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a b s t r a c t

DScribe is a software package for machine learning that provides popular feature transformations (‘‘de-
scriptors’’) for atomistic materials simulations. DScribe accelerates the application of machine learning
for atomistic property prediction by providing user-friendly, off-the-shelf descriptor implementations.
The package currently contains implementations for Coulomb matrix, Ewald sum matrix, sine matrix,
Many-body Tensor Representation (MBTR), Atom-centered Symmetry Function (ACSF) and Smooth
Overlap of Atomic Positions (SOAP). Usage of the package is illustrated for two different applications:
formation energy prediction for solids and ionic charge prediction for atoms in organic molecules. The
package is freely available under the open-source Apache License 2.0.
Program summary
Program Title: DScribe
Program Files doi: http://dx.doi.org/10.17632/vzrs8n8pk6.1
Licensing provisions: Apache-2.0
Programming language: Python/C/C++
Supplementary material: Supplementary Information as PDF
Nature of problem: The application of machine learning for materials science is hindered by the lack
of consistent software implementations for feature transformations. These feature transformations,
also called descriptors, are a key step in building machine learning models for property prediction in
materials science.
Solution method: We have developed a library for creating common descriptors used in machine
learning applied to materials science. We provide an implementation the following descriptors:
Coulomb matrix, Ewald sum matrix, sine matrix, Many-body Tensor Representation (MBTR), Atom-
centered Symmetry Functions (ACSF) and Smooth Overlap of Atomic Positions (SOAP). The library
has a python interface with computationally intensive routines written in C or C++. The source
code, tutorials and documentation are provided online. A continuous integration mechanism is set
up to automatically run a series of regression tests and check code coverage when the codebase is
updated.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

✩ This paper and its associated computer program are available via the
Computer Physics Communication homepage on ScienceDirect (http://www.
sciencedirect.com/science/journal/00104655).
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1. Introduction

Machine learning of atomistic systems is a highly active, in-
terdisciplinary area of research. The power of machine learning
lies in the ability of interpolating existing calculations with sur-
rogate models to accelerate predictions for new systems [1–4].
The set of possible applications is very rich, including high-
throughput search of stable compounds with machine learning
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Fig. 1. Typical workflow for making machine learning based materials property predictions for atomistic structures. An atomic structure is transformed into a
numerical representation called a descriptor. This descriptor is then used as an input for a machine learning model that is trained to output a property for the
structure. There is also a possibility of combining the descriptor and learning model together into one inseparable step.

based energy predictions for solids [5–8], accelerated molecular
property prediction [9–11], creation of new force-fields based on
quantum mechanical training data [12–19], search for catalyti-
cally active sites in nanoclusters [20–24] and efficient optimiza-
tion of complex structures [25–27].

Atomistic machine learning establishes a relationship between
the atomic structure of a system and its properties. This so called
structure–property relation is illustrated in Fig. 1. It is analogous
to the structure–property relation in quantum mechanics. For a
set of nuclear charges {Zi} and atomic positions {Ri} of a system,
the solution of the Schrödinger equation ĤΦ = EΦ yields the
properties of the system since both the Hamiltonian Ĥ and the
wave function Φ depend only on {Zi} and {Ri}. Atomistic ma-
chine learning bypasses the computationally costly step of solving
the Schrödinger equation1 by training a surrogate model. Once
trained, the surrogate model is typically very fast to evaluate
facilitating almost instant structure–property predictions.

Unlike for the Schrödinger equation, the nuclear charges and
atomic positions are not a suitable input representation of atom-
istic systems for machine learning. They are, for example, not
rotationally or translationally invariant. If presented with atomic
positions, the machine learning method would have to learn
rotational and translational invariance for every dataset, which
would significantly increase the amount of required training data.
For this reason, the input data has to be transformed into a
representation that is suitable for machine learning. This trans-
formation step is often referred to as feature engineering and the
selected features are called a descriptor [28].2 Various feature
engineering approaches have been proposed [5–9,14,16,33–40],
and often multiple approaches have to be tested to find a suitable
representation for a specific task [41]. Features are often based on
the atomic structure, but it is also common to extend the input
to other system properties [5,28,36,42].

There are several requirements for good descriptors in atom-
istic machine learning [6,7]. We identify the following properties
to be most important for an ideal descriptor:

(i) Invariant with respect to spatial translation of the coordi-
nate system: isometry of space.

(ii) Invariant with respect to rotation of the coordinate system:
isotropy of space.

1 Of course in practice the Schrödinger equation is not solved directly but by
approximate methods. Also approximate solutions of the Schrödinger equation
are computationally expensive, compared to surrogate machine learning models.
2 Sometimes the separation between a descriptor and a learning model is

however blurred. For example, in various models based on neural networks
[29–32] the description of the atomistic structure is embedded inside the
weights of the network, essentially mixing the descriptor and the learning model
together.

(iii) Invariant with respect to permutation of atomic indices:
changing the enumeration of atoms does not affect the
physical properties of the system.

(iv) Unique: there is a single way to construct a descriptor from
an atomic structure and the descriptor itself corresponds to
a single property.

(v) Continuous: small changes in the atomic structure should
translate to small changes in the descriptor.

(vi) Compact: the descriptor should contain sufficient infor-
mation of the system for performing the prediction while
keeping the feature count to minimum.

(vii) Computationally cheap: the computation of the descriptor
should be significantly faster than any existing computa-
tional model for directly calculating the physical property
of interest.

In this article we present the DScribe package that can be
used to transform atomic structures into machine-learnable input
features. The aim of this software is to provide a coherent and
easily extendable implementation for atomistic machine learning
and fast prototyping of descriptors. There already exist libraries
like QML [43], Amp [44], Magpie [45], quippy [46], ChemML [47]
and matminer [48] which include a subset of descriptors as a part
of a bigger framework for materials data analytics. DScribe fol-
lows this spirit but specializes on providing efficient and scalable
descriptor transformations and is agnostic to the framework used
for doing the actual data analytics.

Currently in the DScribe package we include descriptors that
can be represented in a vectorial form and are not dependent
on any specific learning model. By decoupling the descriptor cre-
ation from the machine learning model, the user can experiment
in parallel with various descriptor/model combinations and has
the possibility of directly applying emerging learning models on
existing data. This freedom to switch between machine learning
models becomes important because currently no universally best
machine model exists for every problem, as stated by the ‘‘No Free
Lunch Theorem’’ [49]. In practice this means that multiple models
have to be tested to find optimal performance. Furthermore,
vectorial features provide easier insight into the importance of
certain features and facilitate the application of unsupervised
learning methods, such as clustering and subsequent visualization
with informative ‘‘materials maps’’ [50–52].

Descriptors that encode an atomic structure are typically de-
signed to either depict a local atomic environment, or the struc-
ture as a whole. Global descriptors encode information about the
whole atomic structure. These global descriptors can be used to
predict properties related to the structure as a whole, such as
molecular energies [9], formation energies [5] or band gaps [36].
In this work we cover four such global descriptors: the Coulomb
matrix [9], the Ewald sum matrix [7], the sine matrix [7] and the
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Many-Body Tensor Representation (MBTR) [6]. Local descriptors
are instead used to represent a localized region in an atomic
structure, and are thus suitable for predicting localized properties,
like atomic forces [13], adsorption energies [23], or properties
that can be summed from local contributions. In this article we
discuss two local descriptors, Atom-centered Symmetry func-
tions (ACSFs) [16] and the Smooth Overlap of Atomic Positions
(SOAP) [14].

We first introduce the descriptors that have been imple-
mented in the DScribe package and then we discuss the structure
and usage of the package. After this we illustrate the applicability
of the package by showing results for formation energy prediction
of periodic crystals and partial charge prediction for molecules.
We conclude, by addressing the impact and future extensions of
this package.

2. Descriptors

Here we briefly introduce the different descriptors that are
currently implemented in DScribe. In some cases, we have devi-
ated from the original literature due to computational or other
reasons, and if so this is explicitly mentioned. For more in-
depth presentations of the descriptors we refer the reader to the
original research papers. At the end of this section we also discuss
methods for organizing the descriptor output so that it can be
effectively used in typical machine learning applications.

2.1. Coulomb matrix

The Coulomb matrix [9] encodes the atomic species and inter-
atomic distances of a finite system in a pair-wise, two-body ma-
trix inspired by the form of the Coulomb potential. The elements
of this matrix are given by:

MCoulomb
ij =

{
0.5Z2.4

i ∀ i = j
ZiZj

|Ri−Rj|
∀ i ̸= j

where Z is the atomic number, and
⏐⏐R i − R j

⏐⏐ is the Euclidean dis-
tance between atoms i and j. The form of the diagonal terms was
determined by fitting the potential energy of neutral atoms [53].

2.2. Ewald sum matrix

The Ewald sum matrix [7] can be viewed as a logical extension
of the Coulomb matrix for periodic systems. In periodic systems
each atom is infinitely repeated in the three crystal lattice vector
directions, a, b and c and the electrostatic interaction between
two atoms becomes

φij =

∑
n

ZiZj⏐⏐R i − R j
⏐⏐ + n

(1)

where
∑

n is the sum over all lattice vectors n = ha + kb + lc.
For h, k, l → ∞, this sum converges only conditionally and

will become infinite if the system is not charge neutral. In the
Ewald sum matrix, the Ewald summation technique [54,55] and
a neutralizing background charge [56] is used to force this sum to
converge. One can separate the total Ewald energy into pairwise
components, which will result in the following matrix:

MEwald
ij =

{
φreal
ij + φ

recip
ij + φself

ij + φ
bg
ij ∀ i = j

2
(
φreal
ij + φ

recip
ij + φ

bg
ij

)
∀ i ̸= j

where the terms are given by

φreal
ij =

1
2
ZiZj

∑
n′

erfc
(
α|R i − R j + n|

)
|R i − R j + n|

(2)

φ
recip
ij =

2π
V

ZiZj
∑
G

e−|G|
2/(2α)2

|G|2
cos

(
G ·

(
R i − R j

))
(3)

φself
ij =

{
−

α
√

π
Z2
i ∀ i = j

0 ∀ i ̸= j
(4)

φ
bg
ij =

{
−

π

2Vα2 Z2
i ∀ i = j

−
π

2Vα2 ZiZj ∀ i ̸= j
(5)

Here the primed notation means that when n = 0 the pairs
i = j are not taken into account. α is the screening parameter
controlling the size of the gaussian charge distributions used in
the Ewald method, G is a reciprocal space lattice vector with an
implicit 2π prefactor and V is the volume of the cell. A more
detailed derivation is given in the supplementary information. By

default we use the value α =
√

π

(
N
V2

)1/6
[57], where N is the

number of atoms in the unit cell.
It is important to notice that the off-diagonal contribution

φself
ij + φ

bg
ij = −

π

2Vα2 ZiZj ∀ i ̸= j given here differs from the
original work. In the original formulation this sum was defined
as [7] φself

ij + φ
bg
ij = −

α
√

π
(Z2

i + Z2
j ) −

π

2Vα2 (Zi + Zj)2 ∀ i ̸= j.
Our correction makes the total matrix elements independent of
the screening parameter α, which is not the case in the original
formulation.

For numerical purposes, the sums in Eqs. (2) and (3) are cut
off by n ≤ ncut and G ≤ Gcut. By default we use the values
Gcut = 2α

√
− ln A and ncut =

√
− ln A/α [57], where the small

positive parameter A controls the accuracy of the sum and can be
determined by the user.

2.3. Sine matrix

The Ewald sum matrix encodes the correct Coulomb inter-
action between atoms, but can become computationally heavy
especially for large systems. The sine matrix [7] captures some
important features of interacting atoms in a periodic system with
a much reduced computational cost. The matrix elements are
defined by

Msine
ij =

{
0.5Z2.4

i ∀ i = j
φij ∀ i ̸= j

where

φij = ZiZj|B ·

∑
k={x,y,z}

êk sin2 (
πB−1

·
(
R i − R j

))
|
−1 (6)

Here B is a matrix formed by the lattice vectors and êk are the
cartesian unit vectors. This functional form has no physical inter-
pretation, but it captures some of the properties of the Coulomb
interaction, such as the periodicity of the crystal lattice and an
infinite energy when two atoms overlap.

The Coulomb, Ewald sum and sine matrices for diamond are
depicted in Fig. 2. Notice that the matrices given here are not
unique, as different cell sizes can be used for a periodic crystal,
and the indexing of the rows and columns depends on the order-
ing of atomic indices in the structure. Section 2.7 discusses some
ways to overcome the issues related to this non-uniqueness.

By construction the Coulomb matrix is not periodic as man-
ifested by the unequivalent row elements in the matrix (one
carbon in the system has four bonded neighbors, three carbons
have two neighbors and four carbons have a single bonded neigh-
bor). Conversely, both the Ewald sum and the sine matrix are
periodic and correctly encode the identical environment of the
carbon atoms in the lattice. As a result, each row and each column
has the same matrix elements, but neighboring rows and columns
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Fig. 2. Illustration of the Coulomb matrix, Ewald sum matrix and sine matrix for a periodic diamond structure. The used atomic structure for the conventional
diamond cell is shown on the left. The color scale (legend on the right) is used to illustrate the magnitude of the matrix elements.

are shifted by one element relative to each other. Unlike the other
matrices, Ewald sum matrix often contains negative elements due
to the interaction of the positive atomic nuclei with the added
uniform negative background charge. This energetically favorable
interaction shifts the off-diagonal elements down in energy com-
pared to the other two matrices. Moreover, the diagonal elements
of the Ewald sum matrix encode the physical self-interaction of
atoms with their periodic copies, instead of the potential energy
of the neutral atoms.

2.4. Many-body tensor representation

The many-body tensor representation (MBTR) [6] encodes fi-
nite or periodic structures by breaking them down into distri-
butions of differently sized structural motifs and grouping these
distributions by the involved chemical elements. In MBTR, a ge-
ometry function gk is used to transform a configuration of k atoms
into a single scalar value representing that particular configu-
ration. Our implementation provides terms up to k = 3, and
provides the following geometry functions g1(Zl): Zl (atomic num-
ber), g2(R l,Rm): |R l − Rm| (distance) or 1

|Rl−Rm|
(inverse distance)

and g3(R l,Rm,Rn): ̸ (R l − Rm,Rn − Rm) (angle) or cos( ̸ (R l −

Rm,Rn − Rm)) (cosine of angle). These scalar values are then
broadened by using kernel density estimation with a gaussian
kernel, leading to the following distributions Dk

Dl
1(x) =

1

σ1
√
2π

e
−

(x−g1(Zl))
2

2σ2
1 (7)

Dl,m
2 (x) =

1

σ2
√
2π

e
−

(x−g2(Rl,Rm))
2

2σ2
2 (8)

Dl,m,n
3 (x) =

1

σ3
√
2π

e
−

(x−g3(Rl,Rm,Rn))
2

2σ2
3 (9)

Here σk is the standard deviation of the gaussian kernel and x runs
over a predefined range of values covering the possible values
for gk. A weighted sum of the distributions Dk is then made
separately for each possible combination of k chemical species
present in the dataset. For k = 1, 2, 3 these distributions are
given by

MBTRZ1
1 (x) =

|Z1|∑
l

wl
1D

l
1(x) (10)

MBTRZ1,Z2
2 (x) =

|Z1|∑
l

|Z2|∑
m

w
l,m
2 Dl,m

2 (x) (11)

MBTRZ1,Z2,Z3
3 (x) =

|Z1|∑
l

|Z2|∑
m

|Z3|∑
n

w
l,m,n
3 Dl,m,n

3 (x) (12)

where the sums for l, m and n run over all atoms with the atomic
number Z1, Z2 or Z3 respectively, and wk is a weighting function
that is used to control the importance of different terms. When
calculating MBTR for periodic systems, the periodic copies of
atoms in neighboring cells are taken into account by extending
the original cell with periodic copies. When a periodic system
is extended in this way, certain sets of atoms may get counted
multiple times due to translational symmetry. Like in the original
formulation [6] we require that one of the atoms, l, m or n, must
be in the original cell. In addition, our implementation ensures
that each translationally unique combination of the atoms is
counted only once. This makes the MBTR output for different cells
representing the same material identical up to a size extensive
scalar multiplication factor. Unlike in the original formulation,
we do not include the possible correlation between chemical
elements directly in Eqs. (10)–(12). We do not however lose any
generality, as the correlation between chemical elements can be
introduced as a postprocessing step that combines information
from the different species.

For k = 1, typically no weighting is used: wl
1 = 1. In the

case of k = 2 and k = 3, the weighting function can, however
be used to give more importance to values that correspond to
configuration where the atoms are closer together. For fully peri-
odic systems, a weighting function must be used, as otherwise the
sums in Eqs. (10)–(12) do not converge. For k = 2, 3 we provide
exponential weighting functions of the form

w
l,m
2 = e−sk|Rl−Rm| (13)

w
l,m,n
3 = e−sk(|Rl−Rm|+|Rm−Rn|+|Rl−Rn|) (14)

where the parameter sk can be used to effectively tune the cutoff
distance. For computational purposes a cutoff of wmin

k can be
defined to ignore any contributions for which wk < wmin

k .
Some of the distributions, for example MBTR1,2

2 and MBTR2,1
2 ,

contain identical information. In our implementation this sym-
metry is taken into consideration by only calculating the distri-
butions for which the last atomic number is bigger or equal to
the first: Z2 ≥ Z1 in the case of MBTRZ1,Z2

2 or Z3 ≥ Z1 in the
case of MBTRZ1,Z2,Z3

3 . This reduces the computational time and the
number of features in the final descriptor without losing infor-
mation. The final MBTR output for a water molecule is illustrated
in Fig. 3.

There are multiple system-dependent parameters that have to
be decided for the MBTR descriptor. At each level k, the broadness
of the distribution σk has to be chosen. A too small value for
σk will lead to a delta-like distribution that is very sensitive to
differences in system configurations. Conversely, a too large value
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Fig. 3. MBTR output for a water molecule showing the distributions MBTRk
for k = 1, 2, 3 with different combinations of chemical elements. For each k-
term, the distributions can be arranged into a k-dimensional grid, resulting in a
k+1 dimensional tensor. If a flattened one-dimensional vector is needed by the
learning model, the distributions may be concatenated together, possibly with
some weighting, as shown in the lower panel.

will make it hard to resolve individual peaks as the distribu-
tion becomes broad and featureless. The choice of the weighting
function also has a direct effect on the final distribution, as it
controls how much importance is given to atom combinations
that are physically far apart. When combining information from
multiple k-terms, it can be beneficial to control the contribution
from different terms. As the number of features related to higher
k-values is bigger, the machine learning model may by default
give more importance to these higher terms. For example if sim-
ilarity between two MBTR outputs is measured by an Euclidean
distance in the machine learning model, individually normalizing
the total output for each term k to unit length helps in equalizing
the information content of the different terms.

2.5. Atom-centered Symmetry Functions

Atom-centered Symmetry Functions (ACSFs) [16] can be used
to represent the local environment near an atom by using a fin-
gerprint composed of the output of multiple two- and three-body
functions that can be customized to detect specific structural
features. ACSF encodes the configuration of atoms around a single
central atom with index i by using so called symmetry functions.
The presence of atoms neighboring the central atom are detected
by using three different two-body symmetry functions G1,Z1

i , G2,Z1
i

and G3,Z1
i , which are defined as

G1,Z1
i =

|Z1|∑
j

fc
(
Rij

)
G2,Z1
i =

|Z1|∑
j

e−η(Rij−Rs)
2
fc

(
rij

)
G3,Z1
i =

|Z1|∑
j

cos
(
κRij

)
fc

(
rij

)
where the summation for j runs over all atoms with atomic
number Z1, η, Rs and κ are user-defined parameters, Rij = |R i−R j|

and fc is a smooth cutoff function defined as

fc (r) =
1
2

[
cos

(
π

r
rcut

)
+ 1

]
where rcut is a cutoff radius.

Fig. 4. Structure of the ACSF output vector. The values of the two-body
symmetry functions G1 , G2 and G3 are given first for each chemical species
present in the dataset. Next the values of the three-body symmetry functions
G4 and G5 are listed for each unique combination of two chemical species.
All symmetry functions except G1 may also have multiple parameterizations
as indicated by the subindices.

Additionally, three-body functions may be used to detect spe-
cific motifs defined by three atoms, one being the central atom.
These three-body functions include a dependence on the angle
between triplets of atoms within cutoff, as well as their mutual
distance. The package implements the following functions

G4,Z1,Z2
i = 21−ζ

|Z1|∑
j̸=i

|Z2|∑
k̸=i

(1 + λ cos θ)ζ

· e−η

(
R2ij+R2ik+R2jk

)
fc

(
Rij

)
fc (Rik) fc

(
Rjk

) (15)

G5,Z1,Z2
i = 21−ζ

|Z1|∑
j̸=i

|Z2|∑
k̸=i

(1 + λ cos θ)ζ

· e−η

(
R2ij+R2ik

)
fc

(
Rij

)
fc (Rik)

(16)

where the summation of j and k runs over all atoms with atomic
numbers Z1 or Z2 respectively, ζ , λ and η are user-defined param-
eters and θ is the angle between the three atoms (ith atom in the
center).

In practice, multiple symmetry functions of each type are used
in the descriptor, each with a different parametrization (ζ , λ, η, Rs
and κ), encoding different portions of the chemical environment.
As there is no single set of symmetry functions that optimally fits
all applications, the selection is guided by the generally desired
properties of a descriptor previously listed (unique, continuous
and compact) and the specifics of the application. Different sets
of symmetry functions used for various applications can be found
in the literature [58–60].

The final fingerprint for a single atom can be constructed by
concatenating the output from differently parametrized symme-
try functions with consistent ordering, as illustrated in Fig. 4.
The list starts with the two-body ACSFs, ordered by atom type
Z1. For each type, G1 appears first, bringing only one value since
it has no parameter dependence. Next we find all values of G2

calculated with different (η, Rs) parameter pairs given by the user.
The values of G3 for all κ are found last. This sequence is repeated
for each atomic type, sorted from lighter to heavier. Three-body
ACSFs appear afterward: for each unique combination of chemical
elements, we find the values of G4 and G5 given by all specified
triplets of (ζ , λ, η).

2.6. Smooth Overlap of Atomic Orbitals

The Smooth Overlap of Atomic Positions (SOAP) [14] can be
used to encode a local environment within an atomic structure by
using an expansion of a gaussian smeared atomic density based
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on spherical harmonics and radial basis functions. In SOAP, the
atomic structure is first transformed into atomic density fields
ρZ for each species by using un-normalized gaussians centered
on each atom

ρZ (r) =

|Z |∑
i

e−
1

2σ2 |r−Ri|
2
. (17)

Here the summation for i runs over atoms with the atomic num-
ber Z to build a separate density for each atomic element and the
width of the gaussian is controlled by σ .

When the origin r = 0 is chosen to be centered at the
local point of interest, the atomic density may then be expanded
with a set of orthonormal radial basis functions gn and spherical
harmonics Ylm as

ρZ (r) =

∑
nlm

cZnlmgn(r)Ylm(θ, φ) (18)

where the coefficients can be obtained through

cZnlm =

∫∫∫
R3

dVgn(r)Ylm(θ, φ)ρZ (r). (19)

Instead of using the complex spherical harmonics as in the
original work [14], we use the real (tesseral) spherical harmonics
as they are computationally preferable when expanding real-
valued functions such as the atomic density defined by Eq. (17).
The real spherical harmonics Ylm are defined as

Ylm(θ, φ) =

⎧⎨⎩
√
2(−1)mIm[Y |m|

l (θ, φ)] if m < 0
Y 0
l if m = 0

√
2(−1)mRe[Ym

l (θ, φ)] if m > 0
(20)

where Ym
l corresponds to the complex orthonormalized spherical

harmonics defined as

Ym
l (θ, φ) =

√
(2l + 1)

4π
(l − m)!
(l + m)!

Pm
l (cos θ )eimφ (21)

and Pm
l are the associated Legendre polynomials.

The final rotationally invariant output from our SOAP imple-
mentation is the partial power spectra [51] vector p where the
individual vector elements are defined as:

pZ1,Z2
nn′ l = π

√
8

2l + 1

∑
m

(
cZ1nlm

)∗

cZ2n′ lm (22)

The vector p is constructed by concatenating the elements pZ1,Z2
nn′ l

for all unique atomic number pairs Z1, Z2, all unique pairs of radial
basis functions n, n′ up to nmax and the angular degree values l up
to lmax.

Spherical harmonics are a natural orthogonal and complete set
of functions for the angular degrees of freedom. For the radial
degree of freedom the selection of the basis set is not as trivial
and multiple approaches may be used. In our implementation we,
by default, use a set of spherical primitive gaussian type orbitals
gnl(r) as radial basis functions. These basis functions are defined
as

gnl(r) =

nmax∑
n′=1

βnn′ lφn′ l(r) (23)

φnl(r) = r le−αnlr2 . (24)

This basis set allows analytical integration of the cnlm coefficients
defined by Eq. (19). This provides a speedup over various other
radial basis functions that require numerical integration. Our
current implementation provides the analytical solutions up to
l ≤ 9, with the possibility of adding more in the future.

The decay parameters αn are chosen so that each non-
orthonormalized function φnl decays to a threshold value of
10−3 at a cutoff radius taken on an evenly spaced grid from 1Å
to rcut with a step of rcut−1

nmax
. Thus the parameter rcut controls

the maximum reach of the basis and a better sampling can be
obtained by increasing the number of basis functions nmax.

The weights βnn′ l are chosen so that the radial basis func-
tions are orthonormal. For each value of angular degree l, the
orthonormalizing weights βnn′ l can be calculated with Löwdin
orthogonalization [61]:

β = S−1/2 (25)

Snn′ = ⟨φnl|φn′ l⟩ =

∫
∞

0
drr2r le−αnlr2 r le−αn′ lr

2
(26)

where the matrix β contains the weights βnn′ l and S is the overlap
matrix.

We also provide an option for using the radial basis consist-
ing of cubic and higher order polynomials, as introduced in the
original SOAP article [14]. This basis set is defined as:

gn(r) =

nmax∑
n′=1

βnn′φn′ (r) (27)

φn(r) = (r − rcut)n+2 (28)

The calculations with this basis are performed with efficient
numerical integration and currently support lmax ≤ 20.

The two different basis sets are compared in Fig. 5. Most
notably the form of the gaussian type orbitals depends on the
angular degree l, whereas the polynomial basis is independent
of this value. It is also good to notice that between these two
radial basis functions the definition of rcut is somewhat different
— whereas the polynomial basis is guaranteed to decay to zero at
rcut, the gaussian basis only approximately decays near this value
and the decay is also affected by the orthonormalization.

2.7. Descriptor usage as machine learning input

In this section we discuss some of the methods for organizing
the output from descriptors so that it can be efficiently used as
input for machine learning.

The descriptor invariance against permutations of atomic in-
dices – property (iii) in the introduction – is directly achieved in
MBTR, SOAP and ACSF by stratifying the output according to the
involved chemical elements. The output is always ordered by a
predefined order determined by the chemical elements that are
included in the dataset, making the output independent of the
indexing of individual atoms. The three matrix descriptors – the
Coulomb matrix, Ewald sum matrix, and sine matrix – are, how-
ever, not invariant with respect to permutation of atomic indices,
as the matrix columns and rows are ordered by atomic indices.
However, there are different approaches for enforcing invariance
for these matrices. One way is to encode the matrices by their
eigenvalues, which are invariant to changes in the column and
row ordering [9]. Another way is to order the rows and columns
by a chosen norm, typically the Euclidean norm [33]. A third
approach is to augment the dataset by creating multiple slightly
varying matrices for each structure. In this approach multiple
matrices are drawn from a statistical set of sorted matrices where
Gaussian noise is added to the row norms before sorting [33].
When the learning algorithm is trained over this ensemble of
matrices it becomes more robust against small sorting differences
that can be considered noise. All of these three approaches are
available in our implementation.

Machine learning algorithms also often require constant-sized
input. Once again the stratification of the descriptor output by
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Fig. 5. Plot of the (a) gaussian type orbital and (b) polynomial radial basis
functions, defined by Eqs. (24) and (28) respectively. The basis functions here
correspond to the orthonormalized set with rcut = 3 and up to nmax = 4. Notice
that the polynomial basis is independent of the spherical harmonics degree
l, whereas the form of the gaussian type orbital basis depends on l and the
examples here are given for l = 0, 1, 2.

chemical elements makes the output for MBTR, ACSF and SOAP
constant size. For the matrix descriptors a common way to
achieve a uniform size for geometries with different amount of
atoms, is by introducing zero-padding. This means that we first
have to determine the largest system in the dataset. If this system
has Nmax, we allocate matrices of size Nmax × Nmax or a vectors
or size Nmax if using matrix eigenvectors. The descriptor for each
system will fill the first N2 or N many entries, with the rest
being set to zero. If the machine-learning algorithms expect a
one-dimensional vector as input, the two-dimensional matrices
can be flattened by concatenating the rows together into a single
vector.

Local descriptors, such as ACSF and SOAP, encode only local
spatial regions and cannot be directly used as input for perform-
ing predictions related to entire structures. There are, however,
various ways for combining information from multiple local sites
to form a prediction for an entire structure. The descriptor output
for multiple local sites can simply be averaged, a custom kernel
can be used to combine information from multiple sites [51,62]
or the predicted property can in some cases be directly modeled
as a sum of local contributions [13].

Fig. 6. Example of creating descriptors with DScribe. The structures are defined
as ase.Atoms objects, in this case by using predefined molecule geometries.
The usage of all descriptors follows the same pattern: (a) a descriptor object
is initialized with the desired configuration (b) the number of features can be
requested with get_number_of_features (c) the actual output is created with
create-method that takes one or multiple atomic structures and possibly other
arguments, such as the number of parallel jobs to use.

3. Software structure

We use python as the default interfacing language through
which the user interacts with the library. This decision was mo-
tivated by the existence of various python libraries, including
ase [63], pymatgen [64] and quippy [46], that supply tools for
creating, reading, writing and manipulating atomic structures.
Our python interface does not, however, restrict the implemen-
tation to be made entirely in python. Python can easily interact
with software libraries written with high-performance, statically
typed languages such as C, C++ and Fortran. We use this dual
approach by performing some of the most computationally heavy
calculations either in C or C++.

An example of creating a descriptor for an atomic structure
with the library is demonstrated in Fig. 6. It demonstrates the
workflow that is common to all descriptors in the package. For
each descriptor we define a class, from which objects can be
instantiated with different descriptor specific setups.

All the descriptors have the sparse-parameter that controls
whether the created output is a dense or a sparse matrix. The
possibility for creating a sparse output is given so that large and
sparsely filled output spaces can be handled, as typically encoun-
tered when a dataset contains large amounts of different chemical
elements. Various machine learning algorithms can make use of
this sparse matrix output with linear algebra routines specifically
designed for sparse data structures.

Once created, the descriptor object is ready to be used and
provides different methods for interacting with it. All of the de-
scriptors implement two methods: get_number_of_features
and create. The get_number_of_features-method can be
used for querying the final number of features for the descriptor,
even before a structure has been provided. This dimension can be
used for initializing and reserving storage space for the resulting
output array. create accepts one or multiple atomistic structures
as an argument, and possibly other descriptor-specific arguments.
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It returns the final descriptor output that can be used in machine
learning applications. To define atomic structures we use the
ase.Atoms-object from the ase package [63]. The Atoms-objects
are easy to create from structure files or build with the utilities
provided by ase.

As the creation of a descriptor for an atomic system is com-
pletely independent from the other systems, it can be easily
parallelized with data parallelism. For convenience we provide
a possibility of parallelizing the descriptor creation for multiple
samples over multiple processes. This can be done by simply
providing the number of parallel jobs to instantiate with the
n_jobs-parameter as demonstrated in Fig. 6.

The DScribe package is structured such that new descriptors
can easily be added. We provide a python base-class that defines
a standard interface for the descriptors through abstract classes.
One of our design goals is to provide a codebase in which re-
searchers can make their own descriptors available to the whole
community. All descriptor implementations are accompanied by
a test module that defines a set of standard tests. These tests
include tests for rotational, translational and index permutation
invariance, as well as other tests for checking the interface and
functionality of the descriptor. We have adapted a continuous
integration system that automatically runs a series of regression
tests when changes in the code are introduced. The code coverage
is simultaneously measured as a percentage of visited code lines
in the python interface.

The source code is directly available in github at https://
github.com/SINGROUP/dscribe and we have created a dedicated
home page at https://singroup.github.io/dscribe/ that provides
additional tutorials and a full code documentation. For easy in-
stallation the code is provided through the python package index
(pip) under the name dscribe.

4. Results and discussion

The applicability of the software is demonstrated by using the
different descriptors in building a prediction model for forma-
tion energies of inorganic crystal structures and ionic charges of
atoms in organic molecules. The used datasets are publicly avail-
able at Figshare (https://doi.org/10.6084/m9.figshare.c.4607783).
These examples demonstrate the usage of the package in su-
pervised machine learning tasks, but the output vectors can be
as easily used in other learning tasks. For example the descrip-
tors can be used as input for unsupervised clustering algorithms
such as T-distributed stochastic neighbor embedding (T-SNE) [65]
or Sketchmap [50] to analyze structure–property relations in
structural and chemical landscapes.

For simplicity we here restrict the machine learning model to
be kernel ridge regression (KRR) as implemented in the scikit-
learn package [66]. However, the vectorial nature of the output
from all the introduced descriptors does not impose any spe-
cific learning scheme, and many other regressors can be used,
including neural networks, decision trees and support vector
regression.

4.1. Formation energy prediction for inorganic crystals

We demonstrate the use of multiple descriptors on the task
of predicting the formation energy of inorganic crystals. The
data comes from the Open Quantum Materials Database (OQMD)
1.1 [67]. We selected structures with a maximum of 10 atoms per
unit cell and a maximum of 6 different atomic elements. Uncon-
verged systems were filtered by removing samples which have
a formation energy that is more than two standard deviations
away from the mean, resulting in the removal of 96 samples.
After these selections, 222 215 samples were left. The distribution

Fig. 7. Distribution of the formation energies together with the mean (µ),
standard deviation (σ ) and mean absolute deviation (MAD).

Fig. 8. Mean absolute error for formation energies in the test set as a function of
training set size. The data consists of inorganic crystals from the OQMD database.
The predictions are performed with kernel ridge regression and five different
descriptors: Ewald sum matrix, Coulomb matrix, sine matrix, MBTRk=1,2,3 and an
averaged SOAP output for all atoms in the crystal. The figure shows an average
over three randomly selected datasets, with the standard deviation shown by
the shaded region.

of the formation energies is shown in Fig. 7. The models are
trained and tested on total dataset sizes of 1024, 2048, 4096,
8192 and 16384, from which 80% is used as training data and
20% as test data. These sizes are selected as they are successive
powers of two making them equidistant on a logarithmic grid.
For each dataset size the results are averaged over three different
random selections. The resulting mean absolute errors are given
in Fig. 8. A full breakdown of the results for each descriptor and
dataset size along with other performance metrics – including
root mean square error, squared Pearson correlation coefficient
and maximum error – is given in the Supplementary Information.

The Coulomb matrix, Ewald sum matrix and sine matrix are
used for the prediction with matrix rows and columns sorted
by their Euclidean norm, and using the unit cell that was used
for performing the formation energy calculation. The Coulomb
matrix does not take the periodicity of the structure into account,

https://github.com/SINGROUP/dscribe
https://github.com/SINGROUP/dscribe
https://github.com/SINGROUP/dscribe
https://singroup.github.io/dscribe/
https://doi.org/10.6084/m9.figshare.c.4607783
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Fig. 9. Breakdown of the error for formation energies in the test set for
different MBTR-terms. The predictions are performed with kernel ridge regres-
sion and four different MBTR configurations: MBTRk=1 , MBTRk=2 , MBTRk=3 and
MBTRk=1,2,3 which includes all three terms, each term normalized to unit length.
The figure shows an average over three randomly selected datasets, with the
standard deviation shown by the shaded region.

but is included as a baseline for the other methods. We include
MBTR with different values of k and for each k we individually
optimize σ and sk with grid search. Fig. 9 shows the error for
each tested MBTR term, and the best performing one is included
in Fig. 8. To test the energy prediction by combining information
from multiple local descriptors, as discussed in 2.7, we also in-
clude results using a simple averaged SOAP output for all atoms
in the simulation cell. For SOAP we use the gaussian type orbital
basis and fix nmax = 8 and lmax = 8, but optimize the cutoff rcut
and gaussian width σ individually with grid search.

The possible descriptor hyperparameters are optimized at a
subset of 212

= 4096 samples with 5-fold cross-validation and
80%/20%-training/test split. The KRR kernel width and the reg-
ularization parameter are also allowed to vary on a logarithmic
grid during the descriptor hyperparameter search. The use of a
smaller subset allows much quicker evaluation for the hyper-
parameters than optimizing the hyperparameters for each size
individually, but the transferability of these optimized hyperpa-
rameters to different sizes may affect the results slightly. After
finding the optimal descriptor setup, it is used in training a model
for all the different dataset sizes. The same cross-validation setup
as for the descriptor hyperparameter optimization is used, but
now with a finer grid for the KRR kernel width. The hyperparam-
eter grids and optimal values for both the descriptors and kernel
ridge regression are found in the Supplementary Information
together with additional details.

4.2. Ionic charge prediction for organic molecules

To demonstrate the prediction of local properties with the
DScribe package, a prediction of ionic charges in small organic
molecules is performed with the different local descriptors in-
cluded in the package. The dataset consists of Mulliken charges
calculated at the CCSD level for the GDB-9 dataset of 133 885
neutral molecules [68]. The structures contain up to nine atoms
and five different chemical species: hydrogen, carbon, nitrogen,
oxygen, and fluorine with 1 230 122, 846 557, 139 764, 187 996
and 3314 atoms present for each species respectively. The distri-
bution of the ionic charges for each species is shown in Fig. 11.
The geometries have been relaxed at the B3LYP/6-31G(2df,p)
level and no significant forces were present in the static CCSD
calculation. The models are trained and tested on a subset of 10
000 samples per chemical species (except fluorine, for which only
3314 atoms were available and all are used), from which 80% is
used as training data and 20% as test data. The combined parity
plots for all five chemical species together with error metrics
are given in Fig. 10. A breakdown of the results for each species
separately is given in the Supplementary Information.

The prediction is performed with the two local descriptors
included in the package, SOAP and ACSF. For SOAP we perform the
prediction with both radial basis functions: the polynomial basis
(SOAPpoly) and the gaussian type orbital radial basis (SOAPgto). For
them we fix nmax = 8 and lmax = 8, but optimize the cutoff

Fig. 10. Parity plot of ionic charge prediction results from the test set against true CCSD ionic charges. The predictions are performed with kernel ridge regression
using SOAPgto (gaussian type orbital basis), SOAPpoly (polynomial basis) and ACSF. The mean absolute error (MAE), root mean square error (RMSE), squared Pearson
correlation coefficient (R2) and maximum error are also shown together with the total error distribution in the inset.
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Fig. 11. Distribution of the ionic charges for each chemical species together with
the mean (µ), standard deviation (σ ) and mean absolute deviation (MAD).

rcut and Gaussian width σ with grid search. For ACSF we use 10
radial functions G2 and 8 angular functions G3. The cutoff value
rcut is shared between the radial and angular functions and it is
optimized with grid search. More details about the used ACSF
symmetry functions are found in the Supplementary Information.

Descriptor hyperparameters are optimized with grid search
separately for each species on a smaller set of 2500 sample atoms
with 5-fold cross-validation and 80%/20%-training/test split. Both
the KRR kernel width and the regularization parameter are al-
lowed to vary on a logarithmic grid during the descriptor hyper-
parameter search. After finding the optimal descriptor setup, it
is used in training a model for full dataset of 10 000 samples
(except for fluorine with 3314 total samples). The training is
done with the same cross-validation setup as for the descrip-
tor hyperparameter optimization, but now with finer grid for
the KRR kernel width. The hyperparameter grids and optimal
values for both the descriptors and kernel ridge regression are
found in the Supplementary Information together with additional
details.

4.3. Discussion

The formation energy prediction demonstrates that our im-
plementation performs consistently and offers insight into the
performance of the different descriptors. Special care must be
taken in interpreting the results, as there exist different varia-
tions of the different descriptors. For example, as discussed in
Section 2.7, there are different ways to combine information from
multiple local SOAP-outputs, and different geometry functions
and cutoff types may be used for the MBTR. The learning rates
also depend on the chosen machine learning model.

With SOAPaverage
gto and a training set of 0.8·214

= 13107 samples
the best mean absolute error of 0.117 eV/atom is achieved. It
has been demonstrated that a similar mean absolute error (0.09
eV/atom [5] and 0.12 eV/atom [40]) can be used for virtual
screening of materials by stability. The fact that the training
data contains 89 chemical elements and various structural phases
makes highly accurate predictions challenging and the error is
still relatively large when compared against the mean absolute
deviation of 0.493 eV/atom for the labels. As shown by earlier
research [29,32,69], the prediction error can be reduced further
by using a learning model with a more intelligent scheme for
combining local structural information.

Our results for the Ewald sum matrix and the sine matrix
reflect the results reported earlier, where a formation energy
prediction was performed for a similar set of data from the
Materials Project [70]. They report MAE for the Ewald sum matrix
to be 0.49 eV and for the sine matrix to be 0.37 eV [7] with
a training set of 3000 samples, whereas we find MAE for the
Ewald sum matrix to be 0.36 eV and for the sine matrix to be

0.24 eV with a training set of 3276 samples. The performance
improvement in our results can be explained by differences in
the contents of the used dataset. We, however, recover the same
trend of the sine matrix performing better, even when issues in
the original formulation of the Ewald sum matrix (as discussed
in Section 2.2) were addressed. The low performance of the more
accurate charge interaction in the Ewald model and the relatively
small difference between the performance of the Coulomb and
sine matrix may indicate that for this task the information of
the potential energy of the neutral atoms – contained on the
diagonal of both the sine and Coulomb matrix – largely controls
the performance.

With respect to the individual performance of the different
MBTR parts, the k = 2 terms containing distance information
performs best, whereas the angle information contained in k = 3
and the simple composition information contained by k = 1
lag behind. However, the best MBTR performance is achieved by
combining the information from all of the terms. It is also surpris-
ing how well the simple averaging scheme for SOAP performs in
the tested dataset range. When extrapolating the performance to
larger datasets, it can however be seen that MBTR may provide
better results.

The charge prediction test illustrates that the ionic charges of
different species in organic molecules may be learned accurately
on the CCSD level just by observing the local arrangement of
atoms up to a certain radial cutoff. On average the mean absolute
error is around 0.005–0.01 e when using up to 10 000 samples
for each species.

The best mean absolute error of 0.0054 e and root mean
square error of 0.0100 e is achieved with SOAPgto. A similar
root mean square error of 0.016 e was achieved in a recent
machine learning based partial charge prediction for drug-like
molecules using charges extracted from DFT electron density [71].
The machine learned partial charges offer a great balance be-
tween accuracy and computational cost, making them an attrac-
tive alternative to full quantum chemical calculations or empirical
charge models. Potential applications include the parametrization
of partial charges in classical molecular dynamics and quantita-
tive structure–activity relationship (QSAR) models [71].

Fig. 11 shows that the deviation of the charges in the dataset
depends on the species, which is also transferred to a species-
specific variation of the prediction error included in the Sup-
plementary Information. As to be expected, the charge of the
multi-valent species – C, N, O – varies much more in the CCSD
data and is much harder to predict than the charge of the low
valence species H and F. Predicting the ionic charge of carbon
is most difficult and so most of the outliers correspond to car-
bon atoms, with a few noticeable outliers corresponding also to
oxygen and nitrogen atoms.

Our comparison shows that there is little difference between
the predictive performance of the two radial bases used for SOAP.
With our current implementation there is, however, a notable
difference in the speed of creating these descriptors. For identical
settings (nmax = 8, lmax = 8, rcut = 5, and σ = 0.1), the
gaussian type orbital basis is over four times faster to calcu-
late than the polynomial basis. This difference originates largely
from the numerical radial integration, which is required for the
polynomial basis but not for the gaussian type orbital basis. The
prediction performance of ACSF does not fall far behind SOAP and
it might be possible to achieve the same accuracy by using a more
advanced parameter calibration for the symmetry functions. The
symmetry functions used in ACSF are easier to tune for capturing
specific structural properties, such as certain pairwise distances
or angles formed by three atoms. This tuning can, however, be
done only if such intuition is available a priori, and in general
consistently improving the performance by changing the used
symmetry functions can be hard.
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5. Conclusions

The recent boom in creating machine learnable fingerprints for
atomistic systems, or descriptors, has led to a plethora of available
options for materials science. The software implementation for
these descriptors is, however, often scattered across different
libraries or missing altogether, making it difficult to test and
compare different alternatives.

We have collected several descriptors in the DScribe software
library. DScribe has an easy-to-use python-interface, with C/C++
extensions for the computationally intensive tasks. We use a
set of regression tests to ensure the validity of the implemen-
tation, and provide the source code together with tutorials and
documentation. We have demonstrated the applicability of the
package with the supervised learning tasks of formation energy
prediction for crystals and the charge prediction for molecules.
The DScribe descriptors are compatible with general-purpose ma-
chine learning algorithms, and can also be used for unsupervised
learning tasks. In the future we plan to extend the package with
new descriptors and also welcome external contributors.
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