Rajamäki, Robin; Chepuri, Sundeep; Koivunen, Visa

Analog Beamforming for Active Imaging using Sparse Arrays

Published in:
Asilomar Conference on Signals, Systems, and Computers proceedings

DOI:
10.1109/IEEECONF44664.2019.9048867

Published: 01/01/2019

Please cite the original version:

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
ANALOG BEAMFORMING FOR ACTIVE IMAGING USING SPARSE ARRAYS

Robin Rajamäki†, Sundeep Prabhakar Chepuri *, and Visa Koivunen†

† Aalto University, Espoo, Finland
* Indian Institute of Science, Bangalore, India

ABSTRACT
This paper studies analog beamforming in active sensing applications, such as millimeter-wave radar or ultrasound imaging. Analog beamforming architectures employ a single RF-IF front end connected to all array elements via inexpensive phase shifters. This can drastically lower costs compared to fully-digital beamformers having a dedicated front end for each sensor. However, controlling only the element phases may lead to elevated side-lobe levels and degraded image quality. We address this issue by image addition, which synthesizes a high resolution image by adding together several lower resolution component images. Image addition also facilitates the use of sparse arrays, which can further reduce array costs. To limit the image acquisition time, we formulate an optimization problem for minimizing the number of component images, subject to achieving a desired point spread function. We then propose a gradient descent algorithm for approximately solving this problem. We also derive an upper bound on the number of component images needed by the analog beamformer to achieve the conventional digital beamforming solution.

1. INTRODUCTION

The use of high frequencies enables small array form factors by packing many elements into a small physical area. For example, 3D ultrasound imaging typically uses hundreds of sensors, each with a dedicated transceiver chain. Although the resulting large electrical aperture improves the array’s resolution, the hardware cost, number of cables, power consumption, and computational load of the array may become prohibitively large. These issues are especially pronounced for fully-digital arrays, where each array element is connected to a separate RF-IF front end and analog-to-digital converter (ADC) or digital-to-analog converter (DAC).

Sparse arrays can significantly reduce the number of elements compared to uniform arrays of equivalent aperture, without sacrificing the array’s ability to resolve scatterers [1–3]. Such arrays utilize the virtual co-array structure consisting of the pairwise vector sums or differences of the physical array element positions. For instance, the sum co-array determines the achievable set of point spread functions (PSFs) of an active far field imaging array that uses linear processing at the transmitter and receiver [1]. A desired PSF may be synthesized using image addition [1, 4], which adds together several component images acquired using different transmit and receive weight vector pairs. The number of component images determines the acquisition time of the image, when transmitters operate coherently, as in a phased array.

Hybrid beamforming can also lower array costs by reducing the number of front ends [5]. Hybrid architectures employ a network of inexpensive low power phase shifters to connect every antenna to each front end. Such designs have been extensively studied in millimeter-wave communications, where linear processing is used to precode and decode multiple data streams sent over a multiple-input multiple-output channel [6–11], and hybrid beamformers are designed to maximize the channel capacity [12]. In contrast, this paper considers active imaging applications, where synthesizing a desirable PSF is of main interest. We focus on the extreme case of analog beamforming, where all the array elements are connected to a single RF-IF-ADC/DAC chain by phase shifters with continuous phases.2 We utilize image addition to synthesize PSFs that are otherwise achieved by digital arrays only. Image addition also facilitates the use of sparse transmitting and receiving arrays, which further reduces the number of array elements thereby reducing the hardware costs.

The contributions of the paper are threefold. First, we formulate an optimization problem, where we design the analog transmit and receive beamforming weights achieving a desired PSF using as few component images as possible. Sec-

2. SIGNAL MODEL AND DEFINITIONS

Consider a sensor array with N_t transmit (Tx) and N_r receive (Rx) elements. As shown in Fig. 1, each array element is con-

1This work was supported in part by the Tata Trusts, and the Academy of Finland project Massive and Sparse Antenna Array Processing for Millimeter-Wave Communications.

2We address the more general case of hybrid beamforming with quantized phase shifts in the longer journal version of this paper [13].
Figure 1. Fully-analog beamforming architecture. The front end of the transmitter/receiver is connected to each array element via a phase shifter with continuous phase.

connected to a single front end and DAC or ADC via a phase shifter. This is referred to as a fully-analog beamforming architecture, in contrast to the fully-digital architecture, where each sensor has a dedicated front end and DAC/ADC.

We consider a phased array imaging system that sequentially scans a scattering scene by transmitting and receiving focused beams of narrowband signals. Such systems are typically used in, e.g., medical ultrasound imaging or radar. On the transmitter side, beamforming is achieved by combining the Tx array element outputs with weights \(w_t = c_t f_t \in \mathbb{C}^{N_t} \), where \(c_t \in \mathbb{C} \) is a digital transmit gain, and \(f_t \in \mathbb{C}^{N_t} \) is a vector of transmitter phase shifts. Similarly, on the receiver side, the Rx element inputs are combined using the weights \(w_r = c_r f_r \in \mathbb{C}^{N_r} \), where \(c_r \in \mathbb{C} \) is a digital receive gain, and \(f_r \in \mathbb{C}^{N_r} \) is a vector of receiver phase shifts. The received signal after beamforming and matched filtering is modeled as

\[
y = w_t^T H w_t + w_t^T n_t,
\]

where \(H \in \mathbb{C}^{N_t \times N_t} \) is the channel matrix, \(n_t \in \mathbb{C}^{N_t} \) is the receiver noise vector, and \((\cdot)^T\) denotes transposition.

The point spread function (PSF) is an important property characterizing an imaging system. The PSF is defined as the system’s response to a unit-reflectivity, line-of-sight point scatterer. Specifically, for a scatterer located at \(v \in \mathbb{R}^3 \) and the array focused at \(u \in \mathbb{R}^3 \), the PSF is defined as \(\psi(u, v) = w_t^T(u) a_c(v) a_r^T(v) w_r(u) \in \mathbb{C} \), where \(a_c \) is the steering vector, and subscript \(x \in \{t, r\} \) is used to denote both the transmit and receiver. If the scatterer is in the far field of linear Tx and Rx arrays, \(v \) and \(u \) simplify to angles in \([−π/2, π/2]\). We henceforth omit the explicit dependence of \(u \) and \(v \) for notational convenience. The PSF may also be expressed using the Kronecker product \(\otimes \) as:

\[
\psi = (a_t \otimes a_r)^T \text{vec}(w_t w_r^T).
\]

To form an image, we steer the Tx and Rx arrays over a discrete set of directions \(\{u_i\}_{i=1}^U \) and measure reflectivities in (1) at each image pixel. However, a single Tx-Rx weight pair \(w_t, w_r \), as in (2), may not always suffice to achieve a desired PSF. In this case, the image quality may be improved by image addition [1]. Image addition synthesizes a high-resolution composite image by summing together several component images of lower resolution, which are formed using different Tx-Rx weight pairs. With image addition, the rank-1 matrix \(w_t w_r^T \) in (2) is replaced by the co-array weight matrix \(W \in \mathbb{C}^{N_t \times N_t} \) defined [4]:

\[
W = \sum_{q=1}^Q w_{t,q} w_{t,q}^T.
\]

Each outer product \(w_{t,q} w_{t,q}^T \) in (3) corresponds to a transmission and reception with a different pair of effective Rx and Tx weight vectors \(w_{r,q} \) and \(w_{t,q} \). These vectors may be retrieved from the SVD of matrix \(W \) in the case of fully-digital beamforming [4]. The smaller the number of component images \(Q \) is, the shorter the image acquisition time, as fewer transmissions/receptions are required to form an image. In the case of analog beamforming, (3) can be decomposed as

\[
W = \sum_{q=1}^Q c_{t,q} c_{r,q} f_{r,q} f_{t,q}^T = F_s \text{diag}(c) F_t^T,
\]

where \(c = c_t \circ c_r \in \mathbb{C}^Q \) is the Hadamard product of the digital transmit and receive weights \(c_x = [c_{x,1}, \ldots, c_{x,Q}]^T \). Matrix \(F_x = [f_{x,1}, \ldots, f_{x,Q}] \in \mathcal{F}_x \) contains the phase shift vectors of the component images, and

\[
\mathcal{F}_x = \{ F \mid F_{n,q} = \exp(j \Phi_{n,q}) ; \Phi \in [0, 2\pi]^{N_t \times Q} \}
\]

denotes the set of such phase shift matrices. If we know \(c \), we may set \(c_t = 1_Q \) and \(c_r = c \), where \(1_Q \) is a Q-dimensional unit vector. This simple choice also maximizes the transmit power under the constraint \(|c_{t,q}| \leq 1, q = 1, 2, \ldots, Q \).

3. BOUNDS ON NO. OF COMPONENT IMAGES \(Q \)

Next, we derive an upper and lower bound on the number of component images \(Q \) required by an analog beamformer for factorizing any weight matrix \(W \in \mathbb{C}^{N_t \times N_t} \) as in (4). In the case of fully-digital beamforming, SVD can be used to decompose \(W \) as in (3) using \(Q_d = \text{rank}(W) \leq \min(N_r, N_t) \) component images [4]. Any analog factorization in (4) must therefore satisfy \(Q \geq Q_d \), where \(Q_d \) is the number of component images required by the fully-digital beamformer.
An upper bound on Q may be derived based on the fact that any $w_x \in \mathbb{C}^N_x$ can be factorized as $w_x = F_x c_x$, where $c_x \in \mathbb{C}^2$ and $F_x \in \mathbb{C} \times N_x \times 2$ following (5) [6, Theorem 1]. Consequently, given a fully-digital factorization of W using Q_d component images, we may construct a fully-analog factorization of the same W using $Q = 4Q_d$ component images. In particular, the phase shifts and digital weights are given by the following theorem:

Theorem 1 (Upper bound on Q). Any $W = \sum_{i=1}^{Q_d} w_{x,i} w_{x,i}^T \in \mathbb{C}^{N_x \times N}$ may be factorized as (4) with $Q = 4Q_d$ and

$$f_{x,q} = \sum_{l=0}^{\lfloor q/4 \rfloor} \sum_{i=0}^{\lfloor (q-i-1)/2 \rfloor} \sum_{q=0}^{i+1} \sum_{l=2}^{1+q-1} \cos^2 \left((l+1) \frac{x_i}{2} \right)$$

$$c_{x,q} = \left\| w_{x,i} \right\|_2 / \sqrt{2},$$

where $l = \lfloor q/4 \rfloor; i_0 = \left\lfloor (1 + (q-1) \mod 4) / 2 \right\rfloor$; and $i_q + 1 = (q-1) \mod 2$. Here λ, \cos^{-1}, and $\left\| \cdot \right\|_2$ are applied elementwise.

Sketch of proof (see [13] for details). By [6, Theorem 1], any $w_x = c_x f_{x,1} \odot c_1 f_{x,2}$. Consequently, $w_x w_x^T = \sum_{m=1}^{4q} c_x c_{m,l} f_{t,l} f_{t,l}^T$, where i and l are functions of the summation index m. As W is a sum of Q_d rank-1 matrices, we have $Q = 4Q_d$.

The solution given by Theorem 1 is non-unique, and it is possible to factorize (4) using another set of $Q = 4Q_d$ component weights. Nevertheless, the choice made in (6) and (7) is particularly attractive, since it enables us to reduce the number of component images to $Q = Q_d$, at the expense of doubling the number of phase shifters connected to each array element. This follows from the observation that any $w_x \in \mathbb{C}^N_x$ that can be factorized as $w_x = c_x F_x \mathbf{1}_2$, where $c_x \in \mathbb{C}$ and $F_x \in \mathbb{C} \times N_x \times 2$ following (5), can be implemented by an analog architecture using $2N_x$ phase shifters [7, 11]. However, this requires a modification to the architecture in Fig. 1, and will therefore not be considered henceforth.

4. PROBLEM FORMULATION

Our goal is to minimize the number of component images Q, while achieving a desired PSF (or beampattern). Assuming we know the Tx-Rx array manifold $A \in \mathbb{C}^{N_x \times V}$, with m^{th} column $a_m(v) \odot a_n(v)$, for a set of V target directions $\{v_i\}_{i=1}^V$. We may represent the real PSF as $R = \text{Bvec}(W)$, where $B = A^T$, and the desired PSF as $\psi \in \mathbb{C}^V$. Since the analog beamforming architecture imposes the constraint that W should be factorized as (4), the vectorized \mathbf{W} may also be expressed using the Khatri-Rao product \odot as $\text{vec}(W) = (F_x \odot F_x) c$. This leads us to formulate the following analog beamformer weight optimization problem:

$$\begin{align*}
\text{minimize } & \| \psi - B(F_x \odot F_x) c \|_2^2 \\
\text{subject to } & \| \psi - B(F_x \odot F_x) c \|_2^2 \leq \varepsilon_{\text{max}}
\end{align*}$$

(P1)

Fixing Q yields the following simpler optimization problem:

$$\begin{align*}
\text{minimize } & \| \psi - B(F_x \odot F_x) c \|_2^2 \\
\text{subject to } & \| \psi - B(F_x \odot F_x) c \|_2^2 \leq \varepsilon_{\text{max}}
\end{align*}$$

(P2)

If we can solve (P2), we can recover the exact solution to (P1) by binary search (bisection) over Q. Note that the maximum value of Q is determined by Theorem 1, or by a practical design constraint, such as the maximum imaging frame rate.

5. GRADIENT DESCENT ALGORITHM

In this section, we present a simple gradient descent method for solving (P2). We start by noting that the optimal value of c in (P2) is the least-squares solution $c = (B(F_x \odot F_x))^{\dagger} \psi$, where \dagger denotes the pseudo-inverse. We also write the analog weight matrix F_x directly as a function of the unknown phase matrix $F_x \in \mathbb{R}^{N_x \times Q}$, i.e., $F_x(F_x) = \exp(jF_x)$, where we apply the exponential function elementwise. Similar to [9], we then express (P2) in terms of variables F_x, Φ_x as:

$$\begin{align*}
\text{minimize } & ||(I_V - K(\Phi_x, F_x) K(\Phi_x, F_x)) \psi ||_2^2 \\
\text{subject to } & \| \psi - B(F_x \odot F_x) c \|_2^2 \leq \varepsilon_{\text{max}}
\end{align*}$$

(P3)

where we denote the objective function as $J \in \mathbb{R}_+$, and define

$$K(\Phi_x, F_x) = B(F_x(\Phi_x) \odot F_x(\Phi_x)).$$

Since (P3) is an unconstrained optimization problem with a continuous and differentiable objective function, we can attempt to optimize J using gradient descent. Straightforward computations show that the gradient is (see Appendix A):

$$\nabla_{\Phi_x} J = -2 \text{Im}\{\psi (K(\Phi_x, F_x) K(\Phi_x, F_x))^H \psi \}$$

(8)

where the respective complex-valued matrix derivatives are

$$\begin{align*}
\partial_{K} K &= (I_Q \odot B)(I_Q \odot F_x) \odot I_N, \\
\partial_{F_x} K &= (I_Q \odot B)(I_Q \odot F_x) \odot I_N.
\end{align*}$$

(9)

Here we define $R_x(Z, Z^*) = \partial_{\text{vec}(Z)} R_x(Z, Z^*) \in \mathbb{C}^{AB \times CD}$, where $X \in \mathbb{C}^{A \times B}$ and $Z \in \mathbb{C}^{C \times D}$ [14]. Furthermore, $(\cdot)^*$ denotes complex conjugation, $(\cdot)^H$ conjugate transposition, and $\text{mat}_{A \times B}(\cdot)$ reshapes an AB-dimensional vector into an $A \times B$ matrix.

Given a step size $\mu \in \mathbb{R}_+$, we update the gradient as $\Phi_x \leftarrow \Phi_x - \mu \nabla_{\Phi_x} J$. This update is repeated until a maximum number of iterations k_{max} or a desired tolerance level ε_{max} is reached (see Algorithm 1). The solution given by Algorithm 1 depends on the initialization of F_x, since (P3) is non-convex. Nevertheless, Algorithm 1 is guaranteed to find a local minimum using one or multiple random initializations, provided μ is not too large, and J satisfies the strict saddle property [15]. In the next section, we show numerically that just a single random initialization can yield acceptable results.
Algorithm 1 Gradient descent algorithm for (P2)

1: procedure GRADDESC(B, Φ, F, Ft, μ, kmax, εmax)
2: \{k, ε, K\} ← \{(0, ∞, B(Fi ⊗ Ft))\}
3: while k < kmax ∧ ε > εmax do
4: Update derivative \(\partial_{K} J\) using (9)
5: for \(x \in \{t, r\}\) do
6: Update derivative \(\partial_{F} K\) using (10) or (11)
7: Update gradient \(\nabla F\) using (8)
8: \(F_{x} ← \exp(j(\mathcal{A}F_{x} - \mu \mathcal{A}F_{x}, J))\)
9: \(K ← B(F_{i} ⊗ F_{t})\)
10: \(ε ← \|\mathbf{I}_V - KK^*\|^2\)
11: \(k ← k + 1\)
12: \(\{c_{r}, c_{t}\} ← \{K^* F_{c}, 1_{Q}\}\)
13: return \(F_{r}, F_{t}, c_{r}, c_{t}\)

6. NUMERICAL EXAMPLES

Next, we compare the PSFs of two analog beamformers with linear array geometries (Fig. 2). In particular, we consider a uniform linear array (ULA) with \(N = 11\) elements, and a minimum-redundancy array (MRA) [16, 17] with \(N = 7\) elements [18]. Both arrays span an aperture of \(10\lambda/2\), where \(\lambda/2\) is the smallest inter-element spacing. Assuming ideal, identical, and omnidirectional transceiving elements, the transmit and receive steering vector becomes \(\mathbf{a}_x(\varphi) = \exp(j\pi d \sin \varphi)\), where \(d\) denotes the normalized array element position vector. For the ULA: \(d = [-5, -4, -3, 0, 2, 3, 4, 5]^{\top}\), and for the MRA: \(d = [-5, -4, -3, 0, 2, 3, 4, 5]^{\top}\). A DolphChebyshev [19] beampattern with \(-40\ dB\) sidelobes is selected as the desired PSF. We initialize Algorithm 1 using uniformly distributed random phases, i.e., \(\Phi_{x} = \exp(j\Phi)\), where \(\Phi_{xg} \sim \mathcal{U}(0, 2\pi)\). Furthermore, we set the step size to \(\mu = 10^{-3}\), the maximum number of iterations to \(k_{max} = 10^{4}\), and the tolerance to \(\varepsilon_{max} = 10^{-8}\|\mathbf{I}_v\|^2\). We sample the measurement matrix \(B\) uniformly at \(\varphi = 90\) azimuth angles between \(-\pi/2\) and \(\pi/2\). After finding the beamforming weights, we evaluate the realized PSF at 200 different angles in the same interval.

Fig. 3 (a) shows the desired and realized PSF of the ULA. Algorithm 1 yields a good approximation of the desired PSF using only a single component image. This approximation gets progressively better as \(Q\) is increased. Fig. 3 (b) shows that the MRA requires at least \(Q = 2\) component images to achieve an acceptable PSF. We note that the fully-digital ULA achieves the desired PSF using one component image, whereas the fully-digital MRA requires two components. By Theorem 1, the fully-analog beamformers then exactly achieve the fully-digital PSFs using \(Q = 4\) (ULA), respectively \(Q = 8\) (MRA) component images. Although the analog/digital MRA and ULA can achieve the same PSF, the MRA incurs a loss in array gain due to having fewer elements.

7. CONCLUSIONS

This paper considered active imaging using phased arrays with an analog beamforming architecture consisting of continuous phase shifters. We proposed a gradient descent algorithm for jointly finding the transmit and receive element weights that achieve a desired PSF using as few transmissions as possible. Moreover, we derived a bound on the maximum number of transmissions required by such an array. We also demonstrated that combining analog beamforming with sparse arrays allows for significant reductions in the number of elements and Tx/Rx front ends, without compromising main lobe width or side-lobe levels.

In future work, the convergence of the gradient descent algorithm could be improved by more rigorous step size selection, acceleration, or second-order methods. It would also be interesting to analyze the special case of fixed digital gains (e.g., \(c = 1\)) further. Moreover, it still remains an open question if the objective function in (P3) actually satisfies the strict saddle property, for either fixed or arbitrary digital gains.

A. DERIVATION OF GRADIENT

In this appendix, we derive the gradient in (8). We are interested in \(\partial_{\Phi}, J \in \mathbb{R}^{1 \times NQ}\), which by the chain rule is [14]

\[
\partial_{\Phi}, J = (\partial_{K} J)(\partial_{\Phi}, K) + (\partial_{K}, J)(\partial_{\Phi}, K^*). \tag{12}
\]

Applying the chain rule again to (12) yields

\[
\partial_{\Phi}, K = (\partial_{F}, K^*)(\partial_{\Phi}, F) + (\partial_{F}, K)(\partial_{\Phi}, F^*), \tag{13}
\]

\[
\partial_{\Phi}, K^* = (\partial_{F}, K^*)(\partial_{\Phi}, F) + (\partial_{F}, K)(\partial_{\Phi}, F^*). \tag{14}
\]

Noting that \(K\) only depends on \(F_x\), we have \(\partial_{F_x} K = \partial_{F_x} K^* = \partial_{F_x} K^* = 0\). Substituting (13) and (14) into (12) then yields

\[
\partial_{\Phi}, J = (\partial_{K} J)(\partial_{F}, K)(\partial_{\Phi}, F) + (\partial_{K}, J)(\partial_{F}, K^*)(\partial_{\Phi}, F^*).
\]
Combining $\partial_{\mathbf{K}} J$ derived in [9, Lemma 1], with the fact that $\partial_{\mathbf{K}} J = (\partial_{\mathbf{K}} J)^*$ yields (9). Equations (10) and (11) follow from identities vec(\mathbf{K}) = (I_Q \otimes B) vec($\mathbf{F}_i \otimes \mathbf{F}_j$) and vec($\mathbf{F}_i \otimes \mathbf{F}_j$) = ([I_Q \otimes \mathbf{I}_M] vec(\mathbf{F}_i)) = ([I_Q \otimes (\mathbf{F}_i \otimes \mathbf{I}_N)] vec(\mathbf{F}_i) [20, Proposition 3.1.2]. Furthermore, we find that

$$\partial_{\mathbf{F}} \mathbf{F}_x = j \text{diag}(\text{vec}(\mathbf{F}_x)).$$

(15)

Confirming that $\partial_{\mathbf{F}} \mathbf{F}_x^* = (\partial_{\mathbf{F}} \mathbf{F}_x)^*$ and $\partial_{\mathbf{F}_x} \mathbf{K}^* = (\partial_{\mathbf{F}_x} \mathbf{K})^*$ allows us to simplify $\partial_{\mathbf{F}} J$ using (15) as

$$\partial_{\mathbf{F}} J = 2R\{(\partial_{\mathbf{K}} J)(\partial_{\mathbf{F}_x} \mathbf{F}_x)\}$$
$$= 2R\{j(\partial_{\mathbf{K}} J)(\partial_{\mathbf{F}_x} \mathbf{F}_x)\text{diag}(\text{vec}(\mathbf{F}_x))\}$$
$$= -23\{(\partial_{\mathbf{K}} J)(\partial_{\mathbf{F}_x} \mathbf{K}) \circ \text{vec}^T(\mathbf{F}_x)\}. $$

(16)

Finally, we obtain (8) by reshaping (16) into a $N_x \times Q$ matrix.

8. REFERENCES

