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Abstract—Graph filters are an essential part of signal process-
ing on graphs enabling one to modify the spectral content of the
graph signals. This paper proposes a graph filter optimization
method allowing exact control of the ripple on the passband
and the stopband of the filter. The proposed filter design
method is based on the sum-of-squares representation of positive
polynomials. The optimization of both FIR and ARMA graph
filters is convex with the proposed method.

Index Terms—Graph filters, filter design, convex optimization

I. INTRODUCTION

Graph signal processing is a field that extends classical
discrete-time signal processing methods to the irregular do-
main of graphs [1]. Signals on such graphs can arise in e.g.
network analysis, biomedical signal processing, and machine
learning [2]. A rudimentary signal processing method is filter-
ing, and several studies have extended the classical filters to
the graph domain [3]–[5].

The typical task for a filter is to stop some of the signal
components whereas letting others pass as unaltered as possi-
ble. The key parameter for the design is not only the cutoff,
the point between the passband and stopband, but also the
distortion allowed to the passed components and the residual
power of the components that need to be attenuated. The
former is controlled by the passband ripple, whereas the latter
is determined by the stopband ripple.

There are various methods to obtain a graph filter with an
approximation of the desired response, including least-squares
fitting [4], [5] and Chebyshev polynomial fitting [6]. The
drawback of these methods is that there is no control over
the ripple on the passband and the stopband. In this paper,
we propose a graph filter design method based on sum-of-
squares representation of polynomials. This formulation results
in a convex optimization problem allowing one to control
the ripple exactly for both finite impulse response (FIR) and
autoregressive moving average (ARMA) filters.

This paper is organized as follows. The use of the sum-
of-squares representation of polynomials is briefly explained
in Section II. The proposed design method for FIR filters is
provided in Section III, while the ARMA filters are covered in
Section IV. Section V discusses discretization approximation
to the proposed filter design method. Numerical examples are

provided in Section VI, and final conclusions are given in
Section VII.

II. SUM-OF-SQUARES REPRESENTATION

In many optimization problems, we often encounter con-
straints of the type

p(x) ≥ 0, (1)

where p is a polynomial of a continuous variable x. The
typical method to deal with this type of constraints is to
discretize the domain of x, but then the solution will no longer
be optimal. Moreover, discretization is not always possible
(e.g. the domain is not bounded). Using the sum-of-squares
representation, however, it is possible to handle this type of
constraints without discretization.

The basic idea of the the sum-of-squares representation is
to write p(x) as a sum of squares of other polynomials, i.e.

p(x) =
∑
i

q2
i (x). (2)

If this can be done, then p(x) is necessarily non-negative. It
turns out that for univariate polynomials, a polynomial is non-
negative if and only is it can be written as a sum of squares
[7].

Enforcing p(x) to be a sum of squares can be further
converted into linear matrix inequalities. The idea is follow-
ing. Suppose that the degree of p(x) is 2K. Collecting the
monomials 1, x, x2, . . . , xK into a vector m(x), it is possible
to write

p(x) = mT (x)Gm(x), (3)

where the coefficients of p(x) have been arranged into the
(K + 1)× (K + 1) matrix G. The (non-unique) matrix G is
called the Gram matrix. If G is positive-semidefinite (PSD),
then p(x) expressed as the quadratic form in (3) is clearly non-
negative for any x. Furthermore, p(x) can be expressed as a
sum of squares after applying the eigenvalue decomposition
on G.

It can in fact be shown that p(x) is non-negative on the real
axis if and only if there exists a PSD Gram matrix for the
polynomial [7]. Satisfying the constraint (1) is thus equivalent
to finding a positive-semidefinite matrix G such that (3) holds.
In other words, defining Yn to be an elementary Hankel matrix
with ones on the nth anti-diagonal and zeroes elsewhere (the



zeroth anti-diagonal being in the upper left corner), p(x) ≥ 0
if and only if there exists PSD matrix G such that

ak = trace[YkG], k = 0, . . . , 2K (4)

where ak is the kth degree coefficient of the polynomial p [7].
Often the constraint p(x) ≥ 0 does not need to hold for any

x on the real axis, but only on some subset of it. The sum-of-
squares representation can be used for this type of constraints
as well.

Define X as the set on which polynomials Ri(x) are non-
negative, i = 1, . . . , L, i.e.

X = {x ∈ R|Ri(x) ≥ 0, i = 1, . . . , L}. (5)

The polynomial coefficients of Ri are denoted by ri,k. The
polynomial p(x) is a sum of squares (non-negative) on X if
and only if there are PSD matrices Gi, i = 0, . . . , L such that

ak = trace

[
YkG0 +

L∑
i=1

∑
m+n=k

ri,mYnGi

]
, n = 0, . . . , 2K,

(6)
see [7] for details. With this formulation, the polynomial
positivity constraints on intervals can be converted into PSD
constraints.

III. FIR FILTER DESIGN

The graph FIR filter of order K is given by

H =

K∑
k=0

hkL
k, (7)

where L is the Laplacian of the graph and hk are the filter
coefficients [4]. The output of the filter depends on the
eigenvalues λ of L. We wish to design the filter so as to
approximate a desired response Hd(λ). One approach to do
this is to choose the filter coefficients to minimize an error
criterion ∫

λ

∣∣∣ K∑
k=0

hkλ
k −Hd(λ)

∣∣∣2w(λ)dλ, (8)

where w(λ) is a weighting function. Denoting

h =
[
h0 h1 h2 . . . hK

]T
and

λ =
[
1 λ λ2 . . . λK

]T
,

we have∫
λ

∣∣∣ K∑
k=0

hkλ
k −Hd(λ)

∣∣∣2w(λ)dλ

=

∫
λ

∣∣∣hTλ−Hd(λ)
∣∣∣2w(λ)dλ

=

∫
λ

(hTλλTh− 2Hd(λ)hTλdλ+Hd(λ)2)w(λ)dλ

=hT
∫
λ

λλTw(λ)dλh− 2hT
∫
λ

Hd(λ)λw(λ)dλ

+

∫
λ

Hd(λ)2w(λ)dλ

=hTA0h− 2cTh + d.

(9)

If the desired response and the weighting function are piece-
wise constants or polynomials, the integrations can be done in
closed form. We now see that the coefficients minimizing the
error are given by

h = A−1
0 c. (10)

It may be useful to add a regularization term γ‖h‖2 to the
error criterion to penalize for coefficients with a large absolute
value, as the noise power of the filter output is proportional
to ‖h‖2. In this case, the solution is simply

h = (A0 + γI)−1c. (11)

If A0 is close to a singular matrix, the regularization will also
help to stabilize the solution numerically.

The problem with minimizing only the integrated error is
that there is no control over the peak error. We might also want
to limit the maximum error, or limit the ripple on the passband
and the stopband. Such peak constraints can be formulated as

max
λ∈Λi

∣∣∣ K∑
k=0

hkλ
k −Hd(λ)

∣∣∣ ≤ εi, (12)

where Λi is a particular domain, in this case an interval of
λ i.e. the passband, the stopband, or the transition band. This
type of constraints can be converted into positivity constraints
of polynomials. More specifically, (12) is equal to∣∣∣ K∑

k=0

hkλ
k −Hd(λ)

∣∣∣ ≤ εi, ∀λ ∈ Λi (13)

from which one obtains two polynomial constraints
K∑
k=0

hkλ
k − (Hd(λ)− εi) ≥ 0, ∀λ ∈ Λi (14)

−
K∑
k=0

hk +Hd(λ) + εi ≥ 0, ∀λ ∈ Λi (15)

Using the sum-of-squares representation, such constraints can
be formulated as linear matrix inequalities. Thus, we obtain a
filter design problem of the form

min
h

hTA0h− 2cTh + γ‖h‖2 (16a)

s.t. hTλ− (Hd(λ)− εi) ≥ 0, ∀λ ∈ Λi (16b)

− hTλ +Hd(λ) + εi ≥ 0, ∀λ ∈ Λi, (16c)

which is convex.

IV. ARMA FILTER DESIGN

The response of a graph ARMA filter of order K is given
by [5]

H(λ) =
f(λ)

g(λ)
=

∑K
k=0 bkλ

k∑K
k=0 akλ

k
. (17)

The square error |H(λ) − Hd(λ)|2 for the ARMA filter is
not directly integrable, but one may integrate the so-called
modified error∫

λ

∣∣∣ K∑
k=0

bkλ
k −Hd(λ)

K∑
k=0

akλ
k
∣∣∣2w(λ)dλ (18)



instead. Defining

Ai =

∫
λ

Hi
d(λ)λλTw(λ)dλ (19)

and using the same procedure as for the FIR case, the modified
error can be written as

bTA0b− 2bTA1a + aTA2a = h̃
T
Ãh̃, (20)

where

h̃ =
[
bT aT

]T
(21)

and

Ã =

[
A0 −A1

−A1 A2

]
(22)

In the case Hd and w are either zero or one for any λ, we
have A1 = A2.

In order to avoid the trivial solution, a constraint is needed
for a with the logical one being a0 = 1. Defining ui as the
unit vector with the ith element equal to one, the problem can
be now written as

min
h̃

hT Ãh̃ + γ‖h̃‖2 (23)

s.t. h̃
T
uK+2 = 1 (24)

with a well-known solution

h̃ =
(Ã + γI)−1uK+2

uTK+2(Ã + γI)−1uK+2

(25)

The regularization does not have a direct connection with
the output noise power, but it again stabilizes the solution
numerically.

As for the FIR case, this design has the problem that it does
not control the peak values, which is especially important as
the ARMA filter might have poles.

Although the exact error is not integrable, it is possible
to constrain the exact peak values using the sum-of-squares
representation with an additional constraint. The peak error
on the interval Λi is given by

max
λ∈Λi

∣∣∣∣f(λ)

g(λ)
−Hd(λ)

∣∣∣∣ ≤ εi. (26)

With the additional constraint that g(λ) ≥ 0, one obtains

−εig(λ) ≤ f(λ)−Hd(λ)g(λ) ≤ εig(λ) ∀λ ∈ Λi, (27)

and finally the polynomial constraints,

f(λ)− [Hd(λ)− εi]g(λ) ≥ 0, ∀λ ∈ Λi (28)
−f(λ) + [Hd(λ) + εi]g(λ) ≥ 0, ∀λ ∈ Λi (29)

The non-negativity of the denominator g(λ) is in fact a mild
constraint, as if we are not to have any poles on Λi, being
continuous, g(λ) has to be either positive or negative. Thus,
we are merely fixing the sign (if 0 ∈ Λi, then the sign is
already fixed by the constraint a0 = 1).

The ARMA graph filter optimization problem can now be
formulated as

min
a,b

h̃
T
Ãh̃ + γ‖h̃‖2 (30a)

s.t. h̃ = [bT aT ]T (30b)

aTu1 = 1 (30c)

aTλ ≥ 0, ∀λ (30d)

bTλ− [Hd(λ)− εi]aTλ ≥ 0, ∀λ ∈ Λi (30e)

− bTλ + [Hd(λ)aTλ + εi]a
Tλ ≥ 0, ∀λ ∈ Λi,

(30f)

which is again a convex optimization problem.

V. DISCRETIZATION

It might be necessary for complexity issues or for numerical
reasons to solve the discretized version of the graph filter
design problem, in which the eigenvalue interval is discretized
into a set of points λn. For the graph FIR filter, the discretized
optimization is

min
h

εtot + γ‖h‖2 (31a)

s.t.
∑
n

∣∣∣hTλn −Hd(λn)
∣∣∣2w(λn) ≤ εtot (31b)

|hTλn −Hd(λn)| ≤ εi, ∀λn ∈ Λi. (31c)

For the ARMA filter, a similar additional constraint g(λn) ≥
0 as in the sum-of-squares polynomial optimization. For the
discrete case the ARMA filter optimization can be formulated
as

min
a,b

εtot + γ(‖a‖2 + ‖b‖2) (32a)

s.t. aTλn ≥ 0, ∀λn (32b)∑
n

∣∣∣bTλn −Hd(λn)aTλn

∣∣∣2w(λn) ≤ εtot (32c)∣∣∣bTλn −Hd(λn)aTλn

∣∣∣ ≤ εiaTλn, ∀λn ∈ Λi,

(32d)

where the last constraint is a second-order cone constraint [8].
Although these discrete problems are convex, it should be

noted that unlike for the polynomial optimization, the ripple
constraints are not guaranteed for all λ.

VI. EXAMPLES

In this section, we show the results of applying the proposed
filter design method. The desired filter was a low-pass filter
with a cutoff at 0.5. The stopband was the interval [0.7, 2], so
the transient band was between 0.5 and 0.7. The regularization
parameter γ was chosen to be zero.

Eleventh order FIR and ARMA filters were designed with
the proposed method and also with the least squares method
for comparison. The optimization of the proposed method was
carried out using CVX [9], [10].

Fig.1 shows the responses of the optimized graph FIR filters.
The inverse solution of (11) and the least-squares fit are close



as expected. In addition, two filters were designed with the
proposed method. The first one had the passpand ripple εp
constrained to 0.1. This way, a FIR filter with a much lower
passband ripple compared to the inverse and the LS solutions
is achieved. The drawback is that the ripple on the stopband
has increased significantly.

For the other filter optimized with the proposed method, the
stopband ripple εs was constrained to 0.1. This way, a filter
with a low ripple on the stopband can be achieved, naturally
at the cost of an increased passband ripple.

The ARMA filter responses are shown in Fig.2. This figure
shows the responses for two least-squares solutions, one that
uses 100 points and the other using 500 points. The former
one has resulted in a poor filter, whereas the 500 points are
already sufficient to bring the filter close to the inverse solution
of (25).

Fig.2 also shows the responses of the proposed sum-of-
squares formulation (30) and the discretized version (32). The
stopband ripple was constrained to 10−5 for both methods.
Both design problems are feasible, so the desired stopband
ripple is achieved, but the proposed solution has overall a
better attenuation on the stopband.
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Fig. 1. FIR filters. The least-squares and inverse solutions are very close, but
neither can control the ripple levels. With the proposed method, is is possible
to achieve low ripple on the passband or the stopband.

VII. CONCLUSIONS

In this paper, we have proposed a graph filter design method
based on the sum-of-squares representation of polynomials.
The proposed approach can be used for optimization of both
FIR and ARMA filters. The proposed optimization method
allows one to control the ripple amplitude on the passband and
the stopband exactly, also for the ARMA filter. The proposed
approach leads to convex optimization problems so that the
globally optimal filter can be found efficiently.

The numerical examples demonstrated that unlike with the
least-squares approximation, filters with the desired stopband
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Fig. 2. ARMA filters. The least-squares approximation produces a bad result
with 100 points, and 500 points are required to bring to the level of the inverse
solution. Both the polynomial method and its discrete version produce a filter
with the desired characteristics, but the proposed polynomial one has overall
higher attenuation on the stopband.

and passband ripples could be achieved. The polynomial
method also yielded a better filter than the discretized approx-
imation. It was seen that the passband and the stopband ripple
are competing design goals, but if the filter with the desired
ripple levels is feasible, it can be found with the proposed
approach.
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