment coefficient due to transverse
angular velocity

Cm _a
Pitch damping moment coefficient due to rate of change
of angle of attack

d Body diameter (reference length) (mm)
dB Base diameter (mm)
Ix Axial moment of inertia about the spin axis (kg m2)
Iy Transverse moment of inertia about any axis

perpendicular to the spin axis (kg$m2)
l Length (mm)
m Total mass (g)
Ma Mach number
n Number of cells
p Spin rate (rad/s)
p0 Initial spin rate (rad/s)
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P Cell vector
Pi Element i of cell vector P
R Twist rate (in/rev)
S Body reference area (mm2)
SB Base area (mm2)
Sd Dynamic stability parameter
S0d Dynamic stability parameter at the launch
Srefd Dynamic stability parameter at the reference velocity
Sunsd Dynamic stability parameter at the unstable velocity
Sg Gyroscopic stability parameter
S0g Gyroscopic stability parameter at the launch
Srefg Gyroscopic stability parameter at the reference velocity
Sunsg Gyroscopic stability parameter at the unstable velocity
S Stable region
vS Boundary of the stable region
t* Characteristic time (s)
v Velocity (m/s)
v0 Initial velocity (m/s)
vref Reference velocity of the training bullet (m/s)
vuns Unstable velocity of the long range bullet (m/s)
V Volume (cm3)
Vi Volume of cell Pi (cm

3)
xcg Center of gravity along the spin axis (mm)
Xbnd
d Dynamic stability parameter on the boundary of the

stable region
Xbnd
g Gyroscopic stability parameter on the boundary of the

stable region
r Mass distribution vector (g/cm3)
r0 Mass density of the shell (g/cm3)
rair Air density (g/cm3)
ri Mass density of cell Pi (g/cm

3)
r1b Lower bound of the mass density (g/cm3)
rub Upper bound of the mass density (g/cm3)

Appendix A. Computation of mass, center of gravity and
moments of inertia

The bullet is considered in the three-dimensional Cartesian
space ℝ3. The core of the bullet is discretized into n inner cells,
denoted by Pi; i2f1;…;ng, and the shell is denoted by P0. The mass
density is fixed within each cell and is denoted by ri for the cell Pi.
Because each cell of the bullet is assumed to be rotationally sym-
metric around the spin axis, which is selected to be the x-axis,
various quantities are more easily calculated in a cylindrical coor-
dinate system. The total mass of the bullet is

m ¼
Xn
i¼0

riVi (A.1)

where

Vi ¼ 2p
ð ð

Pi

rdrdx (A.2)

The following auxiliary variable is introduced in order to
calculate the center of gravity's position along the x-axis

mx ¼
Xn
i¼0

riV
x
i (A.3)

where

Vx
i ¼ 2p∬

Pi

rxdrdx (A.4)

The center of gravity is located at the point
�
xcg;0;0

� ¼
ðmx=m;0;0Þ.

In order to calculate the moments of inertia of the bullet, two
more auxiliary variables are introduced, i.e.,

mx2 ¼
Xn
i¼0

riV
x2
i (A.5)

where

Vx2
i ¼ 2p∬

Pi

rx2drdx (A.6)

and

my2 ¼
Xn
i¼0

riV
y2

i (A.7)

where

Vy2

i ¼ p∬
Pi

r3drdx (A.8)

The bullet's axial moment of inertia about the spin axis is

Ix ¼ 2my2 (A.9)

The transverse moment of inertia about any axis perpendicular
to the spin axis and passing through the center of gravity is

Iy ¼ mx2 þmy2 � ðmxÞ2
.
m (A.10)

The variables Vi, V
x
i , V

x2
i , and Vy2

i remain unchanged throughout
the optimization of mass distributions. Therefore, it is sufficient to
calculate them prior to the use of optimization algorithms, thus
avoiding needless repetition of the same calculations.

At each iteration of the interior-point algorithm discussed in
Section 3.3, the decision variables of the optimization problems
(19)e(24) and (25)e(30) included in the mass distribution vector r
are only used to calculate m, mx, mx2 , and my2 in Eqs. (A.1), (A.3),
(A.5), and (A.7), respectively. Then, the values of these auxiliary
variables are used when evaluating xcg ¼ mx=m, Ix with Eq. (A.9)
and Iy with Eq. (A.10). This allows for efficient computation of the
mass, the center of gravity, and the moments of inertia of the bullet
during the optimization process.

Appendix B. Optimal mass distributions of the training bullet
with different reference velocities

In the optimization problem of the limited range training bullet
formulated in Section 3.2, the distance from the boundary of the
stable region to the reference point given by the values of the
stability parameters at the reference velocity vref is maximized. The
reference velocity is selected to be some velocity lower than the
initial velocity of the bullet, and the value of 600m/s is used in the
optimization of the mass distribution of the training bullet in
Section 4.2.

In order to be able to analyze the effect of the reference velocity
on optimal mass distributions, the optimization problem for the
training bullet discussed in Sections 3.2 and 4.2 is solved with
several values of the reference velocity. The optimal mass distri-
butions with the reference velocities of 550m/s, 500m/s and
450m/s are presented in Fig. B1. The nature of the optimal distri-
bution remains similar despite changing the value of the reference
velocity. Thus, the selection of the reference velocity does not affect
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the resulting optimal solutions significantly when using moderate
supersonic velocities, and the use of the reference velocity 600m/s
is reasonable.

Fig. B.1. The optimal mass distribution of the training bullet using the reference ve-
locity of a) 550m/s, b) 500m/s, and c) 450m/s. The color of a cell represents mass
density. Darker color indicates higher density.

Appendix C. Sensitivity analysis

In the sensitivity analysis discussed in this appendix, optimal
mass distributions for the long range and training bullets are
determinedwith varied values of normal force coefficient slope CNa

,
zero-yaw drag coefficient CD0

, pitching moment coefficient slope
Cma

, Magnus moment coefficient slope Cnbpa and the sum of pitch
damping moment coefficients Cmq þ Cm _a

. First, optimizations are
carried out with all the values set at 10% above or below the ones
acquired from the analytical expressions for the aerodynamic
quantities presented in Section 2.2. Second, optimizations are
conducted one by one with each of the quantities having a value of
10% above or below the value acquired from the analytical ex-
pressions. All other parameters of the bullet model are kept fixed at
their original values presented in Tables 1 and 2

The resulting optimal mass distributions for the long range
bullet and for the training bullet are illustrated in Figs. C1 and C2.
The mass distribution of the long range bullet (Fig. C1) remains
almost identical with the distribution (Fig. 3) obtained with the
exact values of the aerodynamic quantities Eqs. (3)e(13) despite
the slight changes in these values. In the case of the training bullet,
the resulting optimal mass distribution (Fig. C2) variesmore but the
basic shape remains similar and resembles the distribution (Fig. 5)
with the exact aerodynamic quantity values. Overall, the results of
the sensitivity analysis reveal that the optimization approach pre-
sented in this paper is robust regarding changes in the values of the
aerodynamic quantities.

Fig. C.1. The optimal mass distributions of the long range bullet with the slightly varied values of the aerodynamic quantities.
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Appendix D. Optimal mass distributions with lead, steel and
titanium

In the optimization problems presented in Section 3, the bounds
of the mass densities of the cells were rlb ¼ 1:225,10�3 g/cm3

corresponding to air and rub ¼ 20 g/cm3 corresponding to dense
metals, e.g., tungsten. In this appendix, the bounds are set to values
corresponding to commonly used materials, i.e., lead (11.34 g/cm3)
and steel (7.85 g/cm3) as well as to the density of titanium (4.51 g/
cm3). Such bounds can be used for taking into account practical
limitations and structural demands posed by bullets’
manufacturing process and launch. Total masses of bullets are
slightly varied compared to 20 g for the long range bullet and 10 g
for the training bullet used in Sections 4.1 and 4.2 in order to allow
optimal mass distributions to also contain lower densities than the
maximum density only. All other parameters of the bullet model
are kept fixed at their original values presented in Tables 1 and 2

In Fig. D1(a), the optimal mass distribution of the long range
bullet is presented when the mass density upper bound corre-
sponds to lead and the lower bound to titanium. The total mass of

the bullet is 17 g. In Fig. D1(b), the upper bound is the density of
steel and the lower bound is the density of titanium, and the total
mass is 15 g. The optimal shapes of the mass distributions are
similar to the optimal solution obtained in Section 4.1 where the
maximum density corresponds to tungsten and the minimum
density to air. Thus, the shape of the optimal mass distribution of
the long range bullet is not sensitive to the material constraints.

The optimal mass distribution of the training bullet with the
upper bound corresponding to lead and the lower bound to tita-
nium is presented in Fig. D2(a). The total mass of the bullet is 8 g. In
Fig. D2(b), the upper bound is defined by steel and the lower bound
by titanium. The total mass of this bullet is 6.5 g. The optimal shapes
of the mass distributions differ from the optimal distribution
computed with the densities of tungsten and air in Section 4.2.
However, the nose of the bullet consists of the densest materials in
both cases. The mass in the body and the boat tail is distributed
differently depending on the maximum and minimum mass den-
sities allowed.

Fig. C.2. The optimal mass distributions of the training bullet with the slightly varied values of the aerodynamic quantities.
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Fig. D.1. The optimal mass distributions of the long range bullet. The lower bound
rlb ¼ 4:51 g/cm3 corresponds to the density of titanium. The upper bound of mass
density is a) rub ¼ 11:34 g/cm3 corresponding to lead and b) rub ¼ 7:85 g/cm3 corre-
sponding to steel.

Fig. D.2. The optimal mass distributions of the training bullet. The lower bound rlb ¼
4:51 g/cm3 corresponds to the density of titanium. The upper bound of mass density is
a) rub ¼ 11:34 g/cm3 corresponding to lead and b) rub ¼ 7:85 g/cm3 corresponding to
steel.
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