
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Junttila, Tommi; Karppa, Matti; Kaski, Petteri; Kohonen, Jukka
An adaptive prefix-assignment technique for symmetry reduction

Published in:
Journal of Symbolic Computation

DOI:
10.1016/j.jsc.2019.03.002

Published: 01/08/2020

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Junttila, T., Karppa, M., Kaski, P., & Kohonen, J. (2020). An adaptive prefix-assignment technique for symmetry
reduction. Journal of Symbolic Computation, 99, 21-49. https://doi.org/10.1016/j.jsc.2019.03.002

https://doi.org/10.1016/j.jsc.2019.03.002
https://doi.org/10.1016/j.jsc.2019.03.002

Journal of Symbolic Computation 99 (2020) 21–49

Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

An adaptive prefix-assignment technique for

symmetry reduction

Tommi Junttila, Matti Karppa, Petteri Kaski, Jukka Kohonen

Aalto University, Department of Computer Science, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 June 2018
Accepted 28 January 2019
Available online 8 March 2019

Keywords:
Symmetry breaking
Symmetry reduction
Isomorph rejection
Constraint programming
SAT
Canonical extension

This paper presents a technique for symmetry reduction that adap-
tively assigns a prefix of variables in a system of constraints so
that the generated prefix-assignments are pairwise nonisomorphic
under the action of the symmetry group of the system. The tech-
nique is based on McKay’s canonical extension framework (McKay,
1998). Among key features of the technique are (i) adaptability—
the prefix sequence can be user-prescribed and truncated for
compatibility with the group of symmetries; (ii) parallelizability—
prefix-assignments can be processed in parallel independently of
each other; (iii) versatility—the method is applicable whenever the
group of symmetries can be concisely represented as the automor-
phism group of a vertex-colored graph; and (iv) implementability—
the method can be implemented relying on a canonical labeling
map for vertex-colored graphs as the only nontrivial subroutine. To
demonstrate the practical applicability of our technique, we have
prepared an experimental open-source implementation of the tech-
nique and carry out a set of experiments that demonstrate ability
to reduce symmetry on hard instances. Furthermore, we demon-
strate that the implementation effectively parallelizes to compute
clusters with multiple nodes via a message-passing interface.

© 2019 The Authors. Published by Elsevier Ltd. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

E-mail addresses: tommi.junttila@aalto.fi (T. Junttila), matti.karppa@aalto.fi (M. Karppa), petteri.kaski@aalto.fi (P. Kaski),
kohonen@cs.helsinki.fi (J. Kohonen).

https://doi.org/10.1016/j.jsc.2019.03.002
0747-7171/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jsc.2019.03.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
http://creativecommons.org/licenses/by/4.0/
mailto:tommi.junttila@aalto.fi
mailto:matti.karppa@aalto.fi
mailto:petteri.kaski@aalto.fi
mailto:kohonen@cs.helsinki.fi
https://doi.org/10.1016/j.jsc.2019.03.002
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2019.03.002&domain=pdf

22 T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49

1. Introduction

1.1. Symmetry reduction

Systems of constraints often have substantial symmetry. For example, consider the following sys-
tem of Boolean clauses:

(x1 ∨ x2) ∧ (x1 ∨ x̄3 ∨ x̄5) ∧ (x2 ∨ x̄4 ∨ x̄6) . (1)

The associative and commutative symmetries of disjunction and conjunction induce symmetries be-
tween the variables of (1), a fact that can be captured by stating that the group � generated by the
two permutations (x1 x2)(x3 x4)(x5 x6) and (x4 x6) consists of all permutations of the variables that
map (1) to itself. That is, � is the automorphism group of the system (1), cf. Section 2.

Known symmetry in a constraint system is a great asset from the perspective of solving the sys-
tem, in particular since symmetry enables one to disregard partial assignments that are isomorphic to
each other under the action of � on the space of partial assignments. Techniques for such isomorph
rejection1 (Swift, 1960) (alternatively, symmetry reduction or symmetry breaking) are essentially manda-
tory if one desires an exhaustive traversal of the (pairwise nonisomorphic) assignments of a highly
symmetric system of constraints, or if the system is otherwise difficult to solve, for example, with
many “dead-end” partial assignments compared with the actual number of solutions.

A prerequisite to symmetry reduction is that the symmetries are known. In many cases it is
possible to automatically discover and compute these symmetries to enable practical and automatic
symmetry reduction. In this context the dominant computational approach for combinatorial systems
of constraints is to represent � via the automorphism group of a vertex-colored graph that captures
the symmetries in the system. Carefully engineered tools for working with symmetries of vertex-
colored graphs (Darga et al., 2004; Junttila and Kaski, 2007; McKay, 1981; McKay and Piperno, 2014)
and permutation group algorithms (Butler, 1991; Seress, 2003) then enable one to perform symmetry
reduction. For example, for purposes of symmetry computations we may represent (1) as the follow-
ing vertex-colored graph (for interpretation of the colors in the figure, the reader is referred to the
web version of this article):

(2)

In particular, the graph representation (2) enables us to discover and reduce symmetry to avoid re-
dundant work when solving the underlying system (1).

1.2. Our contribution

The objective of this paper is to present a novel technique for symmetry reduction on systems
of constraints. The technique is based on adaptively assigning values to a prefix of the variables so
that the obtained prefix-assignments are pairwise nonisomorphic under the action of �. The tech-
nique can be seen as an instantiation of McKay’s (1998) influential canonical extension framework for
isomorph-free exhaustive generation.

To give a brief outline of the technique, suppose we are working with a system of constraints over
a finite set U of variables that take values in a finite set R . Suppose furthermore that � ≤ Sym(U)

1 A term introduced by Swift (1960); cf. Hall and Knuth (1965) for a survey on early work on exhaustive computer search
and combinatorial analysis.

T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49 23

is the automorphism group of the system. Select k distinct variables u1, u2, . . . , uk in U . These k
variables form the prefix sequence considered by the method. The technique works by assigning val-
ues in R to the variables of the prefix, in prefix-sequence order, with u1 assigned first, then u2,
then u3, and so forth, so that at each step the partial assignments so obtained are pairwise noni-
somorphic under the action of �. For example, in (1) the partial assignments x1 �→ 0, x2 �→ 1 and
x1 �→ 1, x2 �→ 0 are isomorphic since (x1 x2)(x3 x4)(x5 x6) ∈ � maps one assignment onto the other; in
total there are three nonisomorphic assignments to the prefix x1, x2 in (1), namely (i) x1 �→ 0, x2 �→ 0,
(ii) x1 �→ 0, x2 �→ 1, and (iii) x1 �→ 1, x2 �→ 1. Each partial assignment that represents an isomorphism
class can then be used to reduce redundant work when solving the underlying system by standard
techniques—in the nonincremental case, the system is augmented with a symmetry-breaking pred-
icate requiring that one of the nonisomorphic partial assignments holds, while in the incremental
setting (Heule et al., 2011; Wieringa, 2011) the partial assignments can be solved independently or
even in parallel.

Our contribution in this paper lies in how the isomorph rejection is implemented at the level
of isomorphism classes of partial assignments by careful reduction to McKay’s (1998) isomorph-free
exhaustive generation framework. The key technical contribution is that we observe how to gener-
ate the partial assignments in a normalized form that enables both adaptability (that is, the prefix
u1, u2, . . . , uk can be arbitrarily selected to match the structure of �) and precomputation of the ex-
tending variable-value orbits along a prefix.

Among further key features of the technique are:

1. Implementability. The technique can be implemented by relying on a canonical labeling map for
vertex-colored graphs (cf. Junttila and Kaski, 2007; McKay, 1981; McKay and Piperno, 2014) as
the only nontrivial subroutine that is invoked once for each partial assignment considered.

2. Versatility. The method is applicable whenever the group of symmetries can be concisely repre-
sented as a vertex-colored graph; cf. (1) and (2). This is useful in particular when the underlying
system has symmetries that are not easily discoverable from the final constraint encoding, for ex-
ample, due to the fact that the constraints have been compiled or optimized2 from a higher-level
representation in a symmetry-obfuscating manner. A graphical representation can represent such
symmetry directly and independently of the compiled/optimized form of the system.

3. Parallelizability. As a corollary of implementing McKay’s (1998) framework, the technique does not
need to store representatives of isomorphism classes in memory to perform isomorph rejection,
which enables easy parallelization since the partial assignments can be processed independently
of each other.

The required mathematical preliminaries on symmetry and McKay’s framework are reviewed in Sec-
tions 2 and 3, respectively. The main technical contribution of this paper is developed in Sections 4
and 5. We start in Section 4 by developing the prefix-assignment technique for variable symmetry,
and extend this in Section 5 to account for symmetry both in the variables and in the values of the
variables. Our development in Sections 4 and 5 relies on an abstract group �, with the understanding
that a concrete implementation can be designed e.g. in terms of a vertex-colored graph representa-
tion, as will be explored in Section 6.

To demonstrate the practical applicability of our technique, we have prepared an open-source par-
allel implementation (Karppa, 2018). The implementation is structured as a preprocessor that works
with an explicitly given graph representation and utilizes the nauty (McKay, 1981; McKay and Piperno,
2014) canonical labeling software for vertex-colored graphs as a subroutine to prepare an exhaustive
collection of nonisomorphic prefix assignments relative to a user-supplied prefix of variables, and the
Message Passing Interface (MPI) for parallelization. Further details of the implementation are pre-
sented in Section 7. In Section 8, we report on a set of experiments that (i) demonstrate the ability

2 For a beautiful illustration, we refer to Knuth’s (2011, §7.1.2, Fig. 10) example of optimum Boolean chains for 5-variable
symmetric Boolean functions—from each optimum chain it is far from obvious that the chain represents a symmetric Boolean
function. (See also Example 17.)

24 T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49

to reduce symmetry on hard instances, (ii) study the serendipity of an auxiliary graph for encoding
the symmetries in an instance, (iii) give examples of instances with hard combinatorial symmetry
where our technique performs favorably in comparison with earlier techniques, and (iv) study the
parallel speedup obtainable when we distribute the symmetry reduction task to a compute cluster
with multiple compute nodes.

1.3. Earlier work

A classical way to exploit symmetry in a system of constraints is to augment the system with so-
called symmetry-breaking predicates (SBP) that eliminate either some or all symmetric solutions, see
e.g. (Aloul et al., 2003; Crawford et al., 1996; Gent et al., 2006; Grayland et al., 2009; Sakallah, 2009;
Jefferson and Petrie, 2011). Such constraints are typically lexicographic leader (lex-leader) constraints
that are derived from a generating set for the group of symmetries �. Among recent work in this
area, Devriendt et al. (2016) extend the approach by presenting a more compact way for express-
ing SBPs and a method for detecting “row interchangeabilities”. Itzhakov and Codish (2016) present
a method for finding a set of symmetries whose corresponding lex-leader constraints are enough to
completely break symmetries in search problems on small (10-vertex) graphs; this approach is ex-
tended by Codish et al. (2016) by adding pruning predicates that simulate the first iterations of the
equitable partition refinement algorithm of nauty (McKay, 1981; McKay and Piperno, 2014). Heule
(2016) shows that small complete symmetry-breaking predicates can be computed by considering
arbitrary Boolean formulas instead of lex-leader formulas.

Our present technique can be seen as a method for producing symmetry-breaking predicates by
augmenting the system of constraints with the disjunction of the nonisomorphic partial assignments.
The main difference to the related work above is that our technique does not produce the symmetry-
breaking predicate from a set of generators for � but rather the predicate is produced recursively, and
with the possibility for parallelization, by classifying orbit representatives up to isomorphism using
McKay’s (1998) framework. As such our technique breaks all symmetry with respect to the prescribed
prefix, but comes at the cost of additional invocations of graph-automorphism and canonical-labeling
tools. This overhead and increased symmetry reduction in particular means that our technique is best
suited for constraint systems with hard combinatorial symmetry that is not easily capturable from
a set of generators, such as symmetry in combinatorial classification problems (Kaski and Östergård,
2006). In addition to McKay’s (1998) canonical extension framework, other standard frameworks for
isomorph-free exhaustive generation in this context include orderly algorithms due to Faradžev (1978)
and Read (1978), as well as the homomorphism principle for group actions due to Kerber and Laue
(1998).

It is also possible to break symmetry within a constraint solver during the search by dynamically
adding constraints that rule out symmetric parts of the search space (cf. Chu et al., 2014; Gent et
al., 2006). If we use the nonisomorphic partial assignments produced by our technique as assumption
sequences (cubes) in the incremental cube-and-conquer approach (Heule et al., 2011; Wieringa, 2011),
our technique can be seen as a restricted way of breaking the symmetries in the beginning of the
search, with the benefit—as with cube-and-conquer—that the portions of the search space induced
by the partial assignments can be solved in parallel, either with complete independence or with
appropriate sharing of information (such as conflict clauses) between the parallel nodes executing the
search. For further work in dynamic symmetry breaking, cf. Devriendt et al. (2017, 2012), Benhamou
and Sais (1994), Benhamou et al. (2010a,b), Sabharwal (2009), Schaafsma et al. (2009).

For work on isomorphism and canonical labeling techniques, cf. Babai (2016), Grohe et al. (2018),
Lokshtanov et al. (2017), McKay and Piperno (2014).

2. Preliminaries on group actions and symmetry

This section reviews relevant mathematical preliminaries and notational conventions for groups,
group actions, symmetry, and isomorphism for our subsequent development. (Cf. Butler, 1991; Dixon
and Mortimer, 1996; Humphreys, 1996; Kaski and Östergård, 2006; Kerber, 1999; Seress, 2003 for
further reference.)

T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49 25

2.1. Groups and group actions

Let � be a finite group and let � be a finite set (the domain) on which � acts. For two groups
� and �, let us write � ≤ � to indicate that � is a subgroup of �. We use exponential notation
for group actions, and accordingly our groups act from the right. That is, for an object X ∈ � and
γ ∈ �, let us write Xγ for the object in � obtained by acting on X with γ . Accordingly, we have
X (βγ) = (Xβ)γ for all β, γ ∈ � and X ∈ �. For a finite set V , let us write Sym(V) for the group of all
permutations of V with composition of mappings as the group operation.

2.2. Orbit and stabilizer, the automorphism group

For an object X ∈ � let us write X� = {Xγ : γ ∈ �} for the orbit of X under the action of � and
�X = {γ ∈ � : Xγ = X} ≤ � for the stabilizer subgroup of X in �. Equivalently we say that �X is the
automorphism group of X and write Aut(X) = �X whenever � is clear from the context; if we want to
stress the acting group we write Aut�(X).

We write �/� = {X� : X ∈ �} for the set of all orbits of � on �. For � ≤ � and γ ∈ �, let us write
�γ = γ −1�γ = {γ −1λγ : λ ∈ �} ≤ � for the γ -conjugate of �. For all X ∈ � and γ ∈ � we have
Aut(Xγ) = Aut(X)γ . That is, the automorphism groups of objects in an orbit are conjugates of each
other.

2.3. Isomorphism

We say that two objects are isomorphic if they are in the same orbit of � in �. In particular, X, Y ∈
� are isomorphic if and only if there exists an isomorphism γ ∈ � from X to Y that satisfies Y = Xγ .
An isomorphism from an object to itself is an automorphism. Let us write Iso(X, Y) for the set of all
isomorphisms from X to Y . When X and Y are isomorphic, we have Iso(X, Y) = Aut(X)γ = γ Aut(Y)

where γ ∈ Iso(X, Y) is arbitrary. Let us write X ∼= Y to indicate that X and Y are isomorphic. If we
want to stress the group � under whose action isomorphism holds, we write X ∼=� Y .

2.4. Elementwise action on tuples and sets

Suppose that � acts on two sets, � and �. We extend the action to the Cartesian product � × �

elementwise by defining (X, S)γ = (Xγ , Sγ) for all (X, S) ∈ � × � and γ ∈ �. Isomorphism extends
accordingly; for example, we say that (X, S) and (Y , T) are isomorphic and write (X, S) ∼= (Y , T) if
there exists a γ ∈ � with Y = Xγ and T = Sγ . Suppose that � acts on a set U . We extend the action
of � on U to an elementwise action of � on subsets W ⊆ U by setting W γ = {wγ : w ∈ W } for all
γ ∈ � and W ⊆ U . In what follows we will tacitly work with these elementwise actions on tuples
and sets unless explicitly otherwise indicated.

2.5. Canonical labeling and canonical form

A function κ : � → � is a canonical labeling map for the action of � on � if

(K) for all X, Y ∈ � it holds that X ∼= Y implies Xκ(X) = Y κ(Y) (canonical label-
ing).

For X ∈ � we say that Xκ(X) is the canonical form of X in �. From (K) it follows that isomorphic
objects have identical canonical forms, and the canonical labeling map gives an isomorphism that
takes an object to its canonical form.

We assume that the act of computing κ(X) for a given X produces as a side-effect a set of gener-
ators for the automorphism group Aut(X).

26 T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49

3. McKay’s canonical extension method

This section reviews McKay’s (1998) canonical extension method for isomorph-free exhaustive gen-
eration. Mathematically it will be convenient to present the method so that the isomorphism classes
are captured as orbits of a group action of a group �, and extension takes place in one step from
“seeds” to “objects” being generated, with the understanding that the method can be applied induc-
tively in multiple steps so that the “objects” of the current step become the “seeds” for the next step.
For completeness and ease of exposition, we also give a correctness proof for the method. We stress
that all material in this section is well known. (Cf. Kaski and Östergård, 2006.)

3.1. Objects and seeds

Let � be a finite set of objects and let � be a finite set of seeds. Let � be a finite group that acts
on � and �. Let κ be a canonical labeling map for the action of � on �.

3.2. Extending seeds to objects

Let us connect the objects and the seeds by means of a relation e ⊆ � × � that indicates which
objects can be built from which seeds by extension. For X ∈ � and S ∈ � we say that X extends S
and write Xe S if (X, S) ∈ e. We assume the relation e satisfies

(E1) e is a union of orbits of �, that is, e� = e (invariance), and

(E2) for every object X ∈ � there exists a seed S ∈ � such that Xe S (complete-
ness).

For a seed S ∈ �, let us write e(S) = {X ∈ � : Xe S} for the set of all objects that extend S .

3.3. Canonical extension

We associate with each object a particular isomorphism-invariant extension by which we want to
extend the object from a seed. A function M : � → � is a canonical extension map if

(M1) for all X ∈ � it holds that (X, M(X)) ∈ e (extension), and

(M2) for all X, Y ∈ � we have that X ∼= Y implies (X, M(X)) ∼= (Y , M(Y)) (canon-
icity).

That is, (M1) requires that X is in fact an extension of M(X) and (M2) requires that isomorphic
objects have isomorphic canonical extensions. In particular, X �→ (X, M(X)) is a well-defined map
from �/� to e/�.

3.4. Generating objects from seeds

Let us study the following procedure, which is invoked for exactly one representative S ∈ � from
each orbit in �/�:

(P) Let S ∈ � be given as input. Iterate over all X ∈ e(S). Perform zero or more
isomorph rejection tests on X and S . If the tests indicate we should accept
X , visit X .

We will equip procedure (P) with isomorph rejection tests that will ensure that the procedure visits
exactly one object from each isomorphism class of objects. Let us first consider the case when there
are no isomorph rejection tests.

Lemma 1. The procedure (P) visits every isomorphism class of objects in � at least once.

T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49 27

Proof. To see that every isomorphism class is visited, let Y ∈ � be arbitrary. By (E2), there exists a
T ∈ � with Ye T . By our assumption on how procedure (P) is invoked, T is isomorphic to a unique S
such that procedure (P) is invoked with input S . Let γ ∈ � be an associated isomorphism with Sγ = T .
By (E1) and Ye T , we have Xe S for X = Y γ −1

. By the structure of procedure (P) we observe that X is
visited and X ∼= Y . Since Y was arbitrary, all isomorphism classes are visited at least once. �

Let us next modify procedure (P) so that any two visits to the same isomorphism class of ob-
jects originate from the same procedure invocation. Let M : � → � be a canonical extension map.
Whenever we construct X by extending S in procedure (P), let us visit X if and only if

(T1) (X, S) ∼= (X, M(X)).

Lemma 2. The procedure (P) equipped with the test (T1) visits every isomorphism class of objects in � at least
once. Furthermore, any two visits to the same isomorphism class must (i) originate by extension from the same
procedure invocation on input S, and (ii) belong to the same Aut(S)-orbit of this seed S.

Proof. Suppose that X is visited by extending S and Y is visited by extending T , with X ∼= Y . By
(T1) we must thus have (X, S) ∼= (X, M(X)) and (Y , T) ∼= (Y , M(Y)). Furthermore, from (M2) we have
(X, M(X)) ∼= (Y , M(Y)). Thus, (X, S) ∼= (Y , T) and hence S ∼= T . Since S ∼= T , we must in fact have
S = T by our assumption on how procedure (P) is invoked. Since X and Y were arbitrary, any two
visits to the same isomorphism class must originate by extension from the same seed. Furthermore,
we have (X, S) ∼= (Y , S) and thus X ∼=Aut(S) Y . Let us next observe that every isomorphism class of
objects is visited at least once. Indeed, let Y ∈ � be arbitrary. By (M1), we have Ye M(Y). In particular,
there is a unique S ∈ � with S ∼= M(Y) such that procedure (P) is invoked with input S . Let γ ∈ � be
an associated isomorphism with Sγ = M(Y). By (E1), we have Xe S for X = Y γ −1

. Furthermore, X ∼= Y
implies by (M2) that (X, M(X)) ∼= (Y , M(Y)) = (Xγ , Sγ) ∼= (X, S), so (T1) holds and X is visited. Since
X ∼= Y and Y was arbitrary, every isomorphism class is visited at least once. �

Let us next observe that the outcome of test (T1) is invariant on each Aut(S)-orbit of extensions
of S .

Lemma 3. For all α ∈ Aut(S) we have that (T1) holds for (X, S) if and only if (T1) holds for (Xα, S).

Proof. From X ∼= Xα and (M2) we have (X, M(X)) ∼= (Xα, M(Xα)). Thus, (X, S) ∼= (X, M(X)) if and
only if (Xα, S) = (Xα, Sα) ∼= (X, S) ∼= (X, M(X)) ∼= (Xα, M(Xα)). �

Lemma 3 in particular implies that we obtain complete isomorph rejection by combining the test
(T1) with a further test that ensures complete isomorph rejection on Aut(S)-orbits. Towards this end,
let us associate an arbitrary order relation on every Aut(S)-orbit on e(S). Let us perform the following
further test:

(T2) X = min XAut(S).

The following lemma is immediate from Lemma 2 and Lemma 3.

Lemma 4. The procedure (P) equipped with the tests (T1) and (T2) visits every isomorphism class of objects in
� exactly once.

3.5. A template for canonical extension maps

We conclude this section by describing a template of how to use an arbitrary canonical labeling
map κ : � → � to construct a canonical extension map M : � → �.

28 T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49

For X ∈ � construct the canonical form Z = Xκ(X) . Using the canonical form Z only, identify a seed
T with Ze T . In particular, such a seed must exist by (E2). (Typically this identification can be carried
out by studying Z and finding an appropriate substructure in Z that qualifies as T . For example, T
may be the minimum seed in � that satisfies Ze T . Cf. Lemma 10.) Once T has been identified, set
M(X) = T κ(X)−1

.

Lemma 5. The map X �→ M(X) above is a canonical extension map.

Proof. By (E1) we have Xe M(X) because Zκ(X)−1 = X , T κ(X)−1 = M(X), and Ze T . Thus, (M1) holds
for M . To verify (M2), let X, Y ∈ � with X ∼= Y be arbitrary. Since X ∼= Y , by (K) we have Xκ(X) =
Z = Y κ(Y) . It follows that M(X) = T κ(X)−1

and M(Y) = T κ(Y)−1
, implying that γ = κ(X)κ(Y)−1 is an

isomorphism witnessing (X, M(X)) ∼= (Y , M(Y)). Thus, (M2) holds for M . �
4. Generation of partial assignments via a prefix sequence

This section describes an instantiation of McKay’s method that generates partial assignments of
values to a set of variables U one variable at a time following a prefix sequence at the level of isomor-
phism classes given by the action of a group � on U . Let R be a finite set where the variables in U
take values.

4.1. Partial assignments, isomorphism, restriction

For a subset W ⊆ U of variables, let us say that a partial assignment of values to W is a mapping
X : W → R . Isomorphism for partial assignments is induced by the following group action. Let γ ∈ �

act on X : W → R by setting Xγ : W γ → R where Xγ is defined for all u ∈ W γ by

Xγ (u) = X(uγ −1
) . (3)

Lemma 6. The action (3) is well-defined.

Proof. We observe that for the identity ε ∈ � of � we have Xε = X . Furthermore, for all γ , β ∈ � and
u ∈ W γ β = (W γ)β we have

Xγ β(u) = X
(
u(γ β)−1) = X

(
(uβ−1

)γ
−1) = Xγ

(
uβ−1) = (Xγ)β(u) . �

For an assignment X : W → R , let us write X = W for the underlying set of variables assigned by
X . Observe that the underline map is a homomorphism of group actions in the sense that

Xγ = Xγ (4)

holds for all γ ∈ � and X : W → R . For Q ⊆ X , let us write X |Q for the restriction of X to Q .

4.2. The prefix sequence and generation of normalized assignments

We are now ready to describe the generation procedure. We recommend referring to Example 7
below as a running example that illustrates the following definitions and the generation procedure
for the system of clauses (1).

Let us begin by prescribing the prefix sequence. Let u1, u2, . . . , uk be k distinct elements of U and
let U j = {u1, u2, . . . , u j} for j = 0, 1, . . . , k. In particular we observe that

U0 ⊆ U1 ⊆ · · · ⊆ Uk

with U j \ U j−1 = {u j} for all j = 1, 2, . . . , k.

T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49 29

For j = 0, 1, . . . , k let � j consist of all partial assignments X : W → R with W ∼= U j . Or what is
the same, using the underline notation, � j consists of all partial assignments X with X ∼= U j .

We rely on canonical extension to construct exactly one object from each orbit of � on � j , using
as seeds exactly one object from each orbit of � on � j−1, for each j = 1, 2, . . . , k. We assume the
availability of canonical labeling maps κ : � j → � for each j = 1, 2, . . . , k.

Our construction procedure will work with objects that are in a normal form to enable precompu-
tation for efficient execution of the subsequent tests for isomorph rejection. Towards this end, let us
say that X ∈ � j is normalized if X = U j . It is immediate from our definition of � j and (3) that each
orbit in � j/� contains at least one normalized object.

Let us begin with a high-level description of the construction procedure, to be followed by the
details of the isomorph rejection tests and a proof of correctness. Fix j = 1, 2, . . . , k and study the
following procedure, which we assume is invoked for exactly one normalized representative S ∈ � j−1
from each orbit in � j−1/�:

(P’) Let a normalized S ∈ � j−1 be given as input. For each p ∈ u
Aut(U j−1)

j and each
r ∈ R , construct the assignment

X : U j−1 ∪ {p} → R

defined by X(p) = r and X(u) = S(u) for all u ∈ U j−1. Perform the isomorph
rejection tests (T1’) and (T2’) on X and S . If both tests accept, visit Xν(p) where
ν(p) ∈ Aut(U j−1) normalizes X .

From an implementation point of view, it is convenient to precompute the orbit u
Aut(U j−1)

j together

with group elements ν(p) ∈ Aut(U j−1) for each p ∈ u
Aut(U j−1)

j that satisfy pν(p) = u j . Indeed, a con-
structed X with X = U j−1 ∪ {p} can now be normalized by acting with ν(p) on X to obtain a
normalized Xν(p) isomorphic to X .

4.3. The isomorph rejection tests

Let us now complete the description of procedure (P’) by describing the two isomorph rejection
tests (T1’) and (T2’). This subsection only describes the tests with an implementation in mind, the
correctness analysis is postponed to the following subsection.

Let us assume that the elements of U have been arbitrarily ordered and that κ : � j → � is a
canonical labeling map. Suppose that X has been constructed by extending a normalized S with
X = S ∪ {p} = U j−1 ∪ {p}. The first test is:

(T1’) Subject to the ordering of U , select the minimum q ∈ U such that
qκ(X)−1ν(p) ∈ u

Aut(U j)

j . Accept if and only if p ∼=Aut(X) qκ(X)−1
.

From an implementation perspective we observe that we can precompute the orbit u
Aut(U j)

j . Fur-
thermore, the only computationally nontrivial part of the test is the computation of κ(X) since we
assume that we obtain generators for Aut(X) as a side-effect of this computation. Indeed, with gen-
erators for Aut(X) available, it is easy to compute the orbits U/Aut(X) and hence to test whether
p ∼=Aut(X) qκ(X)−1

.
Let us now describe the second test:

(T2’) Accept if and only if p = min pAut(S) subject to the ordering of U .

From an implementation perspective we observe that since S is normalized we have Aut(S) ≤
Aut(S) = Aut(U j−1) and thus the orbit u

Aut(U j−1)

j considered by procedure (P’) partitions into one
or more Aut(S)-orbits. Furthermore, generators for Aut(S) are readily available (due to S itself getting

30 T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49

accepted in the test (T1’) at an earlier level of recursion), and thus the orbits u
Aut(U j−1)

j /Aut(S) and
their minimum elements are cheap to compute. Thus, a fast implementation of procedure (P’) will in
most cases execute the test (T2’) before the more expensive test (T1’).

Example 7. We display below a possible search tree for the system of clauses (1) and the prefix se-
quence x3, x4, x5, x6. Each node in the search tree displays the prefix assignment X (top), its canonical
version Xκ(X) (middle) and its normalized version Xν(p) (bottom). The variables have the Boolean do-
main {f, t} and the assignments are given in the literal form; for example, we write x̄3x4 for the
assignment {x3 �→ f, x4 �→ t}. (For interpretation of the colors in the figure(s), the reader is referred to
the web version of this article.)

The nodes with a red cross are nodes eliminated by the test (T1’) and the ones with a blue cross
are eliminated by the test (T2’). (For convenience of display, these eliminated nodes are only drawn
in the first three levels above.) For instance, the node with X = x̄3x4 is eliminated by the test (T1’)
because the minimum q such that qκ(X)−1ν(x4) ∈ xAut(U2)

4 = {x3, x4} when κ(X) = {x3 �→ x3, x4 �→ x4}
and ν(x4) = {x3 �→ x3, x4 �→ x4} is x3 and x4 �Aut(X) qκ(X)−1 = x3 as Aut(X) = {ε}. On the other hand,
the node with X = x̄3 x̄6 is eliminated by the test (T2’) as x6 �= min xAut(x̄3)

6 and xAut(x̄3)
6 = {x4, x6}. We

observe that the search tree has dead-end nodes that do not extend to any full prefix assignment.

4.4. Correctness

We now establish the correctness of procedure (P’) together with the tests (T1’) and (T2’) by re-
duction to McKay’s framework and Lemma 4. Fix j = 1, 2, . . . , k. Let us start by defining the extension
relation e ⊆ � j × � j−1 for all X ∈ � j and S ∈ � j−1 by setting Xe S if and only if

there exists a γ ∈ � such that Xγ = U j , Sγ = U j−1, and Xγ |U j−1 = Sγ . (5)

This relation is well-defined in the context of McKay’s framework:

Lemma 8. The relation (5) satisfies (E1) and (E2).

T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49 31

Proof. To establish (E1), let X ∈ � j and S ∈ � j−1 be arbitrary. It suffices to show that for all β ∈ �

we have Xe S if and only if Xβe Sβ . Let β ∈ � be arbitrary. By (4), for all γ ∈ � we have Xγ =
U j if and only if Xββ−1γ = Xββ−1γ = Xγ = U j . Similarly, for any γ ∈ � we have Sγ = U j−1 if and
only if Sββ−1γ = Sββ−1γ = Sγ = U j−1. Finally, for any γ ∈ � that satisfies Xγ = U j and Sγ = U j−1

(equivalently, β−1γ satisfies Xββ−1γ = U j and Sββ−1γ = U j−1), we have Xγ |U j−1 = Sγ if and only
if (Xβ)β

−1γ |U j−1 = Xγ |U j−1 = Sγ = (Sβ)β
−1γ . To establish (E2), observe that for an arbitrary X ∈ � j

there exists a γ ∈ � with Xγ = U j , and thus Xe S holds for S = T γ −1
, where T is obtained from

Y = Xγ by deleting the assignment to the variable u j . �
The following lemma establishes that the iteration in procedure (P’) constructs exactly the objects

X ∈ e(S); cf. procedure (P).

Lemma 9. Let S ∈ � j−1 be normalized. For all X ∈ � j we have Xe S if and only if there exists a p ∈ u
Aut(U j−1)

j
with X = U j−1 ∪ {p} and X |U j−1 = S.

Proof. From (5) we have that Xe S if and only if there exists a γ ∈ � with Xγ = U j , Sγ = U j−1,
and Xγ |U j−1 = Sγ . Since S is normalized, we have S = U j−1 and hence Uγ

j−1 = Sγ = U j−1. Thus,
γ ∈ Aut(U j−1) and

X |U j−1 = Xγ γ −1 |U j−1 = (Xγ |U j−1)
γ −1 = (Sγ)γ

−1 = S . (6)

Thus, to establish the “only if” direction of the lemma, take p = uγ −1

j , and for the “if” direction, take
γ ∈ Aut(U j−1) with pγ = u j . �

Next we show the correctness of the test (T1’) by establishing that it is equivalent with the test
(T1) for a specific canonical extension function M . Towards this end, let us use the assumed canonical
labeling map κ : � j → � to build a canonical extension function M using the template of Lemma 5. In
particular, given an X ∈ � j as input with X = U j−1 ∪{p}, first construct the canonical form Z = Xκ(X) .
In accordance with (T1’), select the minimum q ∈ U such that qκ(X)−1ν(p) ∈ u

Aut(U j)

j . Now construct

M(X) from X by deleting the value of qκ(X)−1
.

Lemma 10. The mapping X �→ M(X) is well-defined and satisfies both (M1) and (M2).

Proof. From (4) we have both Aut(Z) ≤ Aut(Z) and Zκ(X)−1ν(p) = U j . Thus,

Aut(Z)κ(X)−1ν(p) ≤ Aut(Z)κ(X)−1ν(p) = Aut(U j) .

It follows that the choice of q depends on Z and u j but not on the choices of κ(X) or ν(p). Fur-

thermore, we observe that q ∈ Z and qκ(X)−1 ∈ X . Thus, the construction of M(X) is well-defined and
(M2) holds by Lemma 5.

To verify (M1), observe that since qκ(X)−1ν(p) ∈ u
Aut(U j)

j , there exists an α ∈ Aut(U j) with

qκ(X)−1ν(p)α = u j . Thus, for γ = ν(p)α we have Xγ = (U j−1 ∪ {p})ν(p)α = Uα
j = U j , M(X)γ =

(U j \ {qκ(X)−1ν(p)})α = U j−1, and Xγ |U j−1 = M(X)γ . Thus, from (5) we have Xe M(X) and thus (M1)
holds. �

To complete the equivalence between (T1’) and (T1), observe that since X and p determine S
by X |X\{p} = S , and similarly X and qκ(X)−1

determine M(X) by X |
X\{qκ(X)−1 } = M(X), the test (T1)

is equivalent to testing whether (X, p) ∼= (X, qκ(X)−1
) holds, that is, whether p ∼=Aut(X) qκ(X)−1

holds.
Observe that this is exactly the test (T1’).

32 T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49

It remains to establish the equivalence of (T2’) and (T2). We start with a lemma that captures the
Aut(S)-orbits considered by (T2).

Lemma 11. For a normalized S ∈ � j−1 the orbits in e(S)/Aut(S) are in a one-to-one correspondence with the
elements of (u

Aut(U j−1)

j /Aut(S)) × R.

Proof. From (3) we have Aut(S) ≤ Aut(S) = Aut(U j−1) since S is normalized. Furthermore, Lemma 9

implies that every extension X ∈ e(S) is uniquely determined by the variable p ∈ u
Aut(U j−1)

j ∩ X and
the value X(p) ∈ R . Since the action (3) fixes the values in R elementwise, for any X, X ′ ∈ e(S) we
have X ∼=Aut(S) X ′ if and only if both p ∼=Aut(S) p′ and X(p) = X ′(p′). The lemma follows. �

Now order the elements X ∈ e(S) based on the lexicographic ordering of the pairs (p, X(p)) ∈
u

Aut(U j−1)

j × R . Since the action (3) fixes the values in R elementwise, we have that (T2’) holds if and
only if (T2) holds for this ordering of e(S). The correctness of procedure (P’) equipped with the tests
(T1’) and (T2’) now follows from Lemma 4.

4.5. Selecting a prefix

This section gives a brief discussion on how to select the prefix. Let Uk = {u1, u2, . . . , uk} be the set
of variables in the prefix sequence. It is immediate that there exist |R|k distinct partial assignments
from Uk to R . Let us write RUk for the set of these assignments. The group � now partitions RUk

into orbits via the action (3), and it suffices to consider at most one representative from each orbit to
obtain an exhaustive traversal of the search space, up to isomorphism. Our goal is thus to select the
prefix Uk so that the setwise stabilizer �Uk has comparatively few orbits on RUk compared with the
total number of such assignments. In particular, the ratio of the number of orbits |RUk /�Uk | to the
total number of mappings |R|k can be viewed as a proxy for the achieved symmetry reduction and as
a rough3 proxy for the speedup factor obtained compared with no symmetry reduction at all.

A yet further consideration in selecting a prefix is the extent of symmetry remaining under the
action (3) once a partial assignment X : Uk → R has been fixed. This is precisely captured by the
group Aut(X), whose generators are available for each generated X as a side-effect of executing the
canonical labeling map κ for X to perform the test (T1’). Thus, as a side-effect of procedure (P’) we
obtain a precise characterization of the symmetry remaining at each generated partial assignment X .
This remaining symmetry together with the ratio |RUk /�Uk | to |R|k can be used to assess whether a
prefix is appropriate to achieve a desired extent of symmetry reduction.

4.6. Subroutines

By our assumption, the canonical labeling map κ produces as a side-effect a set of generators for
the automorphism group Aut(X) for a given input X . We also assume that generators for the groups
Aut(U j) for j = 0, 1, . . . , k can be precomputed by similar means. This makes the canonical labeling
map essentially the only nontrivial subroutine needed to implement procedure (P’). Indeed, the orbit
computations required by tests (T1’) and (T2’) are implementable by elementary permutation group
algorithms (Butler, 1991; Seress, 2003). Section 6 describes how to implement κ by reduction to
vertex-colored graphs.4

3 Here it should be noted that executing the symmetry reduction carries in itself a nontrivial computational cost. That is, there
is a tradeoff between the potential savings in solving the system gained by symmetry reduction versus the cost of performing
symmetry reduction. For example, if the instance has no symmetry and � is a trivial group, then executing symmetry reduction
merely makes it more costly to solve the system.

4 Reduction to vertex-colored graphs is by no means the only possibility to obtain the canonical labeling map to enable (P’),
(T1’), and (T2’). Another possibility would be to represent � directly as a permutation group and use dedicated permutation-
group algorithms (Leon, 1991, 1997). Our present choice of vertex-colored graphs is motivated by easy availability of carefully
engineered implementations for working with vertex-colored graphs.

T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49 33

5. Value symmetries

The previous section considered prefix-assignment generation subject to an action of a group �
on the set of variables U . In this section, we extend the framework so that it captures symmetries in
values assigned to variables, or value symmetries. Towards this end, we extend the domain that records
the symmetries from U to U × R , where R is the set of values that can be assigned to the variables
in U . Accordingly, in what follows we assume that the group � acts on U × R as well as on U , the
latter by restriction.

The action of the group � on U × R may not be completely arbitrary, however, because we want
partial assignments X : W → R with W ⊆ U to remain well-defined functions under the action of
�. This property is naturally captured by the wreath product group Sym(R) � Sym(U) and its natural
action on U × R .

5.1. The wreath product and its actions

We will follow the convention that Sym(R) �Sym(U) acts on U × R by first acting on U and then on
R . For accessibility and convenience, we review our conventions in detail. The group Sym(R) � Sym(U)

consists of all pairs (π, σ), where π ∈ Sym(U) is a permutation of U and σ : U → Sym(R) associates
a permutation σ(u) ∈ Sym(R) with each element u ∈ U . In particular, Sym(R) � Sym(U) has order
|U |! · (|R|!)|U | .

The product of two elements (π1, σ1), (π2, σ2) ∈ Sym(R) � Sym(U) is defined by (π, σ) =
(π1, σ1)(π2, σ2), where

π = π1π2 (7)

and for all u ∈ U we set

σ(u) = σ1(uπ−1
2)σ2(u) . (8)

The inverse of an element (π, σ) ∈ Sym(R) � Sym(U) is thus given by (π, σ)−1 = (ρ, τ), where

ρ = π−1 (9)

and for all u ∈ U we have

τ (u) = σ(uπ)−1 . (10)

An element (π, σ) ∈ Sym(R) � Sym(U) acts on an element u ∈ U by

u(π,σ) = uπ (11)

and on a pair (u, r) ∈ U × R by

(u, r)(π,σ) = (uπ , rσ (uπ)) . (12)

Here in particular the intuition is that we first act on (u, r) with π to obtain (uπ , r), and then act
with σ(uπ) to obtain (uπ , rσ(uπ)). Extend the action (11) elementwise to subsets W ⊆ U .

5.2. Partial assignments and isomorphism

Let � be a subgroup of Sym(R) � Sym(U) and let � act on U and U × R by (11) and (12), respec-
tively. Furthermore, we let an element γ = (π, σ) ∈ � act on a partial assignment X : W → R with
W ⊆ U to produce the partial assignment Xγ : W π → R defined for all u ∈ W π by

Xγ (u) = X(uπ−1
)σ (u) . (13)

In analogy with Lemma 6, let us verify that the value-permuting action (13) is well-defined.

34 T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49

Lemma 12. The action (13) is well-defined.

Proof. We observe that for the identity ε ∈ � of � ≤ Sym(R) � Sym(U), we have Xε = X . Furthermore,
for all γ1 = (π1, σ1) ∈ �, γ2 = (π2, σ2) ∈ �, and u ∈ W γ1γ2 = (W γ1)γ2 , by (13), (7), and (8), we have

Xγ1γ2(u) = X(u(π1π2)−1
)σ1(uπ−1

2)σ2(u) = X(uπ−1
2 π−1

1)σ1(uπ−1
2)σ2(u)

= Xγ1(uπ−1
2)σ2(u) = (Xγ1)γ2(u) . �

Let us recall that for X : W → R we write X = W for the underlying set of variables assigned by
X . In analogy with Section 4.1, the underline map is a homomorphism of group actions that satisfies
(4) for the action (13) and the action (11) extended elementwise to subsets of U . Isomorphism for
partial assignments is now induced by the action (13).

5.3. Generating normalized assignments

Working with the group action (13), let u1, u2, . . . , uk be k distinct elements of U , and let U j =
{u1, u2, . . . , u j} for j = 0, 1, . . . , k. Let � j consist of all partial assignments X : W → R with W ∼= U j .
We construct exactly one object from each orbit of � on � j , using as seeds exactly one object from
each orbit of � on � j−1, for each j = 1, 2, . . . , k, assuming the availability of canonical labeling maps
κ : � j → �. We say the assignment X ∈ � j is normalized if X = U j .

We now present a version of the procedure (P’) modified for the group action (13). Let us fix
j = 1, 2, . . . , k. We assume that the procedure is invoked for exactly one normalized representative
S ∈ � j−1 from each orbit in � j−1/�.

(P”) Let a normalized S ∈ � j−1 be given as input. For each p ∈ u
Aut(U j−1)

j and each
r ∈ R , construct the assignment X : U j−1 ∪ {p} → R defined by X(p) = r and
X(u) = S(u) for all u ∈ U j−1. Perform the isomorph rejection tests (T1’) and
(T2”) on X and S . If both tests accept, visit Xν(p) where ν(p) ∈ Aut(U j−1) nor-
malizes X .

In particular, procedure (P”) has two differences compared with procedure (P’). First, the underlying
group action is (13). Second, the test (T2’) has been replaced with a new test (T2”) to account for
more extensive orbits of pairs (p, r) under the action of Aut(S).

5.4. The isomorph rejection tests

Assume that the elements of U , R , and U × R have been arbitrarily ordered and that κ : � j → �

is a canonical labeling map. Suppose that X has been constructed by extending a normalized S with
X = S ∪ {p} = U j−1 ∪ {p} and X(p) = r. Let us first recall the test (T1’) for convenience:

(T1’) Subject to the ordering of U , select the minimum q ∈ U such that qκ(X)−1ν(p) ∈
u

Aut(U j)

j . Accept if and only if p ∼=Aut(X) qκ−1(X).

The new isomorph rejection test is as follows:

(T2”) Accept if and only if (p, r) = min (p, r)Aut(S) subject to the ordering of U × R .

5.5. Correctness

We now establish the correctness of the modified procedure (P”). Fix j = 1, 2, . . . , k. Define the
extension relation e ⊆ � j × � j−1 as in (5). This relation is well-defined in the context of McKay’s
framework under the modified group action.

T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49 35

Lemma 13. The relation (5) satisfies (E1) and (E2) when the group action is as defined in (13).

Proof. Identical to Lemma 8 since (4) holds for the action (13) and the action (11) extended elemen-
twise to subsets of U . �

The correctness analysis of the test (T1’) proceeds identically as in Section 4.1, relying on (4) in
the proof of Lemma 10. To establish the correctness of the new test (T2”), we first observe that the
counterpart of Lemma 9 holds for the modified group action.

Lemma 14. Let S ∈ � j−1 be normalized. For all X ∈ � j , we have Xe S if and only if there exists a p ∈ u
Aut(U j−1)

j
with X = U j−1 ∪ {p} and X |U j−1 = S.

Proof. First observe that (6) holds for the action (13). Then proceed as in the proof of Lemma 9. �
Let us now proceed to the counterpart of Lemma 11.

Lemma 15. For a normalized S ∈ � j−1 , the orbits in e(S)/Aut(S) are in a one-to-one correspondence with
the orbits in (u

Aut(U j−1)

j × R)/Aut(S).

Proof. Lemma 14 implies that every extension X ∈ e(S) is uniquely determined by the variable p ∈
u

Aut(U j−1)

j ∩ X and the value X(p) ∈ R . That is, the elements in e(S) are in one-to-one correspondence

with elements in uAut(U j−1)

j × R .
Let Aut(S) act on e(S) via (13); this action is well-defined by Lemma 13 and (E1) since for all

α ∈ Aut(S) we have Xe S if and only if Xαe S . Let Aut(S) act on u
Aut(U j−1)

j × R via (12); this action is
well-defined because S is normalized and hence Aut(S) ≤ Aut(S) = Aut(U j−1) holds by (4).

Let X, Y ∈ e(S) be arbitrary with X = U j−1 ∪ {p} and Y = U j−1 ∪ {q}. We now claim that X ∼=Aut(S)

Y holds under the action (13) if and only if (p, X(p)) ∼=Aut(S) (q, Y (q)) holds under the action (12).
To see this, first observe that for all α ∈ Aut(S) we have Uα

j−1 = Sα = S = U j−1 by (4) since S is
normalized. Furthermore, X |U j−1 = Y |U j−1 = S . Thus, by (13) it holds that for all α = (π, σ) ∈ Aut(S)

with π ∈ Sym(U) and σ : U → Sym(R) we have Y = Xα if and only if q = pπ and Y (q) = Xα(q) =
X(qπ−1

)σ (q) = X(p)σ (pπ) . Or what is the same by (12), if and only if (q, Y (q)) = (pπ , X(p)σ (pπ)) =
(p, X(p))α . �

Order the elements X ∈ e(S) based on the lexicographic ordering of the pairs (p, X(p)) ∈
u

Aut(U j−1)

j × R . We now have that (T2”) holds if and only if (T2) holds for this ordering of e(S). The
correctness of procedure (P”) equipped with the tests (T1’) and (T2”) now follows from Lemma 4.

6. Representation using vertex-colored graphs

This section describes one possible approach to represent the group of symmetries � ≤ Sym(U)

of a system of constraints over a finite set of variables U taking values in a finite set R . Our repre-
sentation of choice will be vertex-colored graphs over a fixed finite set of vertices V . In particular,
isomorphisms between such graphs are permutations γ ∈ Sym(V) that map edges onto edges and
respect the colors of the vertices; that is, every vertex in V maps to a vertex of the same color under
γ . It will be convenient to develop the relevant graph representations in steps, starting with the rep-
resentation of the constraint system and then proceeding to the representation of setwise stabilizers
and partial assignments. These representations are folklore (see e.g. Kaski and Östergård, 2006) and
are presented here for completeness of exposition only.

36 T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49

6.1. Representing the constraint system

To capture � ∼= Aut(G) via a vertex-colored graph G with vertex set V , it is convenient to represent
the variables U directly as a subset of vertices U ⊆ V such that no vertex in V \ U has a color that
agrees with a color of a vertex in U . We then seek a graph G such that Aut(G) ≤ Sym(U) × Sym(V \
U) projected to U is exactly �. In most cases such a graph G is concisely obtainable by encoding
the system of constraints with additional vertices and edges joined to the vertices representing the
variables in U . We discuss two examples.

Example 16. Consider the system of clauses (1) and its graph representation (2). The latter can be
obtained as follows. First, introduce a blue vertex for each of the six variables of (1). These blue
vertices constitute the subset U . Then, to accommodate negative literals, introduce a red vertex joined
by an edge to the corresponding blue vertex representing the positive literal. These edges between
red and blue vertices ensure that positive and negative literals remain consistent under isomorphism.
Finally, introduce a green vertex for each clause of (1) with edges joining the clause with each of its
literals. It is immediate that we can reconstruct (1) from (2) up to labeling of the variables even after
arbitrary color-preserving permutation of the vertices of (2). Thus, (2) represents the symmetries of
(1).

Let us next discuss an example where it is convenient to represent the symmetry at the level of
original constraints rather than at the level of clauses.

Example 17. Consider the following system of eight cubic equations over 24 variables taking values
modulo 2:

x11 y11z11 + x12 y12z12 + x13 y13z13 = 0 x21 y11z11 + x22 y12z12 + x23 y13z13 = 0
x11 y11z21 + x12 y12z22 + x13 y13z23 = 0 x21 y11z21 + x22 y12z22 + x23 y13z23 = 1
x11 y21z11 + x12 y22z12 + x13 y23z13 = 1 x21 y21z11 + x22 y22z12 + x23 y23z13 = 1
x11 y21z21 + x12 y22z22 + x13 y23z23 = 1 x21 y21z21 + x22 y22z22 + x23 y23z23 = 1

This system seeks to decompose a 2 × 2 × 2 tensor (whose elements appear on the right hand sides
of the equations) into a sum of three rank-one tensors. The symmetries of addition and multiplication
modulo 2 imply that the symmetries of the system can be represented by the following vertex-colored
graph:

Indeed, we encode each monomial in the system with a product-vertex, and group these product-
vertices together by adjacency to a sum-vertex to represent each equation, taking care to introduce
two uniquely colored constant-vertices to represent the right-hand side of each equation.

Remark. The representation built directly from the system of polynomial equations in Example 17
concisely captures the symmetries in the system independently of the final encoding of the system
(e.g. as CNF) for solving purposes. In particular, building the graph representation from such a final
CNF encoding (cf. Example 16) results in a less compact graph representation and obfuscates the
symmetries of the original system, implying less efficient symmetry reduction.

T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49 37

6.2. Representing the values

In what follows it will be convenient to assume that the graph G contains a uniquely colored
vertex for each value in R . (Cf. the graph in Example 17.) That is, we assume that R ⊆ V \ U and that
Aut(G) projected to R is the trivial group.

6.3. Representing setwise stabilizers in the prefix chain

To enable procedure (P’) and the tests (T1’) and (T2’), we require generators for Aut(U j) ≤ � for
each j = 0, 1, . . . , k. More generally, given a subset W ⊆ U , we seek to compute a set of generators
for the setwise stabilizer Aut�(W) = �W = {γ ∈ � : W γ = W }, with W γ = {wγ : w ∈ W }. Assuming
we have available a vertex-colored graph G that represents � by projection of AutSym(V)(G) to U , let
us define the graph G ↑W by selecting one vertex r ∈ R and joining each vertex w ∈ W with an edge
to the vertex r. It is immediate that AutSym(V)(G ↑W) projected to U is precisely Aut�(W).

6.4. Representing partial assignments

Let X : W → R be an assignment of values in R to variables in W ⊆ U . Again to enable procedure
(P’) together with the tests (T1’) and (T2’), we require a canonical labeling κ(X) and generators for
the automorphism group Aut(X). Again assuming we have a vertex-colored graph G that represents
�, let us define the graph G ↑ X by joining each vertex w ∈ W with an edge to the vertex X(w) ∈ R .
It is immediate that AutSym(V)(G ↑ X) projected to U is precisely Aut�(X). Furthermore, a canonical
labeling κ(X) can be recovered from κ(G ↑ X) and the canonical form (G ↑ X)κ(G↑X) .

6.5. Using tools for vertex-colored graphs

Given a vertex-colored graph G as input, practical tools exist for computing a canonical labeling
κ(G) ∈ Sym(V) and a set of generators for Aut(G) ≤ Sym(V). Such tools include bliss (Junttila and
Kaski, 2007), nauty (McKay, 1981; McKay and Piperno, 2014), and traces (McKay and Piperno, 2014).
Once the canonical labeling and generators are available in Sym(V) it is easy to map back to � by
projection to U so that corresponding elements of � are obtained.

7. Parallel implementation

This section outlines the parallel implementation of our technique into a tool called reduce. The
implementation is written in C++ and structured as a preprocessor that works with an explicitly given
graph representation. In the absence of such an input graph, the graph is constructed automatically
from CNF as described in Section 6. The nauty (McKay, 1981; McKay and Piperno, 2014) canonical
labeling software for vertex-colored graphs is utilized as a subroutine.

7.1. Backtracking search for partial assignments

The backtracking search for partial assignments is implemented using a stack that stores nodes
of the search tree. (Recall Example 7 for an illustration of a search tree.) Each node X in the stack
represents the complete subtree of the search tree rooted at X . Initially, the stack consists of the
empty assignment, which represents the entire search tree.

Throughout the search, we maintain the invariant that the nodes stored in the stack represent
pairwise node-disjoint subtrees of the search tree, which enables us to work through the contents of
the stack in arbitrary order and to distribute the contents of the stack to multiple compute nodes as
necessary; we postpone a detailed discussion of the distribution of the stack and parallelization of the
search to Section 7.2.

Viewed as a sequential process, the search proceeds by iterating the following work procedure
until the stack is empty:

38 T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49

(W) Pop an assignment X� from the stack. Unless X� is the empty assignment (that
is, unless � = 0), it will have the form X� : U�−1 ∪ {p�} → R for some p� ∈
uAut(U�−1)

� . Furthermore, X� extends the normalized assignment S�−1 = X |U�−1 .
Execute the test (T1’) on X� and S�−1. If the test (T1’) fails, reject the subtree
of X� from further consideration. If either � = 0 or the test (T1’) passes, then
normalize X� to obtain S� = Xν(p�)

� with S� : U� → R . At this point S� has
been accepted as the unique representative of its isomorphism class. If � = k,
then output the full prefix assignment S�. If � ≤ k − 1, proceed to consider
extensions of S� at level � + 1 as follows. Iterate over each variable-value pair
(p�+1, r) with p�+1 ∈ uAut(U�)

�+1 and r ∈ R . Construct the assignment X�+1 : U� ∪
{p�+1} → R by setting X�+1(p�+1) = r and X�+1(u) = S�(u) for all u ∈ U�. For
each constructed X�+1, perform the test (T2’). If the test (T2’) passes, push X�+1
to the stack.

We observe that the procedure (W) above implements procedure (P’) using the stack to maintain the
state of the search. In particular, when a single worker process executes the search, we obtain a stan-
dard depth-first traversal of the search tree. However, we also observe that procedure (W) pushes all
the child nodes of S� to the stack before consulting the stack for further work. This enables multiple
worker processes, all executing procedure (W), to work in parallel, if we take care to ensure that (i)
push and pop operations to the stack are atomic, and (ii) the termination condition is changed from
the stack being empty to the stack being empty and all worker procedures being idle. Furthermore, as
presented in more detail in what follows, we can distribute the stack across multiple compute nodes
by appropriately communicating push and pop requests between nodes.

7.2. Parallelization and distributing the stack

We parallelize the search using the OpenMPI implementation (Gabriel et al., 2004) of the Message
Passing Interface (MPI) (Message Passing Interface Forum, 2015; Pacheco, 1997; Gropp et al., 2014).
We provide two different communication modes, both of which rely on a master–slave paradigm with
N processes. The master process with rank 0 distributes the work to N − 1 worker processes that, in
turn, communicate their results back to the master process. We now proceed with a more detailed
description of the two communication modes.

Master stack mode. In the simpler of the two modes, the master process stores the entire stack. The
worker processes interact with the master directly, making push and pop requests to the master
process via MPI messages. While inefficient in terms of communication and in terms of potentially
overwhelming the master node, this mode provides load balancing that is empirically adequate for a
small number of compute nodes and instances whose search tree is not too wide.

Hierarchical stack mode. The hierarchical stack mode divides the N − 1 worker nodes into M classes,
each of which is associated with a subset of levels of the search tree. Each worker process maintains a
local stack for nodes at their respective levels. Whenever a worker process pushes an assignment, the
assignment is stored in the local stack if the level of the assignment belongs to the levels associated
with the node; otherwise, the assignment is communicated to the master process which then pushes
the assignment to the global stack maintained in the master process. Whenever a worker process pops
an assignment, the worker process first consults its local stack and pops the assignment from the
local stack if an assignment is available; otherwise, the worker process makes a pop request to the
master process, which supplies an assignment from the global stack as soon as an assignment of one
of the levels associated with the worker becomes available. This strategy helps in cases where the
search tree becomes very wide; in our experiments, we found that a simple thresholding into one
low-level process that processes levels 1, 2, . . . , t , and N − 2 high level processes that process levels
t + 1, t + 2, . . . , k was sufficient.

For both modes of communication, the master process keeps track of the worker processes that
are idle, that is, workers that have sent pop requests that have not been serviced. If all workers are

T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49 39

idle and the global stack is empty, the master process instructs all worker processes to exit and then
exits itself.

These communication modes serve as a proof-of-concept of the practical parallelizability of our
present technique for symmetry reduction. For parallelization to very large compute clusters, we ex-
pect that more advanced communication strategies will be required (see, for example, Dinan et al.,
2009; Pezzi et al., 2007 or Pacheco, 1997); however, the implementation of such strategies is beyond
the scope of the present work.

8. Experiments

This section documents an experimental evaluation of our parallel implementation of the adaptive
prefix-assignment technique. Our main objective is to demonstrate the effective parallelizability of the
approach, but we will also report on experiments comparing the performance of our tool (without
parallelization) with existing tools that do not parallelize.

8.1. Instances

Let us start by defining the families of input instances used in our experiments. First, we study the
usefulness of an auxiliary symmetry graph with systems of polynomial equations aimed at discovering
the tensor rank of a small m × m × m tensor T = (ti jk) modulo 2, with ti jk ∈ {0, 1} and i, j, k =
1, 2, . . .m. Computing the rank of a given tensor is NP-hard (Håstad, 1990).5 In precise terms, we seek
to find the minimum r such that there exist three m × r matrices A, B, C ∈ {0, 1}m×r such that for all
i, j, k = 1, 2, . . . , m we have

r∑

�=1

ai�b j�ck� = ti jk (mod 2) . (14)

Such instances are easily compilable into CNF with A, B, C constituting three matrices of Boolean
variables so that the task becomes to find the minimum r such that the compiled CNF instance is
satisfiable. Independently of the target tensor T , such instances have a symmetry group of order at
least r! due to the fact that the columns of the matrices A, B, C can be arbitrarily permuted so that
(14) maps to itself. In our experiments, we select the entries of T uniformly at random so that the
number of 1s in T is exactly n. We use the first three rows of the matrix A as the prefix sequence.

As a further family of instances with considerable symmetry, we study the Clique Coloring Prob-
lem (CCP) that yields empirically difficult-to-solve instances for contemporary SAT solvers (Manthey,
2014). For positive integer parameters n, s, and t , the CCP asks whether there exists an undirected
t-colorable graph on n nodes such that the graph contains a complete graph Ks as a subgraph. Such
instances are unsatisfiable if s > t . The particular encoding that we use (see Manthey, 2014) is as
follows. Introduce variables xi, j for 1 ≤ i, j ≤ n with i �= j to indicate the presence of an edge joining
vertex i and j, variables yp, j for 1 ≤ p ≤ s with 1 ≤ j ≤ n to indicate that vertex j occupies slot p in
a clique, and variables zi,k for 1 ≤ i ≤ n and 1 ≤ k ≤ t to indicate that vertex i has color k. The clauses
are

1.
∧

1≤p≤s

∨
1≤ j≤n yp, j ,

2.
∧

1≤p≤s

∧
1≤q≤s:p �=q

∧
1≤ j≤n yp, j ∨ yq, j ,

3.
∧

1≤p≤s

∧
1≤q≤s:p �=q

∧
1≤i≤n

∧
1≤ j≤n:i �= j yp,i ∨ yq, j ∨ xi, j ,

5 Yet considerable interest exists to determine tensor ranks of small tensors, in particular tensors that encode and enable
fast matrix multiplication algorithms; cf. Alekseev (2014, 2015), Alekseev and Smirnov (2013), Alekseyev (1985), Bläser (1999,
2003), Courtois et al. (2012), Hopcroft and Kerr (1971), Laderman (1976), Strassen (1969), Winograd (1971). For numerical work
on discovering small low-rank tensor decompositions, cf. Benson and Ballard (2015), Huang et al. (2017), Smirnov (2013).

40 T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49

4.
∧

1≤k≤t

∧
1≤i≤n

∧
1≤ j≤n:i �= j zi,k ∨ z j,k ∨ xi, j , and

5.
∧

1≤i≤n

∨
1≤k≤t zi,k .

We consider unsatisfiable instances with parameters s ∈ {5, 6}, t = s − 1, and let n vary from 15 to 20
in the case of s = 5 and from 12 to 24 when s = 6. We use the variables y1,1, y1,2, . . . , y1,n as the
prefix sequence. The auxiliary graph for encoding the symmetries is constructed as follows. Introduce
a vertex for each variable xi, j , for each variable yp, j , and for each variable zi,k . These vertices are
colored with three distinct colors, one color for each type of variable. Next, introduce three types of
auxiliary vertices, with each type colored with its own distinct color. Introduce vertices 1, 2, . . . , n
for the n nodes, vertices 1′, 2′, . . . , s′ for the s clique slots, and vertices 1′′, 2′′, . . . , t′′ for the t node
colors. Thus, in total the graph consists of n(n − 1) + sn + tn + n + s + t vertices colored with six
distinct colors. To complete the construction of the auxiliary graph, introduce edges to the graph so
that each variable xi, j is joined to the nodes i and j, each variable yp, j is joined to clique slot p′ and
to the node j, and each variable zi,k is joined to the node i and to the node color k′′ .

We study the parallelizability of our algorithm using two input instances with hard combinato-
rial symmetry. The first instance, which we call R(4, 4; 18) in what follows, is an unsatisfiable CNF
instance that asks whether there exists an 18-node graph with the property that neither the graph
nor its complement contains the complete graph K4 as a subgraph. That is, we ask whether the Ram-
sey number R(4, 4) satisfies R(4, 4) > 18. (In fact, R(4, 4) = 18 (Graham et al., 1990).) No auxiliary
graph is provided to accompany this instance. The second instance consists of an empty CNF over
36 variables together with an auxiliary graph that encodes the isomorphism classes of 9-node graphs
by inserting a variable vertex in the middle of each of the

(9
2

) = 36 edges of the complete graph
K9. Applying reduce with a length-36 prefix sequence (listing the 36 variable vertices in any order)
yields a complete listing of all the 274668 isomorphism classes of 9-node graphs. The number of iso-
morphism classes of graphs of order n is the sequence A000088 in the Online Encyclopedia of Integer
Sequences.

Finally, we study the residual symmetry and the effect of symmetry reduction on the sizes of the
automorphism group with the R(4, 4; 18) instance described above, as well as instances arising from
the Pigeon-Hole Principle (PHP), and the construction of Steiner Triple Systems (STS). A PHP instance
asks whether we can assign n pigeons into n − 1 holes such that each hole is occupied by at most
one pigeon, with the variables encoding whether pigeon i occupies hole j. We use 11 and 12 pigeons
in our experiments. An STS instance asks whether, given a universe of n elements, we can choose a
set of triples (3-subsets) of the elements such that each pair of elements occurs in exactly one chosen
triple; the

(n
3

)
variables encode whether a triple is included in the system. It is well-known that such

sets of triples exist if and only if n ≡ 1 or n ≡ 3 (mod 6). In our experiments, we choose n = 16, 18, 20
so the instances are unsatisfiable. We use the following prefix sequences: for R(4, 4; 18), we simply
fix either one or two vertices, yielding a sequence of length 17 or 33, respectively. For PHP instances,
the prefix sequence simply fixes one or two pigeons, that is, has length n − 1 or 2(n − 1). For STS
instances, the prefix sequence is chosen by fixing one triple (say, {1, 2, 3}), and one pair present in
the triple (say, {1, 2}), and then fixing all triples that contain the pair and thus cannot be included in
the set if the initial triple is included, yielding a prefix of length n − 2.

8.2. Hardware and software configuration

The experiments were performed on a cluster of Dell PowerEdge C4130 compute nodes, each
equipped with two Intel Xeon E5-2680v3 CPUs (12 cores per CPU, 24 cores per node) and 128 GiB
(8×16 GiB) of DDR4-2133 main memory, running the CentOS 7 distribution of GNU/Linux. Compar-
ative experiments were executed by allocating a single core on a single CPU of a compute node. All
experiments were conducted as batch jobs using the slurm batch scheduler, and running between
one to four physical nodes, with one to 24 cores allocated in each node, using one MPI process per
core. OpenMPI version 2.1.1 was used as the MPI implementation.

T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49 41

8.3. Symmetry reduction tools and SAT solvers

We report on three methods for symmetry reduction: (1) no reduction (“raw”), (2) breakid
version 2.1-152-gb937230-dirty6 (Devriendt et al., 2016), (3) our technique (“reduce”) with a user-
selected prefix. Three different SAT solvers were used in the experiments: lingeling and ilin-
geling version bbc-9230380 (Biere, 2016), and glucose version 4.1 (Audemard and Simon,
2016). We use the incremental solver ilingeling together with the incremental CNF output of
reduce, which is available from the command line of reduce via the “-i” modifier and is piped,
as is, to ilingeling.

8.4. Experiments on parallel speedup

This section documents experiments that study the wall-clock running time of symmetry reduction
using our tool reduce as we increase the number of CPU cores and compute nodes participating in
parallel symmetry reduction. The range of the experiments was between one to four compute nodes,
with one to 24 cores allocated in each node. One MPI process was launched per core. Each node
was exclusively reserved for the experiment. In addition to the wall-clock running time, we measure
the total reserved time that is obtained by recording, for each core, the length of the time interval
the core is reserved for an experiment, and taking the sum of these time intervals. The total reserved
time conservatively tracks the total resources consumed by an experiment in a batch job environment
regardless of whether each allocated core is running or idle.

The results of our parallel speedup experiments are displayed in Fig. 1. The top-left plot in the
figure displays the parallel speedup (ratio of parallel wall-clock running time to sequential running
time) of running our tool reduce on the instance R(4, 4; 18) with a length-33 prefix sequence as
a function of the number of cores used for one, two, and four allocated compute nodes. We also
display the line y = x for reference to compare against perfect linear speedup. As the number of
cores grows, in the top-left plot we observe linear scaling of the speedup as a function of the number
of cores. The slope of the speedup yet remains somewhat short of the perfect y = x scaling. This is
most likely due to the use of the master stack mode and associated communication overhead. The
top-right plot displays the total reserved time to demonstrate the total resource usage in addition to
the parallel speedup. Table 1 displays the number of canonical partial assignments at different levels
of the search tree explored by reduce.

The two plots in the middle row of Fig. 1 display the parallel speedup and the total reserved time
of executing our tool reduce on the instance A000088 (with n = 9 and a length-36 prefix sequence)
in the master stack mode. This instance requires extensive stack access with many easy instances of
canonical labeling (cf. Table 2 and compare with Table 1); accordingly we observe poor speedup from
parallelization in the master stack mode. The two plots in the bottom row of Fig. 1 show an otherwise
identical experiment but now executed in hierarchical stack mode with the threshold parameter set
to t = 21, in which case both the parallel speedup obtained and the total resource usage become
substantially better.

When the number of processes is small, Fig. 1 reveals inefficiency in terms of the total reserved
time compared with a larger number of processes. This inefficiency is explained by two factors. First,
when the number of processes is small, a significant fraction of the total reserved time is used by the
master process which does not contribute work to the exploration of the search tree but does con-
sume reserved time from the start to the end of the computation. As soon as more worker processes
start exploring the search tree, the total reserved time decreases because the time consumed by the
master process decreases. Second, in hierarchical stack mode, a small number of processes means that
some of the worker nodes processing lower levels of the search tree can run out of work—but will still
consume total reserved time—as assignments in these levels are exhausted, while the small number
of processes assigned to work on the higher levels of the tree still remain at work. This bottleneck
can be alleviated by increasing the number of workers associated with the higher levels.

6 We thank Bart Bogaerts for implementing custom graph input in breakid.

42 T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49

Fig. 1. The plots on the left display the parallel speedup factor obtained with increasing number of cores. The plots on the right
display the total reserved time in seconds of all the cores with increasing number of cores. The first row shows the instance
R(4, 4; 18), with parallelization executed using the master stack mode of communication. We observe solid parallel speedup
with increasing number of cores. The second row shows the instance A000088 using the master stack mode of communication.
Here the speedup is unsatisfactory due to extensive accesses to the master stack caused by a wide search tree with many
easy instances of canonical labeling (cf. Table 2). This bottleneck can be alleviated by using the hierarchical stack mode. The
third row shows the instance A000088 executed in the hierarchical stack mode. Now we observe solid parallel speedup with
increasing number of cores. The peaks in the total reserved time for a small number of cores are caused by an unbalanced
work allocation between the cores that eases with increasing number of cores; see Section 8.4.

T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49 43

Table 1
The number of canonical partial assignments in the instance R(4, 4; 18) at dif-
ferent levels of the search tree explored by reduce.

level assignments

1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
10 11
11 12

level assignments

12 13
13 14
14 15
15 16
16 17
17 18
18 96
19 300
20 560
21 910
22 1344

level assignments

23 1848
24 2400
25 2970
26 3520
27 4004
28 4368
29 4550
30 4480
31 4080
32 3264
33 1050

Table 2
The number of canonical partial assignments in the instance A000088 at differ-
ent levels of the search tree explored by reduce. We observe that the search
tree is considerably wider at the intermediate levels compared with the last
level.

level assignments

1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 42
10 120
11 200
12 280

level assignments

13 336
14 336
15 140
16 1216
17 5256
18 9936
19 13664
20 13104
21 2676
22 34500
23 183120
24 328032

level assignments

25 346376
26 47418
27 644016
28 3256288
29 4336496
30 508140
31 5245032
32 19768096
33 2409488
34 13814848
35 4147832
36 274668

8.5. Experiments comparing with other tools

We compared our present tool reduce against the tool breakid (Devriendt et al., 2016). Since
breakid does not parallelize, no parallelization was used in these experiments and all experiments
were executed using a single compute core. All running times displayed in the tables that follow are
in seconds, with “t/o” indicating a time-out of 25 hours of wall-clock time. Other compute load was
in general present on the compute nodes where these experiments were run.

Table 3 shows the results of a tensor rank computation modulo 2 for two random tensors T with
m = 5, n = 9 and m = 5, n = 20 with (top table) and without (bottom table) an auxiliary graph. When
m = 5 and n = 9, the tensor has rank 8 and decompositions for rank 7 and 8 are sought. When m = 5
and n = 20, the tensor has rank 9 and decompositions of rank 8 and 9 are sought. For both tensors we
observe decreased running time due to symmetry reduction. Comparing the top and bottom tables,
we observe the relevance of the graph representation of the symmetries in (14), which are not easily
discoverable from the compiled CNF. As the auxiliary graph, we used the graph representation of the
system (14), constructed as in Example 17.

Table 4 shows the results of applying breakid and our tool reduce as preprocessors for solving
instances of the Clique Coloring Problem. We observe that for sufficiently large instances, our tool is
faster than breakid in the combined runtime of preprocessor and solver.

Table 5 compares running times of reduce on instances of the Clique Coloring Problem (i) using
the graph automatically constructed from CNF, and (ii) using a tailored auxiliary graph constructed as
described in Section 8.1. For these instances, the available symmetry can be easily discovered directly

44 T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49

Table 3
Comparing different tools for preprocessing and then solving instances with hard symmetry not easily discoverable from a
compiled CNF encoding. Here the instances ask for modulo-2 tensor decompositions for two 5 × 5 × 5 tensors with (top) and
without (bottom) an auxiliary graph. We observe that the auxiliary graph gives a marked improvement in the running times of
preprocessing, making all the instances tractable. Without the auxiliary graph to highlight the symmetry, the two unsatisfiable
instances are intractable within the timeout threshold of 90,000 seconds. All running times are in seconds.

with auxiliary graph

m r n raw prep.
breakid

breakid prep.
reduce

reduce Sat?

glucose lingeling glucose lingeling glucose lingeling ilingeling

5 7 9 t/o t/o 0.28 30.07 30.73 87.35 77.87 66.40 47.67 No
5 8 9 0.36 3.91 0.63 0.33 5.61 290.70 1.69 13.93 0.50 Yes
5 8 20 t/o t/o 0.61 1078.54 1273.49 290.78 2641.97 7699.27 885.01 No
5 9 20 1.44 1.28 1.68 72.09 26.33 881.85 228.06 371.09 40.57 Yes

without auxiliary graph

m r n raw prep.
breakid

breakid prep.
reduce

reduce Sat?

glucose lingeling glucose lingeling glucose lingeling ilingeling

5 7 9 t/o t/o 0.64 t/o t/o t/o n/a n/a n/a No
5 8 9 0.36 3.91 0.60 0.40 1.22 t/o n/a n/a n/a Yes
5 8 20 t/o t/o 0.32 t/o t/o t/o n/a n/a n/a No
5 9 20 1.44 1.28 1.59 3.30 15.10 t/o n/a n/a n/a Yes

Table 4
Comparing different tools for preprocessing and then solving instances with hard symmetry. Here the instances ask for solutions
to the Clique Coloring Problem with parameters indicated on the left. On this family of instances, our tool reduce is faster
than the tool breakid for sufficiently large parameters. All instances are unsatisfiable. All running times are in seconds. A
timeout threshold of 90,000 seconds was applied.

n s t raw prep.
breakid

breakid prep.
reduce

reduce

glucose lingeling glucose lingeling glucose lingeling ilingeling

15 5 4 722.32 811.59 2.82 126.35 154.27 19.34 19.82 31.61 32.92
16 5 4 1038.88 1839.05 10.68 238.52 570.19 8.07 25.62 39.55 38.31
17 5 4 4481.54 8865.19 1.94 597.35 498.20 12.81 105.35 57.96 54.66
18 5 4 2709.96 4762.23 9.96 559.86 460.70 14.11 40.68 74.71 66.19
19 5 4 6701.65 6819.77 10.66 586.81 651.10 19.13 107.73 106.62 85.38
20 5 4 8901.20 7777.35 1.15 1294.31 1579.77 25.37 157.91 134.55 248.56
12 6 5 38835.75 15517.28 9.87 1602.96 745.83 2.42 1190.58 677.38 751.27
13 6 5 26017.87 50312.82 9.91 7032.11 3506.61 9.68 1439.84 1440.30 1420.10
14 6 5 t/o t/o 2.28 8417.69 5384.79 17.18 2360.88 5559.26 2543.99
15 6 5 t/o t/o 9.05 10537.53 7316.61 6.49 3504.82 4104.10 4140.57
16 6 5 t/o t/o 9.46 41355.16 27699.48 30.52 6858.69 5612.36 5708.18
17 6 5 t/o t/o 0.94 t/o t/o 11.48 11329.16 20597.16 10460.73
18 6 5 t/o t/o 5.34 t/o t/o 23.81 17347.43 52703.19 16873.36
19 6 5 t/o t/o 7.18 t/o t/o 82.93 29689.84 19969.09 21195.04
20 6 5 t/o t/o 3.38 t/o t/o 29.36 76600.29 35850.94 27035.80
21 6 5 t/o t/o 1.50 t/o t/o 148.64 t/o 45963.02 48542.48
22 6 5 t/o t/o 1.74 t/o t/o 198.15 t/o 61414.88 66279.68
23 6 5 t/o t/o 1.91 t/o t/o 267.67 t/o t/o 78463.34

from the CNF encoding, but we observe that the use of the tailored auxiliary graph does result in
faster preprocessing times for reduce.

8.6. Sizes of automorphism groups and residual symmetry

To study the sizes of automorphism groups and residual symmetry after symmetry reduction, Ta-
ble 6 lists the runtimes for some well-known instances, as well as the size |Aut(U0)| of the initial
automorphism group and the size |Aut(Uk)| of the setwise stabilizer of the prefix variables Uk . The

T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49 45

Table 5
The effect of a tailored auxiliary graph on the run-
ning time of reduce when applied on instances
of the Clique Coloring Problem with parameters in-
dicated on the left. We see that there is a marked
decrease in the running times when the auxiliary
graph is available. All running times are in seconds.

n s t reduce

with graph without graph

15 5 4 19.34 399.25
16 5 4 8.07 158.47
17 5 4 12.81 223.24
18 5 4 14.11 1151.05
19 5 4 19.13 1629.34
20 5 4 25.37 586.78
12 6 5 2.42 139.14
13 6 5 9.68 61.46
14 6 5 17.18 381.85
15 6 5 6.49 587.87
16 6 5 30.52 881.09
17 6 5 11.48 322.53
18 6 5 23.81 450.28
19 6 5 82.93 2388.18
20 6 5 29.36 851.68
21 6 5 148.64 1195.23
22 6 5 198.15 1543.51
23 6 5 267.67 5545.20

Table 6
Instances with large automorphism groups. The column raw shows the solver runtime without preprocessing. The columns
breakid and reduce display the runtime of the preprocessor and the solver after augmenting the CNF with a symmetry-
breaking predicate produced by the preprocessor. All instances are unsatisfiable. The column k shows the length of the prefix
used by reduce, and the column “cubes” lists the number of partial assignments generated by reduce—in each case, we
observe effective symmetry reduction, with the number of generated partial assignments substantially less than |R||Uk | = 2k .
The column |Aut(U0)| shows the size of the initial automorphism group of the instance and the column |Aut(Uk)| displays the
size of the setwise stabilizer of the prefix Uk . All running times are in seconds. A timeout threshold of 4 hours was applied.

instance raw
glucose

breakid reduce k cubes |Aut(U0)| |Aut(Uk)|
prep. glucose prep. glucose

STS(16) 25.83 0.77 17.17 17.89 1.67 14 15 20922789888000 174356582400

STS(18) 1506.65 0.86 724.57 41.48 25.43 16 17 6402373705728000 41845579776000

STS(20) t/o 0.78 t/o 90.64 1745.17 18 19 2432902008176640000 12804747411456000

PHP(11) 116.84 0.30 3.18 2.00 5.46 10 11 144850083840000 13168189440000

PHP(12) t/o 0.42 27.51 111.91 7.56 22 203 19120211066880000 289700167680000

R(4,4;18) t/o 0.73 1330.23 16.23 1.47 17 18 6402373705728000 355687428096000

table also lists the length k of the prefix sequence and the number of isomorphism classes of partial
assignments (cubes) generated. For all instances considered, we observe that the number cubes gen-
erated is substantially less than the total number of cubes |R||Uk | = 2k without symmetry reduction;
that is, the action of the large setwise stabilizer Aut(Uk) gives rise to only a few large orbits in RUk ,
as is desirable from the perspective of obtaining effective symmetry reduction. In general, there is a
tradeoff in efficiency between symmetry reduction and the subsequent solver running time on the
symmetry-reduced instances. For example, in Table 6, had a prefix of length only 11 been chosen
for PHP(12), the time taken by the symmetry reduction and the solver in total would have remained
almost the same, but considerably more time would have been spent by the solver. Although our
tool reduce compares favorably with breakid in the STS and Ramsey instances, we observe that

46 T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49

Table 7
Residual symmetry after symmetry reduction. Each of the four sub-tables below illustrates the residual symmetry in the gen-
erated partial assignments arising from a particular problem instance. For each size |Aut(X)| of the automorphism group, we
display the number of generated partial assignments X with an automorphism group of the indicated size. The length of the
prefix sequence is indicated by k. For the PHP(12) instance, two prefixes of lengths k = 11 and k = 22 are shown to illustrate
the tradeoff between prefix length and residual symmetry. A similar tradeoff can be witnessed for the R(4, 4; 18) instance with
prefixes of lengths k = 17 and k = 33, with the latter prefix postponed to Table 8 due to lack of space. The running times of
reduce were as follows: 12.24 seconds for PHP(12) with k = 11, 111.91 seconds for PHP(12) with k = 22, 90.64 seconds for
ST S(20) with k = 18, and 16.23 seconds for R(4, 4; 18) with k = 17. In particular, we observe decreased residual symmetry
with longer prefixes, at the cost of increased running time for symmetry reduction.

R(4,4;18), k = 17

|Aut(X)| #

14631321600 2
18289152000 2
28740096000 2
57480192000 2
149448499200 2
523069747200 2
2615348736000 2
20922789888000 2
355687428096000 2

Total 18

STS(20), k = 18

|Aut(X)| #

263363788800 1
292626432000 2
402361344000 2
689762304000 2
1494484992000 2
4184557977600 2
15692092416000 2
83691159552000 2
711374856192000 2
12804747411456000 2

Total 19

PHP(12), k = 11

|Aut(X)| #

3448811520000 2
4828336128000 2
9656672256000 2
28970016768000 2
144850083840000 2
1593350922240000 2

Total 12

PHP(12), k = 22

|Aut(X)| #

1567641600 1
2090188800 5
3135283200 7
3483648000 1
4180377600 7
5225472000 12
6270566400 2
6967296000 2
8360755200 2
10450944000 10
12541132800 5
15676416000 10
20901888000 16
25082265600 2
31352832000 16
36578304000 5
52254720000 5
62705664000 12
73156608000 7
104509440000 2
109734912000 12
146313216000 3
292626432000 14
313528320000 5
438939648000 5
627056640000 2
877879296000 7
1316818944000 5
1755758592000 2
2633637888000 7
5267275776000 2
13168189440000 5
26336378880000 2
144850083840000 1
289700167680000 2

Total 203

breakid is quite efficient in the case of PHP instances; nevertheless, our tool can still handle these
instances as well.

Tables 7 and 8 give a more fine-grained view into the residual symmetry still present in the
instances after preprocessing with reduce. In more precise terms, for each generated partial assign-
ment X , the tables list the size of the automorphism group |Aut(X)|. We observe that the residual
symmetry in general depends on the values X assigns to the variables in Uk . For example, when the
partial assignment assigns all variables in Uk to the same value, we have Aut(X) = Aut(Uk); while
such partial assignments have substantial residual symmetry, one can expect that the resulting in-
stances are easy to solve. We again observe a tradeoff in the choice of prefix, as illustrated by the two
chosen prefixes for the PHP(12) and R(4, 4; 18) instances: using a longer prefix yields less residual

T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49 47

Table 8
This table complements Table 8 by tabulating residual symmetry for R(4, 4; 18) at prefix length k = 33. Since
there are in total 1050 generated partial assignments, the results have been divided into four columns. The
running time for reduce was 4153.15 seconds.

R(4,4;18), k = 33

|Aut(X)| # |Aut(X)| # |Aut(X)| # |Aut(X)| #

414720 10 4147200 4 46448640 4 3251404800 4
518400 4 4838400 4 50803200 14 3657830400 4
622080 10 5806080 32 52254720 24 3832012800 4
663552 2 6220800 4 58060800 32 4790016000 10
691200 10 7257600 24 87091200 38 5225472000 4
829440 14 7741440 4 101606400 4 6227020800 2
1036800 28 8709120 10 130636800 10 9580032000 4
1088640 2 9676800 24 159667200 10 11496038400 10
1244160 4 10368000 10 174182400 28 12454041600 28
1382400 4 12441600 10 203212800 24 22992076800 4
1451520 24 13063680 10 239500800 10 37362124800 10
1658880 4 14515200 24 261273600 28 74724249600 4
1728000 2 17418240 28 319334400 4 87178291200 10
2073600 28 20736000 4 435456000 24 174356582400 14
2177280 4 21772800 24 479001600 28 348713164800 4
2419200 10 23224320 10 958003200 34 1307674368000 10
2903040 20 24883200 4 1625702400 4 2615348736000 4
3110400 10 25401600 4 1828915200 10 20922789888000 2
3456000 4 26127360 4 1916006400 14 41845579776000 4
3628800 24 29030400 36 2612736000 10
3870720 10 43545600 34 2874009600 24

symmetry, but it may be unnecessary to go all the way, since the time spent for symmetry reduction
could be better spent by the solver.

Acknowledgements

The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement
338077 “Theory and Practice of Advanced Search and Enumeration” (M.K., P.K., and J.K.). We gratefully
acknowledge the use of computational resources provided by the Aalto Science-IT project at Aalto
University. We thank Tomi Janhunen and Bart Bogaerts for useful discussions, and the anonymous
reviewers for their comments that helped to improve the exposition in this paper.

A preliminary conference abstract of this paper appeared in T. Junttila, M. Karppa, P. Kaski, and
J. Kohonen, “An Adaptive Prefix-Assignment Technique for Symmetry Reduction”, in Theory and Ap-
plications of Satisfiability Testing — SAT 2017, Lecture Notes in Computer Science, Vol. 10491, Springer,
2017, pp. 101–118.

References

Alekseev, V.B., 2014. On bilinear complexity of multiplication of 5 × 2 matrix by 2 × 2 matrix. In: Physics and Mathematics. In:
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, vol. 156. Kazan University, Kazan, pp. 19–29.

Alekseev, V.B., 2015. On bilinear complexity of multiplication of m × 2 and 2 × 2 matrices. Chebyshevskiı̆ Sb. 16 (4), 11–27.
Alekseev, V.B., Smirnov, A.V., 2013. On the exact and approximate bilinear complexities of multiplication of 4 × 2 and 2 × 2

matrices. Proc. Steklov Inst. Math. 282 (1), 123–139.
Alekseyev, V.B., 1985. On the complexity of some algorithms of matrix multiplication. J. Algorithms 6 (1), 71–85.
Aloul, F.A., Sakallah, K.A., Markov, I.L., 2003. Efficient symmetry breaking for Boolean satisfiability. In: Proc. IJCAI 2003. Morgan

Kaufmann, pp. 271–276.
Audemard, G., Simon, L., 2016. Extreme cases in SAT problems. In: Proc. SAT 2016. In: Lecture Notes in Computer Science,

vol. 9710. Springer, pp. 87–103.
Babai, L., 2016. Graph isomorphism in quasipolynomial time. In: Wichs, D., Mansour, Y. (Eds.), Proceedings of the 48th Annual

ACM SIGACT Symposium on Theory of Computing. STOC 2016. ACM, pp. 684–697. http://dl .acm .org /citation .cfm ?id =2897518.
Benhamou, B., Nabhani, T., Ostrowski, R., Saıdi, M.R., 2010a. Dynamic symmetry breaking in the satisfiability problem. In: Pro-

ceedings of the 16th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning. LPAR-16.

http://refhub.elsevier.com/S0747-7171(19)30028-8/bib416C656B736565763A32303134s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib416C656B736565763A32303134s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib416C656B736565763A32303135s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib416C656B736565763A32303133s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib416C656B736565763A32303133s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib416C656B73657965763A31393835s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib416C6F756C4574416C3A494A43414932303033s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib416C6F756C4574416C3A494A43414932303033s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib417564656D6172643A32303136s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib417564656D6172643A32303136s1
http://dl.acm.org/citation.cfm?id=2897518
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib42656E68616D6F753A32303130s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib42656E68616D6F753A32303130s1

48 T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49

Benhamou, B., Nabhani, T., Ostrowski, R., Saidi, M.R., 2010b. Enhancing clause learning by symmetry in SAT solvers. In: Proceed-
ings of the 22nd IEEE International Conference on Tools with Artificial Intelligence, vol. 1. ICTAI 2010, pp. 329–335.

Benhamou, B., Sais, L., 1994. Tractability through symmetries in propositional calculus. J. Autom. Reason. 12 (1), 89–102.
Benson, A.R., Ballard, G., 2015. A framework for practical parallel fast matrix multiplication. In: Proceedings of the 20th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming. PPoPP 2015, pp. 42–53.
Biere, A., 2016. Splatz, lingeling, plingeling, treengeling, YalSAT entering the SAT competition 2016. In: Proceedings of SAT Com-

petition 2016: Solver and Benchmark Descriptions, vol. B-2016-1. Department of Computer Science Series of Publications,
University of Helsinki, pp. 44–45.

Bläser, M., 1999. Lower bounds for the multiplicative complexity of matrix multiplication. Comput. Complex. 8 (3), 203–226.
Bläser, M., 2003. On the complexity of the multiplication of matrices of small formats. J. Complex. 19 (1), 43–60.
Butler, G., 1991. Fundamental Algorithms for Permutation Groups. Lecture Notes in Computer Science, vol. 559. Springer.
Chu, G., de la Banda, M.G., Mears, C., Stuckey, P.J., 2014. Symmetries, almost symmetries, and lazy clause generation. Con-

straints 19 (4), 434–462.
Codish, M., Gange, G., Itzhakov, A., Stuckey, P.J., 2016. Breaking symmetries in graphs: the nauty way. In: Proc. CP 2016. In:

Lecture Notes in Computer Science, vol. 9892. Springer, pp. 157–172.
Courtois, N.T., Hulme, D., Mourouzis, T., 2012. Multiplicative complexity and solving generalized Brent equations with SAT

solvers. In: Proceedings of the Third International Conference on Computational Logics, Algebras, Programming, Tools, and
Benchmarking. COMPUTATION TOOLS 2012, pp. 22–27.

Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A., 1996. Symmetry-breaking predicates for search problems. In: Proc. KR. 1996.
Morgan Kaufmann, pp. 148–159.

Darga, P.T., Liffiton, M.H., Sakallah, K.A., Markov, I.L., 2004. Exploiting structure in symmetry detection for CNF. In: Proc. DAC
2004. ACM, pp. 530–534.

Devriendt, J., Bogaerts, B., Bruynooghe, M., 2017. Symmetric explanation learning: effective dynamic symmetry handling for SAT.
In: Theory and Applications of Satisfiability Testing. SAT 2017. Springer International Publishing, pp. 83–100.

Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M., 2016. Improved static symmetry breaking for SAT. In: Proc. SAT 2016.
In: Lecture Notes in Computer Science, vol. 9710. Springer, pp. 104–122.

Devriendt, J., Bogaerts, B., Cat, B.D., Denecker, M., Mears, C., 2012. Symmetry propagation: improved dynamic symmetry breaking
in SAT, vol. 1. In: IEEE 24th International Conference on Tools with Artificial Intelligence. ICTAI 2012, pp. 49–56.

Dinan, J., Larkins, D.B., Sadayappan, P., Krishnamoorthy, S., Nieplocha, J., 2009. Scalable work stealing. In: Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis, pp. 1–11.

Dixon, J.D., Mortimer, B., 1996. Permutation Groups. Graduate Texts in Mathematics, vol. 163. Springer.
Faradžev, I.A., 1978. Constructive enumeration of combinatorial objects. In: Problèmes Combinatoires et Théorie des Graphes.

In: Colloq. Internat. CNRS, vol. 260. CNRS, pp. 131–135.
Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A.,

Castain, R.H., Daniel, D.J., Graham, R.L., Woodall, T.S., 2004. Open MPI: goals, concept, and design of a next generation MPI
implementation. In: Proceedings, 11th European PVM/MPI Users’ Group Meeting, pp. 97–104.

Gent, I.P., Petrie, K.E., Puget, J., 2006. Symmetry in constraint programming. In: Handbook of Constraint Programming. Vol. 2 of
Foundations of Artificial Intelligence. Elsevier, pp. 329–376.

Graham, R.L., Rothschild, B.L., Spencer, J.H., 1990. Ramsey Theory. John Wiley & Sons.
Grayland, A., Jefferson, C., Miguel, I., Roney-Dougal, C.M., 2009. Minimal ordering constraints for some families of variable sym-

metries. Ann. Math. Artif. Intell. 57 (1), 75–102.
Grohe, M., Neuen, D., Schweitzer, P., Wiebking, D., 2018. An improved isomorphism test for bounded-tree-width graphs. CoRR

arXiv:1803 .06858.
Gropp, W., Lusk, E., Skjellum, A., 2014. Using MPI: Portable Parallel Programming with the Message-Passing Interface. The MIT

Press.
Hall Jr., M., Knuth, D.E., 1965. Combinatorial analysis and computers. Am. Math. Mon. 72 (2, part 2), 21–28.
Håstad, J., 1990. Tensor rank is NP-complete. J. Algorithms 11 (4), 644–654.
Heule, M., Kullmann, O., Wieringa, S., Biere, A., 2011. Cube and conquer: guiding CDCL SAT solvers by lookaheads. In: Proc. HVC

2011. In: Lecture Notes in Computer Science, vol. 7261. Springer, pp. 50–65.
Heule, M.J.H., 2016. The quest for perfect and compact symmetry breaking for graph problems. In: Proc. SYNASC 2016. IEEE

Computer Society, pp. 149–156.
Hopcroft, J.E., Kerr, L.R., 1971. On minimizing the number of multiplications necessary for matrix multiplication. SIAM J. Appl.

Math. 20 (1), 30–36.
Huang, J., Rice, L., Matthews, D.A., van de Geijn, R.A., 2017. Generating families of practical fast matrix multiplication algorithms.

In: 2017 IEEE International Parallel and Distributed Processing Symposium. IPDPS 2017, pp. 656–667.
Humphreys, J.F., 1996. A Course in Group Theory. Oxford University Press, Oxford.
Itzhakov, A., Codish, M., 2016. Breaking symmetries in graph search with canonizing sets. Constraints 21 (3), 357–374.
Jefferson, C., Petrie, K.E., 2011. Automatic generation of constraints for partial symmetry breaking. In: 17th International Confer-

ence Principles and Practice of Constraint Programming. CP 2011. In: Lecture Notes in Computer Science, vol. 6876. Springer,
pp. 729–743.

Junttila, T., Kaski, P., 2007. Engineering an efficient canonical labeling tool for large and sparse graphs. In: Proc. ALENEX 2007.
SIAM.

Karppa, M., 2018. Reduce. GitHub repository. https://github .com /mkarppa /reduce.
Kaski, P., Östergård, P.R.J., 2006. Classification Algorithms for Codes and Designs. Algorithms and Computation in Mathematics,

vol. 15. Springer-Verlag.
Kerber, A., 1999. Applied Finite Group Actions, 2nd edition. Algorithms and Combinatorics, vol. 19. Springer.

http://refhub.elsevier.com/S0747-7171(19)30028-8/bib42656E68616D6F753A3230313062s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib42656E68616D6F753A3230313062s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib42656E68616D6F753A31393934s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib42656E736F6E3A32303135s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib42656E736F6E3A32303135s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib42696572653A534154434F4D5032303136s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib42696572653A534154434F4D5032303136s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib42696572653A534154434F4D5032303136s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib426C617365723A31393939s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib426C617365723A32303033s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4275746C65723A31393931s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4368754574416C3A436F6E73747261696E747332303134s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4368754574416C3A436F6E73747261696E747332303134s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib436F646973684574416C3A32303136s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib436F646973684574416C3A32303136s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib436F7572746F69733A32303132s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib436F7572746F69733A32303132s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib436F7572746F69733A32303132s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib43726177666F72644574416C3A4B5231393936s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib43726177666F72644574416C3A4B5231393936s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib44617267614C69666669746F6E53616B616C6C61684D61726B6F763A32303034s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib44617267614C69666669746F6E53616B616C6C61684D61726B6F763A32303034s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4465767269656E64743A32303137s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4465767269656E64743A32303137s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4465767269656E64744574416C3A53415432303136s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4465767269656E64744574416C3A53415432303136s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4465767269656E64743A32303132s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4465767269656E64743A32303132s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib44696E616E3A32303039s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib44696E616E3A32303039s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4469786F6E3A31393936s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib46617261647A65763A31393738s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib46617261647A65763A31393738s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4761627269656C3A32303034s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4761627269656C3A32303034s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4761627269656C3A32303034s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib47656E744574416C3A48616E64626F6F6B32303036s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib47656E744574416C3A48616E64626F6F6B32303036s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib47726168616D3A31393930s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib477261796C616E644574416C3A414D414932303039s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib477261796C616E644574416C3A414D414932303039s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib47726F68654E535732303138s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib47726F68654E535732303138s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib47726F70703A32303134s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib47726F70703A32303134s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib48616C6C3A31393635s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4861737461643A31393930s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4865756C654574416C3A48564332303131s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4865756C654574416C3A48564332303131s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4865756C653A53594E41534332303136s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4865756C653A53594E41534332303136s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib486F7063726F66743A31393731s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib486F7063726F66743A31393731s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4875616E673A32303137s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4875616E673A32303137s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib48756D7068726579733A31393936s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib49747A68616B6F76436F646973683A32303136s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4A6566666572736F6E5065747269653A435032303131s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4A6566666572736F6E5065747269653A435032303131s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4A6566666572736F6E5065747269653A435032303131s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4A756E7474696C614B61736B693A32303037s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4A756E7474696C614B61736B693A32303037s1
https://github.com/mkarppa/reduce
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4B61736B694F73746572676172643A32303036s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4B61736B694F73746572676172643A32303036s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4B65726265723A31393939s1

T. Junttila et al. / Journal of Symbolic Computation 99 (2020) 21–49 49

Kerber, A., Laue, R., 1998. Group actions, double cosets, and homomorphisms: unifying concepts for the constructive theory of
discrete structures. Acta Appl. Math. 52 (1–3), 63–90.

Knuth, D.E., 2011. The Art of Computer Programming. Vol. 4A. Combinatorial Algorithms. Part 1. Addison-Wesley.
Laderman, J.D., 1976. A noncommutative algorithm for multiplying 3 × 3 matrices using 23 multiplications. Bull. Am. Math.

Soc. 82, 126–128.
Leon, J.S., 1991. Permutation group algorithms based on partitions, I: theory and algorithms. J. Symb. Comput. 12 (4–5), 533–583.
Leon, J.S., 1997. Partitions, refinements, and permutation group computation, II. In: Groups and Computation. In: DIMACS Series

in Discrete Mathematics and Theoretical Computer Science, vol. 28. American Mathematical Society, pp. 123–158.
Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S., 2017. Fixed-parameter tractable canonization and isomorphism test for

graphs of bounded treewidth. SIAM J. Comput. 46 (1), 161–189.
Manthey, N., 2014. Generating clique coloring problem formulas. In: Proceedings of SAT Competition 2014: Solver and Bench-

mark Descriptions, vol. B-2014-2. Department of Computer Science Series of Publications B, University of Helsinki, p. 89.
McKay, B.D., 1981. Practical graph isomorphism. Congr. Numer. 30, 45–87.
McKay, B.D., 1998. Isomorph-free exhaustive generation. J. Algorithms 26 (2), 306–324.
McKay, B.D., Piperno, A., 2014. Practical graph isomorphism, II. J. Symb. Comput. 60, 94–112.
Message Passing Interface Forum, 2015. MPI: a message-passing interface standard. Version 3.1. Standard specification.
Pacheco, P., 1997. Parallel Programming with MPI. Morgan Kaufmann.
Pezzi, G.P., Cera, M.C., Mathias, E., Maillard, N., Navaux, P.O.A., 2007. On-line scheduling of MPI-2 programs with hierarchical

work stealing. In: 19th International Symposium on Computer Architecture and High Performance Computing. SBAC-PAD
2007, pp. 247–254.

Read, R.C., 1978. Every one a winner; or, how to avoid isomorphism search when cataloguing combinatorial configurations. Ann.
Discrete Math. 2, 107–120.

Sabharwal, A., 2009. Symchaff: exploiting symmetry in a structure-aware satisfiability solver. Constraints 14 (4), 478–505.
Sakallah, K.A., 2009. Symmetry and satisfiability. In: Handbook of Satisfiability. In: Frontiers in Artificial Intelligence and Appli-

cations, vol. 185. IOS Press, pp. 289–338.
Schaafsma, B., Heule, M.J.H., van Maaren, H., 2009. Dynamic symmetry breaking by simulating Zykov contraction. In: Theory

and Applications of Satisfiability Testing. SAT 2009. Springer, pp. 223–236.
Seress, Á., 2003. Permutation Group Algorithms. Cambridge University Press, Cambridge.
Smirnov, A.V., 2013. The bilinear complexity and practical algorithms for matrix multiplication. Comput. Math. Math. Phys. 53

(12), 1781–1795.
Strassen, V., 1969. Gaussian elimination is not optimal. Numer. Math. 13 (4), 354–356.
Swift, J.D., 1960. Isomorph rejection in exhaustive search techniques. In: Combinatorial Analysis. American Mathematical Society,

pp. 195–200.
Wieringa, S., 2011. The iCNF file format. http://www.siert .nl /icnf/. (Accessed April 2017).
Winograd, S., 1971. On multiplication of 2 × 2 matrices. Linear Algebra Appl. 4 (4), 381–388.

http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4B65726265723A31393938s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4B65726265723A31393938s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4B6E7574683A32303131s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4C616465726D616E3A31393736s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4C616465726D616E3A31393736s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4C656F6E3A31393931s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4C656F6E3A31393937s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4C656F6E3A31393937s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4C6F6B736874616E6F765050533137s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4C6F6B736874616E6F765050533137s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4D616E746865793A32303134s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4D616E746865793A32303134s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4D634B61793A31393831s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4D634B61793A31393938s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib4D634B617950697065726E6F3A32303134s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib5061636865636F3A31393937s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib50657A7A693A32303037s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib50657A7A693A32303037s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib50657A7A693A32303037s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib526561643A31393738s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib526561643A31393738s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib53616268617277616C3A32303039s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib53616B616C6C61683A48616E64626F6F6B32303039s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib53616B616C6C61683A48616E64626F6F6B32303039s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib536368616166736D613A32303039s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib536368616166736D613A32303039s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib5365726573733A32303033s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib536D69726E6F763A32303133s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib536D69726E6F763A32303133s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib537472617373656E3A31393639s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib53776966743A31393630s1
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib53776966743A31393630s1
http://www.siert.nl/icnf/
http://refhub.elsevier.com/S0747-7171(19)30028-8/bib57696E6F677261643A31393731s1

