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 Abstract—The discontinuous Galerkin (DG) method for 
homogeneous bodies has been studied and shown to be an efficient 
tool for multi-scale homogeneous bodies. However, the slow 
convergence of DG with the block diagonal preconditioner (BDP) 
is still observed in solving high contrast homogeneous bodies. An 
efficient preconditioning approach is designed for the DG method 
in this communication by using the sparsing approach on the 
near-field matrix of the whole region. The iteration convergence 
speed of the DG method is improved while the computing 
resources for constructing the preconditioner are effectively 
reduced. Numerical experiments demonstrate the capability of the 
presented DG method for multi-scale homogeneous bodies, 
especially for those with a high dielectric constant.   

Index Terms—Discontinuous Galerkin method, homogeneous 
objects, high dielectric constant, multi-scale. 

I. INTRODUCTION 
he domain decomposition method (DDM) is an attractive 
method in solving large multi-scale electromagnetic 

problems [1-5]. By decomposing the solution domain into 
several parts, the DDM can improve the flexibility, parallelism 
and the matrix convergence of the solution for complex 
simulation targets. In recent years, DDM has been extended to 
the method of moments [6-9]. In these methods, the whole 
solution region is partitioned into many sub-domains, and each 
sub-domain is described by a closed surface. The relation of 
these sub-domains is established by employing the equivalence 
principle [6, 7] or the Robin-type transmission condition (RTC) 
[8, 9]. Recently, a type of DDM called discontinuous Galerkin 
(DG) method has been successfully developed [10-13]. In the 
DG method, each sub-domain is not required to be enclosed by 
a closed surface. Fewer additional unknowns on the boundary 
of the sub-domains are needed, and the field relations on the 
interfaces between sub-domains in DG are intrinsically 
imbedded in the integral equation. The solution of DG with the 
surface integral equation (SIE) for non-penetrable objects has 
been well studied [10-11], and that for penetrable objects is 
presented in [12-14]. However, the slow convergence for DG 
with block diagonal preconditioner (BDP) is still observed in 
calculating homogeneous bodies with a high dielectric 
constant.  

In this communication, we present a preconditioning 
approach for the DG solution of high dielectric constant 
homogeneous bodies, whose discretized matrix is very dense 
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and difficult to converge. The Multilevel Fast Multipole 
Algorithm (MLFMA) is implemented in the solution. 
Numerical experiments are performed to investigate the 
performance of the proposed method on computational 
efficiency and resource consumption. The capability of the 
proposed DG solution is further validated for multi-scale 
homogeneous bodies. 

II. FORMULATION 
Consider electromagnetic scattering from a 3D 

homogeneous object, as illustrated in Fig. 1. The object is 
immersed in free space and illuminated by an incident plane 
wave ( inc incE H ). Let S  represent the surface of the body. The 
interior region of the homogeneous object is denoted as 2  and 
the exterior region is denoted as 1 . The permittivity and 
permeability of region ( 1, 2)l l =  are l and l , respectively. 
ˆ ( 1, 2)l l =n denotes the unit normal of S  pointing toward the 

interior of l . The equivalent electric and magnetic currents 
on the surface of the homogeneous body are denoted as J  and 
M , respectively.  

The combined tangential field (CTF) equation is one of the 
stable surface integral formulations for the homogeneous 
scattering problem, which can be formulated as [14] 

inc
1 2 1 2

1 2 1
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inc
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where l l lZ  =  , the integral-differential operators lL and 

lK are defined as follows: 
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where ( )( ) 4ljk
lG e − − = −

r rr,r r r  with  l l lk   =  is the 

Green’s function of region l , and . .p v stands for the principal 
value integral. 

S
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M
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1

inc incE H

2n̂

1n̂  
Fig. 1. The scattering from a 3D homogeneous target 

We decompose the surface S into several non-overlapping 
sub-domains, as shown in Fig. 2 (a). Then, each 
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non-overlapping surface can be independently meshed by 
planar triangular patches. Let C  denote the contour boundary 
between the adjacent subdomains. For the patches 

( 1, 2)iT i = on the side of the contour boundary between two 
different sub-domains, as shown in Fig. 2 (b), we denote the 
contour edge of patch iT  as iC . Further, ˆ

it  denotes the unit 
normal of iC pointing toward the exterior of iT .  

       

1T2T 2C 1C

1t̂

2t̂

 
(a)                                                         (b) 

Fig. 2. (a)  Non-overlapping decomposition for the surface of a homogeneous 
body. (b) Notations for the adjacent patches across the contour boundary. 

In order to solve equations (1) and (2), the unknown surface 
currents J  and M  are approximated as the following linear 
combinations 

1

N

i i
i

J
=

= J g ,               
1

N

i i
i

M
=

= M g                  (5) 

where N is the total number of edges on S  and ig  is the 
Rao–Wilton–Glisson (RWG) basis function for the currents 
inside the sub-domains or the half-RWG basis function [15] for 
the currents at the contour boundary. Using ig as the testing 
function, we obtain the following discretized matrix equation 

J e
M h

     
=     

     

U Q
R U

                           (6) 

where 
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For the hyper-singular integral in the operator lL , a 
common remedy is to transfer the double operators of  to the 
basis and test functions respectively by using mathematical 
vector identities and integral theorems. The resulting line 
integral terms are canceled by the contribution of the adjacent 
RWG basis functions. However, in the domain decomposed 
case, the line integral terms on the contour boundary remain. 
The term with operator ( 1, 2)l l =L  in (7) can be derived as [10] 
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According to the continuity of the current across the 
contour boundary, we have [10] 

ˆ ˆ 0 ,i i j j i jon C C +  =t X t X                 (12) 
where iC  and jC  are the contour edges of the adjacent patches 
in different sub-domains. iX  represents the equivalent electric 
or magnetic current on iC . Based on (12), the interior penalty 
terms can be derived as [10]  

,

ˆ ˆ( ) 0
i J

i i j j
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 +  = t X t X                       (13) 
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Discretizing the current in equation (13) and (14) with the 
half-RWG basis function and testing these two equations by 
ˆ

i it g , the interior penalty stabilization terms can be linearly 
combined with the CTF discretized matrix equation (6).  The 
final matrix equation of the DG method for dielectric bodies is 
expressed as  
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Here  and  are arbitrary coefficients of the boundary 
penalty terms. Choosing  as 1− , the term of the double 
contour integral in (11), which cannot be evaluated numerically 
when the field point approaches the source points, can be 
canceled. The optimum value of  will be investigated later. 
The MLFMA is implemented in the DG solution in order to 
speed up the computation of the matrix-vector multiplication. 

III. PRECONDITIONING APPROACHES 
The above matrix (15) was found to convergence slowly. To 

obtain a linear system with a better iteration performance, a 
preconditioner is used to the matrix equation of (15), which 
yields  

 1 1x b− −=P M P                              (17)  
The DG method with block diagonal preconditioner (BDP)  

provides an efficient way to solve large multiscale 
homogeneous scattering problems [14]. However, we found 
that when the dielectric constant of some scatterers becomes 
large, the iteration convergence speed of the DG method 
seriously decreased. The numerical examples will be shown 
later. A more efficient preconditioning approach is needed for 
the DG method to solve the problem of high dielectric bodies. 

Ignoring the decomposition of the target, we take the 
preconditioning approach for the whole matrix. We know from 
(6)-(9) that the value of Q is far less than that of V  and R . 
Hence, we use the lower triangular matrix as the 
preconditioning matrix P . The inverse matrix 1−P  can be 
directly obtained as  
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where NFV  and NFR  are the near-field matrices of MLFMA. 
This preconditioner is called the Lower Triangular 
Approximate Schur Preconditioner (LTASP) [16].   

In the MLFMA solution for the surface integral formulation, 
the equivalent electric and magnetic currents on both sides of 
the surface share the same set of unknowns. In order to ensure 
the numerical accuracy, the box size of MLFMA is chosen 
according to the free space wavelength 0 , while the mesh size 
of the target is chosen according to the medium wavelength 

0 / r  . Thus, the number of unknowns 0N in the lowest-level 

box of MLFMA is proportional to the dielectric constant r . 
The number of the near-field elements is 2

0( )O N . When the 
dielectric of the scatterer is large, the near-field matrix will 
become very dense.  Consequently, the LTASP is 
resource-consuming for the high dielectric bodies.  

In our preconditioner construction, we extracted elements 
from the near-field lower triangular impedance matrix P  to 
generate a sparse matrix, according to choice rule (19) 

sp

0
ij i j

ij

L

elsewhere

 − 
=


P
P

r r
                        (19) 

The interaction distance L of elements between source and 
field is chosen as the criterion to retain or omit the elements of 
P . Thus, only the strong interactions are maintained in spP , 
especially the strong interactions from the contour boundary. 
The distance L is chosen according to the medium wavelength, 
as shown in (20) 

0 rL a=                                    (20) 

where a is a constant. Note that the number of spP is 0( )O N . 
The density of the preconditioning matrix is greatly reduced. 
We employ the inverse of spP as a preconditioner and name it 
as distance sparse LTASP (DS-LTASP). 

IV. NUMERICAL RESULTS 
This section presents a series of numerical experiments, 

which were carried out to validate the accuracy and efficiency 
of the proposed approach. Our simulations use the generalized 
minimum residual (GMRES) solver with the dimension of the 
Krylov subspace of 100. The residual error is 310−  , except for 
the experiments in Table II and Fig. 6, in which the residual 
error of GMRES is set to 510− . MUMPS is used to calculate the 
inverse of matrices. The computations are performed using a 
workstation with eight 14-core Intel(R) Xeon(R) E7-4850 v3 
2.20GHz CPUs and 1TB memory. 

First, we consider a dielectric sphere with a radius of 0.5m . 
The sphere is decomposed into 4 sub-domains, as shown in Fig. 
3. The dielectric constant r of the sphere is increased from 2 to 
16. The various parameters of the sphere are presented in Table 
I. In our following calculations, the radius of the sphere and the 

mesh size are consistent with this example. Since both surface 
electric and magnetic currents are unknown quantities, the total 
number of unknowns is twice the number of edges. The sphere 
is first simulated by the DG method with a block diagonal 
preconditioner. The  -polarized bistatic RCS is calculated 
with the direction of an incident plane wave is z− axis and the 
frequency is 300MHz. The iteration numbers of the DG method 
with BDP are listed in Table I. It can be seen that when the 
dielectric constant of the sphere is larger than 5, the iteration 
convergence speed becomes very poor. In some cases, the 
convergence cannot be achieved within 500, which is denoted 
as “no convergence (NC)” in Table I.  

 
Fig. 3. The domain partitioning for the dielectric sphere 

 
Then we use the DG method with LTASP and the proposed 

DS-LTASP to calculate the sphere with a dielectric constant of 
16. The value of the coefficient   in (16) and L  in (20) are 

firstly set as 0.5 and 00.5 r  , respectively. The 
 -polarized bistatic RCS in the xz -plane for this sphere are 
presented in Fig. 4. The numerical results agree well with the 
analytical Mie-series solution. The convergence histories of the 
GMRES solution are shown in Fig. 5. The DG method with 
LTASP and the DS-LTASP provide far less iterative numbers 
compared with the DG method with BDP.  

 
Fig. 4.  - polarized bistatic RCS of the sphere with a dielectric constant of 
16. 

TABLE I: PARAMETERS OF THE DIELECTRIC SPHERE 

r   element size/ 0  Number of edges Iteration 

2 0.1  1,204 80 
3 0.09 1,418 97 
4 0.08 1,883 165 
5 0.07 2,356 403 
6 0.06 3,212 NC 
8 0.05 4,648 411 
10 0.045 5,804 329 
12 0.04 7,176 358 
14 0.035 9,540 NC 
16 0.03 12,856 NC 
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Fig. 5. Convergence histories for the sphere with a dielectric constant of 16 
under different methods. 

 
In order to investigate the effect of the interior penalty term, 

we change the value of the coefficient  in equation (16) and 
calculate the sphere with a dielectric constant of 16. The 
iteration numbers for different values of   are presented in 
Table II. It can be seen that when   is not zero, the value of   
does not affect the number of iterations in a large range. The 
following numerical simulations set coefficient  as 0.5.   

 
To study the impact of L to the efficiency and accuracy of 

the preconditioning solution, we compare the numerical 
performance of DG with DS-LTASP with different values of L. 
The results for the sphere with a dielectric constant of 16 are 
plotted in Fig. 6. The memory for PreC in Fig. 6 is the memory 
used for the analysis and factorization step of MUMPS for 
constructing the inverse matrix of the preconditioners. The 
relative error is defined as 

2

1

2

1

e

N

cal Mie
n

N

ref
n

=

=

−

=




 



                         (21)  

where cal denotes the RCS computed with the numerical 
method, Mie  the analytical Mie-series solution, and N the 
number of observing angles. When L is very small, the iteration 
convergence of the solution is very poor. As L increases, the 
number of iterations decreases rapidly and then tends to keep 
stable. The memory used for preconditioner increases 
exponentially as the increase of L. When L is larger than the 
size of the lowest-level box of MLFMA, DS-LTASP is in fact 
the same as LTASP. The value of L has no effect on accuracy. 
Based on our results, we choose 00.5 rL =    in order to 
guarantee the efficiency of the solution.  

 
Fig. 6. The iteration numbers of the DG method with DS-LTASP, the 

memory used for constructing the preconditioner and the relative errors of RCS 
for the sphere with a dielectric constant of 16 as a function of L. 
 

Then the numerical performance of the DG method with 
LTASP and DS-LTASP are compared for the spheres with 
various dielectric constants, as shown in Table III. The time and 
the memory for PreC in Table III are those for the analysis and 
factorization step of MUMPS for constructing the inverse 
matrix of the preconditioners. It can be seen that the CPU time 
and memory required by DS-LTASP are far less than that by 
LTASP, especially when the dielectric constant is large. 
Compared with the DG method with BDP, The iteration 
numbers of these two methods are much smaller. In addition, it 
can be observed that the DS-LTASP has a faster convergence 
speed than LTASP, which indicates that the sparse strategy of 
DS-LTASP is very effective. To intuitively show the sparsity of 

spP , the matrix pattern of NF(sp)V and NFV (which are the upper 
left matrices of spP and P , respectively) for the sphere with a 
dielectric constant of 16 are compared in Fig. 7.  

 

 
Fig. 7. The matrix pattern of NF(sp)V and  NFV  for the sphere with a dielectric 

constant of 16, nz represents the number of non-zero elements . (a) The matrix 
pattern of NF(sp)V , (b) The matrix pattern of NFV . 

TABLE II 
COMPARISON OF THE ITERATION NUMBER OF DIFFERENT  BY THE DG 

METHOD WITH LTASP AND DS-LTASP FOR THE DIELECTRIC SPHERE 
  0 0.5 1 5 10 20 50 100 

LTASP 72 65 66 65 65 65 65 65 
DS-LTASP 45 39 39 39 39 39 39 39 

 
 

TABLE III 
COMPARISON OF THE NUMERICAL PERFORMANCE OF THE DG METHOD WITH 

LTASP AND DS-LTASP FOR THE DIELECTRIC SPHERE 

r  Iteration Time for PreC(s) Memory for PreC(MB) 
DS-LTASP LTASP DS-LTASP LTASP DS-LTASP LTASP 

5 15 16 0.3 0.4 22 38 
6 18 21 0.4 0.8 32 67 
8 19 23 0.8 2 59 143 

10 18 25 1 5 70 263 
12 19 28 2 8 96 381 
14 20 35 3 18 147 664 
16 19 38 5 38 238 1,238 
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x
z y

 
Fig. 8. Non-conformal surface discretization of a cone-shaped target with a 
dielectric constant of 16. 

 
 

 
Fig. 9. The matrix pattern of NF(sp)V and  NFV for the cone with a dielectric 

constant of 16.  (a) The matrix pattern of NF(sp)V , (b) The matrix pattern 
of NFV .  

The numerical performance of the DG method with LTASP 
and the DS-LTASP are further compared for a cone-shaped 
object, which has muti-scale geometric features and 
non-conformal patches. The cone has a height of1m  and a 
bottom radius of 0.5m . The dielectric constant of the cone is 
increased from 5.0 to 16.0. The body is illuminated by a plane 
wave with a frequency of 300 MHz propagating in z−  
direction. The surface of the cone is decomposed into 5 sections. 
Different discretization sizes are used for different sections and 
the meshes between different sections are non-conformal. The 
mesh size is 10mm, 15mm, 20mm, 25mm, and 30mm from top 
to bottom when 16r = , as shown in Fig. 8. For other values of 

r , the mesh size is scaled with the medium wavelength 
accordingly. The  -polarized bistatic RCS of the cone is 
calculated. The numerical performance of the DG method with 
LTASP and  DS-LTASP are compared in Table IV. The matrix 
pattern of the upper left matrix of spP and P  for the cone with a 
dielectric constant of 16 are drawn in Fig. 9. It can be observed 
that the matrix of DS-LTASP is much sparser than that of 
LTASP. Thus the time and memory used for constructing the 
inverse matrix of DS-LTASP are much less than that of LTASP.  
As the dielectric constant becomes higher, the iteration number 

of the DG method with DS-LTASP keeps small and generally 
less than that of the solution with LTASP.  

Then the iteration convergence speed of DS-LTASP for 
calculating the targets with different number of subdomains is 
tested. As shown in Fig. 10, the number of subdomains (M) of 
the sphere is increased from 4 to 56. The iteration numbers of 
DS-LTASP for calculating the spheres in Fig. 10 with a 
dielectric constant of 16 are shown in Table V. The iteration 
keeps almost constant with the increase of M. 

(a) (b) (c) (d) (e)  
Fig. 10. Domain partitioning for the dielectric sphere. (a) M=4.  (b) M=8. (c) 

M=16.  (d) M=32. (e) M=56.   

 
To demonstrate the capability of the DG method with 

DS-LTASP for targets with electrical large size, a sphere with 
56 subdomains and dielectric constant of 16 is simulated under 
higher frequencies. The iteration numbers for the sphere under 
different frequencies are presented in Table VI. The time for 
DS-LTASP and the total solution time are compared in Fig. 11 
as a function of the number of edges. It can be seen from Table 
VI and Fig. 11 that the DS-LTASP has a high iteration 
convergence speed to solve the high dielectric problem while 
costs the negligible CPU time compared with the total solution 
time.   

 

 
Fig. 11. Total solution time as a function of number of edges. 

Finally, we calculate a dielectric four-rotor aircraft model 
with a dielectric constant of 10.0. The radius and the height of 

TABLE IV 
COMPARISON OF THE NUMERICAL PERFORMANCE OF THE DG METHOD WITH 

LTASP AND DS-LTASP FOR THE DIELECTRIC CONE 

r  Iteration Time for PreC(s) Memory for PreC(MB) 
DS-LTASP LTASP DS-LTASP LTASP DS-LTASP LTASP 

5 33 27 1.5 2.7 83 175 
6 30 27 2.3 6.1 105 303 
8 65 102 4.3 13.0 166 548 

10 53 61 4.5 23.2 206 841 
12 48 55 6.0 37.2 240 1183 
14 95 80 7.0 62.3 295 1660 
16 65 82 9.6 96.4 362 2276 

 
 
 

 

TABLE V 
COMPARISON OF THE ITERATION NUMBERS OF THE DG METHOD WITH 

DS-LTASP FOR DIFFERENT DECOMPOSED SPHERES 
M 4 8 16 32 56 

Iteration 19 20 19 20 20 
 

TABLE VI 
THE ITERATION NUMBERS OF THE DG METHOD WITH DS-LTASP FOR 

DIFFERENT PARAMETERS OF THE DIELECTRIC SPHERE 
Freq (GHz) Number of edges Iteration 

0.3 12,960 20 
0.6 49,713 36 
0.8 91,842 42 
1.0 137,577 87 
1.2 198,378 86 
1.5 307,218 89 
2.0 543,003 146 

 

http://dict.youdao.com/w/four-rotor%20aircraft/#keyfrom=E2Ctranslation


6 

the four-rotor aircraft are approximately 760mm and 120mm, 
respectively. The operating frequency is 1GHz, and the 
incident plane wave propagates along the –z direction. The 
surface of the model is divided into 9 parts. As drawn in Fig. 12, 
these parts are independently meshed with three different mesh 
sizes, which are 12mm, 8mm, 5mm. The total number of edges 
is 20,800. The bistatic RCS patterns are computed using the DG 
method with DS-LTASP and compared with the results 
obtained by the conventional CTF with MLFMA under the 
uniform conformal discretization with 70,551 edges. The 
results are in great agreement, as shown in Fig. 13. The 
conventional CTF requires a much large number of iterations 
compared with the proposed DG approach, as shown in Fig. 14. 

x
z y

 
Fig. 12. Non-conformal surface discretization of a four-rotor aircraft model. 

 

                                     
Fig. 13 The ‐ and ‐polarized bistatic RCS of the four-rotor aircraft 
model. 

 

Fig. 14. Convergence histories for the four-rotor aircraft model under different 
methods. 

V. CONCLUSION 
A DG method of surface integral solution for homogeneous 

bodies with a high dielectric constant is studied in this 
communication. An efficient preconditioner DS-LTASP is 
designed in this solution. Based on the LTASP for CTF 
equations, the strong and critical interactions are effectively 
screened and a sparse preconditioning matrix is obtained. The 
cost of constructing the preconditioner is considerably reduced. 

Numerical experiments verify that the DS-LTASP has a better 
numerical performance in saving computing resources and 
improving convergence speed compared with LTASP.  It is 
demonstrated that the proposed DG method with DS-LTASP 
has great capability for high dielectric multi-scale problems. 
The difficulty of the DG method with BDP for high dielectric 
constant cases is effectively solved. 
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