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Adaptive Coded Modulation for Stabilization of Wireless
Networked Control Systems over Binary Erasure Channels

Muhammad Royyan, Mikko Vehkapera, Themistoklis Charalambous, and Risto Wichman

Abstract—This paper proposes adaptive coded modula-
tion for stabilization of wireless networked control systems
(WNCSs). We combine a well-known data rate theorem with
adaptive coded modulation to guarantee stability and optimize
the spectral efficiency in WNCSs. We believe that this is the
first work in adaptive coded modulation for stabilization. In ad-
dition, we propose three schemes to optimize various objectives
with given constraints. Our proposed schemes are as follows:
maximizing throughput with energy constraint (MaxTEC),
minimizing energy with throughput constraint (MinETC), and
minimizing delay with energy constraint (MinDEC). The nu-
merical results show that each scheme is able to select the
optimal modulation to optimize objectives at given channel
conditions and constraints.

Index Terms—Wireless networked control system; stability;
data rate theorem; adaptive modulation; binary erasure chan-
nels.

I. INTRODUCTION

The way to control processes that involve communications
is revolutionized, because of the recent development of smart
devices with advanced wireless communication, sensing, and
computing. The Internet of Things (IoT) [1], Tactile Internet
[2], and Cyber-Physical Systems (CPS) [3] are emerging
technologies that build on the advanced capabilities of such
devices. Typically, the overall system is spatially distributed
and communication between smart devices (being sensors,
actuators or controllers) is mainly supported by a (wireless)
communication network. Such spatially distributed systems
wherein the control loops occur through a (possibly shared)
wireless channel are known as wireless networked control
systems (WNCSs).
A conventional feedback control system is based on the

assumption of a perfect communication feedback channel
and instantaneous sensing. However, the wireless channels
have limited resource and are inherently less reliable. From
a control perspective, such a channel can lead to message
dropouts and/or delays that can cause degradation of the
system performance or even instability. As a consequence,
WNCSs require a novel design that considers the strict delays
and reliability constraints imposed by the communication
impairments. Furthermore, in several occasions WNCSs may
consist of battery-powered devices, thus adding the energy
consumption as yet another challenge [4]. With WNCSs it
is necessary to ensure that the closed-loop system satisfies
various objectives while handling massage dropout, delay,
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Fig. 1: Network Configuration.

and attenuate disturbances. Among those objectives, stability
is the most important. The stabilization in the presence of
message dropout and rate constraints has been extensively
studied during the last two decades; see surveys [5], [6] and
references therein.
To transmit a sensor reading signal over a wireless chan-

nel, first, the signal needs to be quantized, encoded, and
modulated into a sequence of symbols. Then, the signal
is transmitted over a lossy wireless channel (see Fig. 1).
However, there is a possibility that the demodulator/decoder
is not able to successfully receive/decode the sensor reading.
As a result, the controller fails to generate an updated feed-
back control signal and stabilize the plant. Ideally, having
a high data rate r and high signal-to-noise ratio (SNR)
that guarantees the successful reception of the signals can
solve the problem. However, such a scenario requires a
considerable amount of energy/power, which may not be
available in low-power devices.
In this paper, we combine the results for minimum data

rates with adaptive coded modulation techniques for wireless
channels in order to improve the performance of the WNCS.
Adaptive coded modulation is a powerful mechanism for
optimizing the spectral efficiency of a wireless channel [7].
This is the first work, as far as the authors are concerned,
that uses adaptive coded modulation for stabilization and
performance of wireless networked control systems. Our
proposed schemes are the following:
1) Maximizing Throughput with Energy Constraint (Max-

TEC). The MaxTEC scheme selects optimal modulation
to maximize achievable throughput in case of limited
consumable energy. This scheme is useful when there
are uncertainties in the system and/or in the channel
parameters, such that it is unknown what is the true
minimum data rate required to stabilize the system.



2) Minimizing Energy with Throughput Constraint
(MinETC). The MinETC scheme selects optimal
modulation to minimize required energy if we have a
throughput requirement to enhance control performance.
For systems which we know the minimum data rate
required and performance in not an issue, while there are
battery-operated devices and energy is a limited resource,
one may wish to minimize the energy comsumption
for a throughput constraint that meets the stabilizability
conditions.

3) Minimizing Delay with Energy Constraint (Min-
DEC).The MinDEC scheme selects optimal modulation
to minimize transmission delay when energy consump-
tion is limited. Minimizing the delay allows for smaller
sampling times, which in turn result into a system that
requires a lower data rate for stabilization.

The remainder of this paper is organized as follows. In
Section II, the system model and preliminaries are presented
in detail. In Section III, the proposed optimization schemes
are elaborated. The numerical analysis of the proposed
schemes is presented and discussed in Section IV. Finally,
Section V presents the conclusions.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model
We consider a continuous-time dynamical system which

is discretized with sampling period Ts , and it is given by

xk+1 = Axk + Buk + wk,

yk = Hxk + vk,
(1)

where xk ∈ Rα is the state of the system, A ∈ Rα×α is the
state matrix, uk ∈ Rβ represents the control input, wk ∈ Rα is
the process noise with Gaussian distribution wk ∼ N (0,W ),
yk ∈ Rκ is the output of the system observed by a sensor, H
is the output matrix, and vk ∈ Rκ is the measurement noise
with Gaussian distribution vk ∼ N (0,V ). Furthermore, A is
assumed to be unstable, i.e., ∃ λi > 1 where {λ1, λ2, ..., λn}
denote the eigenvalues of A. Therefore, the dynamic system
is unstable in open loop (i.e., xk → ∞ as k → ∞). We further
assume (A, B) is stabilizable, and (A, H) is observable.
Given that there is a limited amount of information bits

that can be transmitted via a communication channel, the
continuous state yk must be quantized. As shown in Fig.
1, a quantizer Q : Rκ → Qk, which maps states yk to an
element of a countable set Qk at time k, where |Qk | = 2r
is the cardinality of set, when transmitting r bits in each
transmission. Subsequently, present quantized signal qk is
encoded into block of n data symbol (complex numbers)
sk . Afterward, the encoded signal is transmitted through a
communication channel. Note that the encoded signal sk is
transmitted via a lossy wireless communication channel. The
packet reception/dropout is represented by a binary random
variable γk, with γk = 1 indicating that the packet has been
successfully delivered to the decoder; otherwise, γk = 0.
The packet loss process {γk }k ≥ 0 is assumed to be an IID
process with the probability of a packet being lost is given
by the packet error rate (PER), herein denoted by ρ, i.e.,

ρ = P{γk = 0}. (2)

Meanwhile, the decoder acquires the output of the com-
munication channel. We assume that the feedback link
from the estimator to the sensor node is noiseless. Af-
terward, the estimator estimates the decoded state and
the controller generates an input signal uk from the es-
timated state x̂k for the plant. In addition, for the de-
coder to inform the encoder about a successful recep-
tion of a packet through an acknowledgment/negative-
acknowledgment (ACK/NACK) mechanism, in which short-
length error-free packets are broadcasted by the receiver over
a separate narrow-band channel, informing the transmitter on
whether or not, the transmission of the packet was successful
[8]. It should be noted that when the packet is transmitted
over a binary erasure channel (BEC), the coded system is
able to detect decoding failures in practice [9].
We further assume that to transmit r-bit requires a delay

d, with d ≤ Ts to ensure that the packet is received before
a new packet is generated. The required block length n for
transmission is determined by [10]

n = dW, (3)

where W is channel bandwidth.

B. Packet Error Rate Analysis

In the coded transmission, the r-bit information messages
are encoded into block of n data symbol through the coded
channel. Based on Shannon limit theorem [11], the rate of a
block code which is defined as the ratio between its message
length and its block length needs to be lower than the channel
capacity r

n = R < C. Assuming we have AWGN channel,
Polyanskiy et al. [12] state that the PER for modulation-i of
wireless coded transmission is determined by

ρ(i) = Q
(√

n
V

(C − R(i))
)
, (4)

where Q(·) is the Q-function, and

V =
δ (δ + 2)
(δ + 1)2

(log2 e)
2, (5)

C = log2(1 + δ), (6)

with V and C denoting the dispersion and channel capacity,
respectively. In addition, the signal to noise ratio (SNR) is
denoted by δ and defined by

δ =
Es

N0
, (7)

where Es is the energy per symbol in joules and N0 is the
noise spectral density, the noise power in a 1 Hz bandwidth,
measured in joules. Furthermore, the rate R(i) function is
defined as

R(i) = ri, ∀i ∈ {1, 2, ..., Nmod } ⊆ N, (8)

where ri < r j when i < j, ∀i, j ∈ {1, 2, ..., Nmod } ⊆ N. In
(8), Nmod denotes number of modulation schemes that are
considered for a communication channel.



To satisfy Shannon limit theorem, the rate R should be
smaller than the capacity (C > R) and, hence, due to (6),

δ > 2R − 1. (9)

As deduced by (9), a lower bound on δ for each modulation
scheme is 2R − 1. Although high-order modulation results
in higher rates, based on (4) and (9), faster modulation has
higher ρ in low δ scenario which leads to lower throughput
and higher lower-bound of δ. It is trivial that consumed
energy is increased when δ is increased due to (7).

C. Data Rate Theorem for Stabilization over Binary Erasure
Channels

In the process of networked control systems, the quantizer
discretizes a continuous state. Thus, it introduces loss of
information due quantization error (xk− x̂k > 0). In addition,
there is a probability ρ that the decoder does not receive
the output of the encoder sk since the packet is transmit-
ted through a lossy wireless communication channel. This
condition induces more loss of information. Intuitively, the
fewer bits used for quantization, the larger quantization error.
However, if quantization error is too large, the controller is
not able to generate a stabilizing control input. Nevertheless,
having a faster rate requires a higher amount of energy to
achieve the required throughput. Therefore, the problem of
interest in this paper is determining the required minimum
data rate rmin to asymptotically stabilize the system in the
mean square sense, given the system dynamics and channel
conditions.

Definition 1. System (1) is asymptotically stabilizable, in
the mean square sense, if supk E[| |x2k | |] < ∞, where | | · | | is
the L2-norm in Rα and expectation E[·] is determined with
respect to the packet loss process {γk }k ≥ 0.

Theorem 1. [13] Consider the dynamical system in (1)
with the network configuration shown in Fig. 1, where state
transition matrix A is unstable, but (A, B) is a stabilizable,
and the network is transmitted through IID lossy wireless
communication channel with ρ ∈ (0, 1). Further, the system
is asymptotically stabilizable in the mean square sense if and
only if,
• The packet error rate ρ is less than the upper-bound
ρmax determined by

ρ < ρmax =
1

M (A)2
, (10)

where M (A) is the Mahler measure of a square matrix
A ∈ Rα×α in the dynamical system (1). The Mahler
measure is determined by its characteristic polynomial:

M (A) =
∏
i

max{|λi |, 1} = 2HT (A), (11)

where HT (A) is topological entropy of an LTI system
with open loop matrix A. Furthermore, it is defined as

HT (A) =
∑
i

max{log2 |λi |, 0}, (12)

where λ1, ..., λn denote all the eigenvalues of A.
• The data rate r is greater that lower-bound given by

r > rmin = HT (A) +
1
2
log2

1 − ρ
1 − ρ M (A)2

. (13)

In (12), HT (A) quantifies the uncertainty growth rate of
system (1). The data rate determines how fast to process
the information received to reduce the uncertainty. The rate
must be greater than the growth rate HT (A) to guarantee the
system is asymptotically stabilizable. However, due to the
probability of packet loss, we require extra bits to address
the impact of packet loss on the stabilizability. As shown in
(13), these additional bits are explicitly quantified by

f (ρ, A) =
1
2
log2

1 − ρ
1 − ρ M (A)2

, (14)

which is a function of ρ and the system dynamics. If
inequality (10) is satisfied, because of

∂ f (ρ, A)
∂ρ

=
M (A)2 − 1

2(1 − ρ)(1 − M (A)2ρ) log(2)
> 0, (15)

function (14) is a strictly increasing function with respect
to ρ. In addition, for perfect channel (ρ = 0), it is defined
that f (0, A) = 0. Thus, the data rate only need be greater
than the growth rate HT (A). In addition, when the channel
bandwidth is very large (r → ∞), inequality (13) is always
satisfied and the only condition need to be satisfied is (10).

III. OPTIMIZATION SCHEMES

The wireless networked control systems heavily depend on
the guarantees on the bounded service times for messages.
Particularly, in industrial control the real-time requirement,
such as throughput, is considered the most important. How-
ever, it requires high rate and low PER to achieve high
throughput, for which more energy is required. Therefore,
the trade-off between energy and throughput must be inves-
tigated. In this paper, we offer two optimization schemes for
this trade-off, while guaranteeing that the system is stabiliz-
able. Firstly, if we have limited energy to be consumed, we
can achieve maximum achievable throughput by selecting the
optimal modulation through maximizing throughput with an
energy constraint scheme. Secondly, if we have a minimum
throughput requirement to enhance control performance, we
can minimize the energy by selecting the optimal modulation
by minimizing energy with a throughput constraint scheme.
Besides, minimizing transmission delay is also important.

The increase in delay can heavily degrade system perfor-
mance. In a wireless network, the delay depends on the
amount of data and the rate. If we increase the rate, the
delay decreases; while causing more interference, decreasing
the reliability (packet success rate), where the reliability of a
communication channel is essential to keep the system stable.
In this situation, we can increase the energy to enhance
the reliability of the communication channel. Therefore, to
investigate this trade-off, the last scheme is introduced. If
we have limited energy to be consumed, we can minimize
delay and keep the system stable by selecting the optimal
modulation.



For simplicity we assume that the noise spectral density
N0 = 1, therefore, δ = Es . Thus, the function of ρ in (4) is
function of Es instead of δ and defined as

ρ(i) (Es) = Q
(
(Es + 1) log

(
Es + 1
2R(i)

) √
n

Es (Es + 2)

)
, (16)

where ρ(i) (Es) is the PER with modulation-i when Es

joule energy per symbol is consumed. Therefore, to satisfy
Shannon’s limit theorem, the lower-bound for energy is
determined by

Es > 2R − 1. (17)

It should be noted that in general WNCSs use low-power
devices. To reflect this, we set the bandwidth W = 100 kHz
in the following. For Sections III-A and III-B, we set the
delay (d = 1 ms). Hence, the block length is fixed (n = 100
symbols). However, the block length n and delay d become
objectives which need to be minimized in Section III-C.

A. MaxTEC Scheme

In this scheme, by setting the limit of total consumable
energy, the achievable throughput is maximized by selecting
optimal modulation. With the consumed energy per symbol
Es , the achievable throughput in bits per second (bps) with
selected modulation-i is determined by (1 − ρ(i) (Es))

r (i)
Ts
,

where function r (i) denotes the length of the transmitted
message in bits given by r (i) = nR(i).
Maximizing throughput with an energy constraint by se-

lecting optimal modulation can be formalized as an integer
programming problem with respect to binary variables θi as
follows :

max
θi,∀i

∑
i

θi (1 − ρ(i) (Es))
r (i)
Ts

, (18)

s.t. Es > 2R(i) − 1, (19)∑
i

θi ρ
(i) (Es) < ρmax (A), (20)∑

i

θir (i) >
∑
i

θirmin(A, ρ(i) (Es)), (21)

nEs ≤ ϵ, (22)∑
i

θi = 1 with ∀i ∈ {1...Nmod }, θi ∈ {0, 1}, (23)

where (18) represents achievable throughput in bits per
second (bps). In addition, ρmax (A) and rmin from (20) and
(21) are determined by (10) and (13), respectively. Further,
the energy constraint is stated in (22). It is obvious that the
value of (18) is directly proportional to consumed energy
Es . Thus, to maximize (18), Es must be maximized, i.e.,
Es = ϵ/n. Since Es is fixed, the optimization problem
becomes linear.
It should be noted that constraint (23) forms the objective

of this scheme which is to select optimal modulation-i∗

among Nmod modulations which maximizes throughput with
energy constraint and guarantee the system is stabilizable.
To assure the selected modulation guarantees the dynam-

ical system to be stabilizable; first, the selected modulation-
i∗ must satisfy the Shannon limit theorem, which is stated

in (19). Furthermore, the data rate theorem that is stated in
(20) and (21) must be satisfied with the selected modulation.
Finally, among modulations that satisfy the whole constraint,
the modulation that generates maximum throughput is se-
lected.
The overview of the scheme is elaborated in Algorithm

1. In Algorithm 1, sMod and MaxT denote the selected
modulation and the achievable throughput that is generated
by selected modulation, respectively.

Algorithm 1: MaxTEC

1 sMod ← ∅
2 MaxT ← 0
3 for i ← 1 to Nmod do
4 if ρ(i) (Es) < ρmax (A) then
5 if r (i) > rmin(A, ρ(i) (Es)) then
6 if MaxT < (1 − ρ(i) (Es))

r (i)
Ts

then
7 MaxT ← (1 − ρ(i) (Es))

r (i)
Ts

8 sMod ← i
9 end
10 return sMod, MaxT

B. MinETC Scheme

On contrary to Subsection III-A, the problem of interest
in this scheme is determining required minimum energy
when we have the lower bound of achievable throughput.
Minimizing energy with a achievable throughput constraint
scheme by selecting optimal modulation can be formalized
as an integer programming problem with respect to binary
variables θi as follows:

min
θi,∀i

∑
i

θinEs, (24)

s.t. Es > 2R(i) − 1, , (25)∑
i

θi ρ
(i) (Es) < ρmax (A), (26)∑

i

θir (i) >
∑
i

θirmin(A, ρ(i) (Es)), (27)

∑
i

θi (1 − ρ(i) (Es))
r (i)
Ts
≥ ζ, (28)∑

i

θi = 1 with ∀i ∈ {1...Nmod }, θi ∈ {0, 1}, (29)

where (24) represents total consumed energy. Furthermore,
the achievable throughput constraint is stated in (28). Similar
to previous case, it is obvious that to minimize (24), the
throughput must be minimized, i.e.,

∑
i

θi (1 − ρ(i) (Es))
r (i)
Ts
= ζ . (30)



Assume that there exists modulation-i∗ that satisfy all con-
straints. Therefore, we have

(1 − ρ(i∗) (Es)) =
Ts
r (i∗)

ζ, (31)

ρ(i
∗) (Es) = 1 − Ts

r (i∗)
ζ . (32)

Constraint (27) must be satisfied. Therefore, we have

rmin(A, ρ(i) (Es)) < r (i∗), (33)

HT (A) +
1
2
log2

1 − ρ(i∗) (Es)
1 − ρ(i∗) (Es) M (A)2

< r (i∗), (34)

1 − 2ψ(i∗) − ρ(i∗) (Es)(1 − 2ψ(i
∗) M (A)2)

1 − ρ(i∗) (Es) M (A)2
< 0, (35)

where ψ(i) = 2(r (i) − HT (A)). To satisfy constraint (26),

1 − ρ(i∗) (Es) M (A)2 > 0. (36)

Therefore,

ρ(i
∗) (Es) >

1 − 2ψ(i∗)
1 − 2ψ(i∗) M (A)2

. (37)

Because we assume that the state transition matrix A is
unstable, M (A) > 1. Thus, we have

1
M (A)2

>
1 − 2ψ(i∗)

1 − 2ψ(i∗) M (A)2
. (38)

To satisfy every constraints

1 − 2ψ(i∗)
1 − 2ψ(i∗) M (A)2

< ρ(i
∗) (Es) <

1
M (A)2

(39)

must be satisfied. By substituting Eq. (32) into (39), we have

1 − 2ψ(i∗)
1 − 2ψ(i∗) M (A)2

< 1 − Ts
r (i∗)

ζ <
1

M (A)2

2ψ(i∗)M (A)2 − 1
2ψ(i∗) (M (A)2 − 1)

Tsζ < r (i∗) <
M (A)2

M (A)2 − 1
Tsζ . (40)

A set V is called valid if every element of set V is modulation
that satisfy (40) where V ⊆ {1, 2, ..., Nmod }. To minimize the
energy, the selected modulation- i∗ = min(V).
Because solving Es from nonlinear equation (32) is diffi-

cult, approximating approach is used. Therefore, we assume
Es is a discrete such that

Es = {x : x = x0 + ∆ j, j ∈ {0, 1, 2, 3, .., Ne}}, (41)

and
Es ( j) = x0 + ∆ j, (42)

where ∆ is a small number for the space between element,
Ne is the number of element in the set, min(Es) = x0, and
max(Es) = x0 + ∆Ne. In this scheme, the solution is the
smallest element from discrete set Es that satisfy constraint
(28) with selected modulation-i∗.
The overview of the scheme is elaborated in Algorithm 2.

In Algorithm 2, sMod and MinE denote the selected mod-
ulation, and the minimum required energy that is generated
by selected modulation, respectively.

Algorithm 2: MinETC Scheme

1 sMod ← ∅
2 MinE ← ∞
3 j ← 0
4 for i ← 1 to Nmod do
5 if r (i) > 2ψ (i)M (A)2−1

2ψ (i) (M (A)2−1)Tsζ then
6 if r (i) < M (A)2

M (A)2−1Ts then
7 while

(
ρ(i) (Es ( j)) < 1 − Ts

r (i) ζ
)
& ( j ≤ Ne)

do
8 j ← j + 1
9 end
10 if (MinE > Es ( j)) &(

ρ(i) (Es ( j)) ≥ 1 − Ts
r (i) ζ

)
then

11 MinE ← Es ( j)
12 sMod ← i
13 end
14 return sMod, MinE

C. MinDEC Scheme

As defined in (3), to minimize delay d, we have to
minimize the block length n. Minimizing block length with
energy constraint scheme is formalized as an integer pro-
gramming problem with binary variables as follows:

min
θi,∀i

∑
i

θin, (43)

s.t. Es > 2R(i) − 1, (44)∑
i

θi ρ
(i) (Es) < ρmax (A), (45)∑

i

θir (i) >
∑
i

θirmin(A, ρ(i) (Es)), (46)

d ≤ Ts (47)
Es ≤ η. (48)∑
i

θi = 1 with ∀i ∈ {1...Nmod }, θi ∈ {0, 1}, (49)

where (43) represents block length. Furthermore, the energy
constraint is stated in (48). Constraint (47) is required to
bound the delay based on the assumption from Section II.
It is obvious that the value of (43) is inversely proportional
to consumed energy Es . Thus, to minimize (43), Es must
be maximized, i.e., Es = η. Therefore, if (44) is satisfied
and with the fact that Q function is monotone decreasing
function, we have

ρ(i)
coded

< ρmax√
n
V

(C − R(i)) > Q−1(ρmax )

n >
(log2 e)2Q−1(ρmax )2(η)(η + 2)
(η + 1)2 log2((η + 1)/2R(i))

.

(50)



Because n ∈ N, thus,

n ≥ MinPL =
⌊
(log2 e)2Q−1(ρmax )2(η)(η + 2)
(η + 1)2 log2((η + 1)/2R(i))

⌋
+ 1, (51)

where ⌊·⌋ is the ceiling function. It is important to check
whether constraint (46) is satisfied. If the minimum block
length determined by (51) does not satisfy (46), the scheme
will increment MinPL by 1 and keep incrementing until
the constraint is satisfied. Finally, the minimum delay is
determined by (3), where n = MinPL.
It must be noted that when we have sufficiently fast

sampling time Ts that generates ρmax ≥ 1/2 and if inequality
(44) is satisfied then inequality (45) is always satisfied even
when n = 1, and minimum delay to keep system stable is
determined by d = 1/W (see also example in Section IV-C).
The overview of the scheme is elaborated in Algorithm

3. In Algorithm 3, sMod, Min_n, and Min_d denote the
selected modulation, the minimum required block length, the
minimum required a delay, and that is generated by selected
modulation, respectively.

Algorithm 3: MinDEC Scheme

1 a ← 0
2 sMod ← ∅
3 temp_n ← ∞
4 Min_n ← ∞
5 Min_d ← ∞
6 for i ← 1 to Nmod do
7 if Es > 2R(i) − 1 then
8 temp_n ← MinPL (from (51))
9 r (i) ← R(i) × temp_n
10 Determine ρ(i) (Es) with n = temp_n by (16)
11 Determine rmin(A, ρ(i) (Es)) by (13)
12 while r (i) ≤ rmin(A, ρ(i) (Es)) do
13 temp_n ← temp_n + 1
14 r (i) ← R(i) × temp_n
15 Update ρ(i) (Es) with n = temp_n by (16)
16 Update rmin(A, ρ(i) (Es)) by (13)
17 end
18 if Min_n > temp_n then
19 Min_n ← temp_n
20 sMod ← i
21 end
22 Min_d ← Min_n

W
23 return sMod, Min_d

IV. NUMERICAL RESULTS

In this section, we simulate the implementation of all three
schemes over a simulated wireless channel. The chosen plant
is the well-known inverted pendulums on a horizontal cart.
Although it is simple, the highly unstable dynamics of the

inverted pendulum captures the general need of the control
system when being controlled over a wireless channel. The
control input is the force F that moves the cart horizontally,
and the outputs are the angular position of the pendulum θ

0 0.2 0.4 0.6 0.8 1

10
2

10
3

10
4

Fig. 2: Required Data Rate vs Packet error rate.

(angle from the vertical) and the horizontal position of the
cart x. The linearized equations of motion of the system with
x(t) = [ẋ(t) x(t) θ̇(t) θ(t)]T are as follows:

ẋ(t) =


0 1 0 0
0 −(I+ml2)b

I (M+n)+Mml2
m2gl2

I (M+n)+Mml2
0

0 0 0 1
0 −mlb

I (M+n)+Mml2
mgl(M+m)

I (M+n)+Mml2
0


x(t)

+


0

I+ml2

I (M+n)+Mml2

0
ml

I (M+n)+Mml2


u(t) + w(t),

(52)

where we assume the following quantities: mass of the cart
M = 10 kg, mass of the pendulum m = 150 kg, coefficient of
friction for cart b = 0.1 N/m/sec, length to pendulum center
of mass, l = 0.3 m, mass moment of inertia of the pendulum
I = 0.006 kg m2, coefficient of gravity g = 9.81 ms−2.
Afterward, (52) is discretized by applying a zeroth order hold
(ZOH) with sampling period Ts seconds to form (1).
By using defined system, we simulate the required data

rate over packet error rate as depicted in Fig. 2. The system
in Fig. 2 is sampled with five different sampling period
(Ts). Faster Ts corresponds to more stable system and vice
versa. As shown in Fig. 2, the more stable system has wider
stabilizable coverage. In addition, required data rate → ∞ as
ρ→ ρmax .

For this simulation, we assume there are Nmod = 5
modulations, where R ∈ {0.5, 1, 1.5, 2, 3}. Fig. 3 depicts the
required r bits data that need to be transmitted each trans-
mission over consumed energy Es . Kostina et al. [14] noted
that in networked control system with noiseless channel, an
unstable scalar LTI, xk+1 = axk + buk +wk can be stabilized
with 1 bit feedback when a ∈ [1, 2). Our result also shows
that even in noisy channel, a LTI system can be stabilized
with only 1 bit feedback if sampling time is sufficiently fast
and consumable energy is sufficient.

A. Result of MaxTEC Scheme

In this scheme, maximum achievable throughput is deter-
mined with limited energy while keeping the system stable.
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Fig. 3: Minimum required r bits vs Consumed Energy Es .

As shown in Fig. 4a, the scheme chooses the optimal mod-
ulation based on channel condition. The scheme can choose
not to transmit when the channel condition is severely bad
due to there is not sufficient energy to generate transmission.
When we have better channel condition, we can transmit
the payload with the optimal modulation. When total energy
ϵ ∈ (17, 20) Joules (dB), the biggest factor that leads the
scheme to select modulation with coding rate R = 0.5 is
the fact that the lowest modulation has lowest PER in lower
channel condition. When the total consumed energy ϵ ≈ 18
Joules (dB), modulation with coding rate R = 0.5 reaches its
the maximum capability by generating 50 kbps. Once ϵ ≈ 20
Joules (dB), modulation with coding rate R = 1 is selected by
the scheme due to having higher achievable throughput. Fig.
4b shows how significant the sampling time to overall system
performance. The achievable throughput increases gradually
when faster sampling time is applied and the system with
slower sampling time requires more energy to be able to
transmit the payload.

B. Result of MinETC Scheme

In this scheme, we determine the minimum total con-
sumed energy to generate required achievable throughput
for enhancing system performance. As shown in Fig. 5,
the schemes have similar characteristic with the previous
scheme where the modulation changes to adapt condition
and requirement. It should be noted that the scheme tends to
select the lowest modulation that satisfies every constraints
to minimize energy. However, each modulation has its maxi-
mum capability to transmit payload per transmission. Hence,
the scheme will select faster modulation once slower mod-
ulation pasts its limit. In Fig. 5, we compare two MinETC
schemes with different number of modulation configuration.
The first MinETC scheme is generated with Nmod = 5 where
R = {0.5, 1, 1.5, 2, 3} and the second one is generated with
Nmod = 3 where R = {0.5, 2, 3}. In both cases, 16 joules
(dB) energy is required to transmit the payload even with
slowest modulation (R = 0.5). The second MinETC decided
to activate modulation with coding rate R = 2 at interval
ζ ∈ [50, 200] kbps that required more energy than the first
MinETC scheme. In this scenario, the amount of energy that
can be saved by applying more modulation configuration is
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Fig. 4: MaxTEC scheme.
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Fig. 5: MinETC scheme for Ts = 1 ms.

denoted by ∆Es . The ∆Es is represented as green shading in
Fig. 5.

C. Result of MinDEC scheme

In this scheme, we determine the delay lower-bound to
keep system stable. Fig. 6a depicts the delay lower-bound
when the sampling period Ts = 10 ms. The scheme starts to
be able to stabilize the system once η ≈ −3.7 (joules (dB))
where the delay closes to its upper-bound (Ts = 10 ms).
Because the consumable energy is limited, the scheme tends
to selects the slowest possible modulation. However, once
η ≈ 3.8 (joules (dB)), there is enough energy to generate
faster modulation to satisfy every constraints; the scheme
selects the faster modulation to decrease the delay lower-
bound into 10−2 ms. Due to n ∈ N, the fastest possible delay
is 1/W where in this case, 10−2 ms. Thus, the scheme keeps
selecting modulation with coding rate R = 1 once η > 3.8
(joules (dB)) in Fig. 6a. However, there is possibility that the



fastest delay lower-bound can not be achieved even η → ∞.
Both Fig. 6b and Fig. 6c show how sampling time Ts affects
the delay lower-bound. Both results show that once Ts >
55 ms, fastest delay lower-bound is no longer achievable. It
should be noted that if there is sufficient energy to satisfy
Shannon limit (η > 2R − 1), the packet error rate ρ(i) (η) <
0.5, ∀i. Therefore, once the sampling period is fast enough to
generates ρmax > 0.5, one symbol (MinPL = 1) is sufficient
to stabilize the system ∀η > 2R − 1. This result is shown in
Fig. 6c once the sampling period Ts < 9 ms.
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Fig. 6: Minimum block length with energy constraint

V. CONCLUSION

A. Conclusions

In this paper, we proposed adaptive coded modulation
for stabilization and performance optimization of WNCSs.
Towards this end, we proposed three schemes with which
we optimized various objectives under different constraints.

The results show that each scheme is able to select the
optimal modulation to optimize objectives at given various
channel conditions and constraints. It should be noted that
a scheme can decide not to transmit if stability cannot
be guaranteed. Besides, it is trivial that sampling time Ts
heavily impacts the performance. In extreme scenarios, such
as when we have low sampling rate (Ts = 100 ms), the
MaxTEC scheme is able to stabilize the system although it
requires considerable amount of energy and produces small
throughput. Another interesting point, shown in the results
of MinETC scheme, is that in some scenarios having more
options for modulation can save more energy. Furthermore,
our study complements the findings of Kostina et al. [14]
which state that 1-bit feedback is sufficient to stabilize scalar
LTI system in noiseless channels. Additionally, our findings
show that LTI system in noisy channel can be stabilized with
1-bit feedback, provided sampling rate is sufficiently fast and
consumable energy is sufficiently large.
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