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Abstract—Log identification is an important task in silviculture
and forestry. It involves matching tree logs with each other
and telling which of the known individuals a given specimen
is. Forest harvesters can image the logs and assess their quality
while cutting trees in the forest. Identification allows each log to
be traced back to the location it was grown in and efficiently
choosing logs of specific quality in the sawmill. In this paper, a
deep two-stream convolutional neural network is used to measure
the likelihood that a pair of images represents the same part of
a log. The similarity between the images is assessed based on
the cross-correlation of the convolutional feature maps at one or
more levels of the network. The performance of the network is
evaluated with two large datasets, containing either spruce or
pine logs. The best architecture identifies correctly 99% of the
test logs in the spruce dataset and 97% of the test logs in the
pine dataset. The results show that the proposed model performs
very well in relatively good conditions. The analysis forms a basis
for future attempts to utilize deep networks for log identification
in challenging real-world forestry applications.

I. INTRODUCTION

Tree log identification aims to recognize the identity of
specific known individual logs. Given information or measure-
ments of two logs, the goal of identification is to tell whether
the logs are exactly the same individual. This allows creating
a database of known logs that can be later matched with new
examples. Log identification is distinct from but closely related
to applications such as log detection and species recognition
that aim to automatically detect logs and classify their species.
Identification is more complex as it requires distinguishing
between very similar specimen of a given species.
Log identification has important applications in forestry. Our

ultimate goal is to create a database of tree logs by imaging
the trunks from multiple angles simultaneously to harvesting
and cutting the trees into logs. Ideally, the harvester can image
the logs and assess their quality (e.g. size, knots) without any
delay in the cutting process. Then, after transporting the logs to
a sawmill for additional processing, the goal is to match each
log with the database. Identification enables tracing a given
log back to the location where it was grown in and picking
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up stored logs of certain quality without repeating the quality
assessment. Knowing the origin, quality and destination of
each individual log increases the efficiency of sawmills. Thus,
log identification can be an important tool to improve planning,
efficiency and traceability of forestry.

Trees can be located using GPS; however, GPS is often
inaccurate or unreliable in dense forests, and it cannot be
used for log identification since logs are typically stored in
stacks. Logs can be identified simply by marking each log
separately, e.g. with paint or an RFID tag. However, physically
marking the logs and reading the markings can be inefficient,
and the markings can be cumbersome to use prior to cutting
the trees. It is desirable to develop methods that are applicable
more generally in silviculture and forestry. Our approach is to
identify logs by matching images taken of the trunk. Since
the trunk is the most stable visible part of a tree, present both
before and after cutting, the developed methods can be useful
more generally, throughout the process of growing, tending,
monitoring, harvesting and processing the harvested trees.

To our knowledge, this is the first paper to study the given
application, using machine vision to match tree trunks. Thus,
to provide a proof of concept, we slightly simplify the setting;
the database and example images are taken at the same time
using a stereo camera system while the logs are moving on a
line in a sawmill. Fig. 1 shows some examples. Identification
is done based on a single frame. It is straightforward to extend
our model to utilize multiple frames to improve the accuracy,
although our results show that a single frame is typically
enough to reliably find the matching log.

In this paper, logs are identified using a deep two-stream
convolutional network. Deep networks have become common
e.g. in image recognition [1], object detection [2], semantic
segmentation [3] and action recognition [4]. Our network mea-
sures the likelihood that two frames represent the same part
of a log. The similarity is measured using cross-correlation
layers that explicitly compare the spatial convolutional features
of the frames, at one or more levels of the network. A given
example image is compared to each image of the database to
find the most likely match. The paper is structured as follows.
Section II briefly summarizes the related literature. Sections III
and IV present the methodology and results. The main results
are discussed in Section V. Section VI concludes.
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Fig. 1. Examples of spruce and pine logs. Each log is imaged as a series of stereo camera images. Each row of the figure shows one moment of time, the
left half for spruce, the right half for pine. The database of known logs contains all images of all logs taken by the right camera. For a given example frame
imaged by the left camera, the goal is to search the database and find the matching frame taken by the right camera at the same time. Matching is done using
cropped frames that exclude most of the surroundings of the logs. The cropping window (red vertical lines) is detected automatically for each pair of frames.

II. RELATED WORK

This paper uses a two-stream network that processes a pair
of frames with identical branches of convolutional layers. Two-
stream structures have been used in several applications, e.g.
in signature verification [5], face recognition [6] and action
recognition [4]. They are also common in visual tracking (e.g.
[7]–[10]). Our application is closely related to tracking due
to measuring the similarity between frames, but there are also
notable differences. First, in our context, the displacement of
the given part of a log can be relatively large from one image
to another, whereas tracking often considers videos of a high
framerate. Second, in log identification, there is no exact object
and relatively large part of the trunk seen in one image may
not be visible in another. Third, we compare two static frames,
whereas visual tracking can utilize information over time.
The proposed model estimates the cross-correlation of deep

convolutional feature maps. Similar approach is used e.g.
by FlowNet [11] and SiamFC [12]. FlowNet estimates the
optical flow between two frames using the correlation of deep
features. SiamFC uses template matching for visual tracking
by calculating the cross-correlation of convolutional features.
It is an example of similarity learning, which has been studied
also in [13] and [14]. Our network is highly similar in structure
to SiamFC, albeit using the correlation map for classification
instead of estimating the displacement. Contrary to SiamFC
and Flownet, our model can utilize correlations from multiple
levels of the network. Another fundamental difference is that
our model needs to provide useful information also when the
given pair of frames represent different objects (different logs).
Since we currently focus on matching images taken by two

cameras at the same time, identification could be based on
stereo matching. For instance, [15] computes the inner product
of two convolutional feature maps for stereo matching of
image patches, and [16] concatenates convolutional features
of two branches to extract depth information from a pair
of images. However, our ultimate goal is to match images

taken separately in different locations. Developing methods
that are not based too much on stereo matching allows using
the methods for log identification in more general conditions.

Log identification is also related to person reidentification
(re-ID), e.g. matching images of pedestrians from multiple
cameras (see e.g. [17] or [18]). Although people and tree
logs look fundamentally different, similar methods could be
useful in both applications. Identification in re-ID is often done
either using binary classification (match or not) or by assigning
each person with a unique ID predicted by the network. One
recent trend [17] is to merge the two approaches and train the
network using two loss functions. We currently use only binary
classification for log matching; using the multi-class approach
or other re-ID methods could improve the performance.

Relatively few papers on computer vision focus specifically
on forestry and even fewer on log identification; the relevance
of methods evaluated in more general context might be low.
Thus, it can be useful to look at related forestry applications
like tree detection and species recognition. For instance, [19]
uses simple traditional machine vision methods for detecting
trees and classifying their species. [20] reviews literature on
multiple methods for classifying tree species based on leaves
or barks of trees and discusses approaches to fuse the two
sources of information. [21] uses local binary patterns [22] to
analyze the texture of barks for species recognition, and [23]
uses convolutional networks for leaf-based species recognition.

III. METHODS

A. Data and Preprocessing

Deep networks need large datasets for learning and test-
ing. In real-world forestry applications, however, collecting
realistic large datasets is often difficult. Imaging trees while
harvesting and processing logs is time consuming, inefficient
and expensive. Thus, this paper focuses on a simplified case
by imaging the database and test images at the same time from
one side of the logs using a fixed stereo camera system.
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Fig. 2. Network architecture for matching a given pair of frames. The network gets two input frames (example, database) that are cropped automatically to
remove the surroundings of the tree log. The network estimates how likely the cropped input frames are a match (represent the same part of a tree log). The
inputs are processed by two identical branches of five convolutional layers with shared parameters. The outputs of the third, fourth and fifth convolutional
layers are fed pair-wise into cross-correlation layers. The architecture is fixed prior to training by choosing which correlation layers to include in the model,
to potentially compute correlations only at some levels of the network. Matching is done using a fully-connected layer on top of the correlation layers.

While imaging, the logs move along a line in a sawmill at
a fairly constant speed. The framerate is relatively low; two
consecutive frames taken by a given camera overlap by about
one third. The images taken by the first (left) camera are used
as example images that should be matched with the database.
The database contains the images taken by the second (right)
camera. Using stereo pairs limits the ecological validity of
the results; however, we consider the approach sufficient for a
proof of concept, noting that the current context has not been
extensively studied in prior literature.
Images are preprocessed prior to the analysis. First of all, the

first and last image of each log that contain only a short piece
of the log are discarded. Second, the images are cropped to
remove the surroundings of the logs. A few of spruce images
are ignored automatically due to a poor cropping result. Third,
the cropped images are resized to the input size of the network
(227 × 227 pixels). Finally, the average RGB color, computed
for the images of the Imagenet Recognition Challenge [24],
is subtracted from the frames. For simplicity, the cropping
windows are detected for the first camera, and each window
is moved to the second camera using a fixed displacement (the
cameras are fixed to each other during imaging).
The cropping windows are detected automatically using the

MATLAB computing environment. Feature vectors containing
about 1000 KAZE features [25] are extracted in informative
locations around the image. KAZE features aim to be invariant
to differences e.g. in lighting and viewing angle. Features
computed for very bright or colorless regions are discarded
as they tend to represent the surroundings of the logs. The
computed features are divided vertically to five groups. The
edges of the trunk are found as two vertical lines such that
there are features from each group inside the two lines. In this
paper, KAZE features are used only to crop the input frames;
they are not used by the network for matching.
Two datasets are collected, containing either spruce or pine

logs. After preprocessing, the spruce dataset contains 4062
pairs of images of 214 spruce logs, and the pine dataset con-
tains 8224 pairs of images of 506 pine logs. In both datasets,
each log is represented by about 15–20 pairs of frames. The
two datasets are processed individually; the models are trained
and evaluated separately for each species.

TABLE I
LAYER DETAILS OF PROPOSED ARCHITECTURE.

Layer Parameters Output Notes
Inputs – 3x227x227 RGB crops (log images)

conv1 3x11x11 96x55x55 stride 4, ReLU
Max Pooling – 96x27x27 kernel 3x3, stride 2
Local Norm. – 96x27x27

conv2 96x5x5 256x27x27 stride 1, ReLU
Max Pooling – 256x13x13 kernel 3x3, stride 2
Local Norm. – 256x13x13

conv3 256x3x3 384x13x13 stride 1, ReLU

conv4 384x3x3 384x13x13 stride 1, ReLU

conv5 384x3x3 256x13x13 stride 1

Correlations – Output has a single channel;
(1–3 layers) spatial shape from the conv inputs

fc1 n x 2 2 n: number of elements
in correlation outputs

B. Network Architecture

Fig. 2 shows the studied architecture. The network estimates
the likelihood that two input frames represent the same part
of a log by estimating the cross-correlation of deep feature
maps. More specifically, the network gets two cropped inputs;
a new example and a frame from the database of known logs.
Identical branches of convolutional layers compute features
for both images. Cross-correlation layers compare the features
of the branches, at specific convolutional levels. Finally, the
correlation outputs are concatenated and fed into a single fully-
connected layer to estimate how likely the input images are a
match. This process is repeated for each image of the database
to find the most likely match for the given example image.

The convolutional branches are identical; they contain five
convolutional layers that have the same structure as the first
five layers of CaffeNet (see Table I and [26]). CaffeNet is
analogous to AlexNet [1] that reached seminal performance in
the ImageNet Recognition Challenge [24] in 2012. CaffeNet
is simple and traditional and sufficient for our dataset. Modern
architectures like ResNet [27] could improve the performance.



As shown in Fig. 2, the user chooses which convolutional
levels have a correlation layer. This paper studies four archi-
tectures. The first three architectures have a single correlation
layer, either for conv3, conv4 or conv5 outputs. The fourth
architecture has three correlation layers; the first compares the
outputs of conv3, the second the outputs of conv4, and the third
the outputs of conv5. The inputs of the correlation layers are
taken prior to applying ReLUs, pooling and normalization.
A correlation layer gets two convolutional feature maps of

shape [nf × nh × nw], where nf is the number of features
(channels) and nh and nw are the spatial height and width.
The computation is similar to convolution. First, the database
map is centered at the corner of the example map, and the
inner product (the correlation) of the two maps is collected.
Second, the database map is moved horizontally and vertically,
pixel by pixel, to collect the correlation in each location of the
example map. The correlation output has a single channel and
the same spatial shape as the inputs of the layer. The feature
maps are padded with zeros when necessary. The output is
divided by the number of elements in one feature map and by
255 (maximum RGB value) to reduce the absolute value.
Fig. 3 shows how cross-correlation can be used to match a

pair of convolutional feature maps. The correlation output is a
map; moving along vector d from the center of the map to a
specific location tells how similar the feature maps are when
the database map is shifted along d. When the feature maps
match (left side of Fig. 3), the output correlation map typically
contains a bright spot indicating the most likely displacement
between the input images. When the inputs do not match (right
side of Fig. 3), the correlation map is darker and more diffuse.
The output of the network is produced by a fully-connected

layer with two outputs (match, no match) that can be used
to measure how likely the given pair of cropped frames are a
match. When the network has more than one correlation layer,
the outputs of the correlation layers are concatenated into a
vector prior to feeding them to the fully-connected layer.
The proposed architecture has some limitations. First, the

correlation map ignores the scale of the input frames and
is computed using the full extent of the convolutional fea-
ture maps instead of smaller patches. This limits the ability
to match images with less overlap or taken from different
distances from the trunk. Second, a single fully-connected
layer has a limited capacity to learn to recognize matches
that can appear anywhere in the correlation map. However, the
architecture is sufficient for learning convolutional parameters.
Also, as long as the database is imaged fairly densely, it should
contain at least a couple of frames with a relatively fixed
displacement from the given example frame.

C. Training and Evaluation

In this paper, the proposed model is trained and evaluated
separately for two datasets, each containing either spruce or
pine logs. Both datasets are split to separate parts for training
(50%), validation (30%) and testing (20%). All frames of a
given log are placed in the same split.

Correlation:

Match

Correlation:

No Match

Fig. 3. Illustration of using the cross-correlation of the convolutional features
for matching. On the left, the convolutional maps (only one channel shown)
are very similar, and the single-channel correlation map contains a bright
spot that shows high similarity for a specific displacement between the
convolutional maps. On the right, the convolutional maps are not similar
enough, and the correlation output is diffuse and flat, suggesting that the
input frames represent different logs or different parts of a log.

During training, a softmax layer converts the two outputs
of the network into a match probability. Training is done in
mini-batches using Stochastic Gradient Descent (SGD) guided
by the multinomial logistic loss between the produced and real
probabilities. Each mini-batch contains a positive (true) pair
and a negative (false) pair for random 64 training logs. For a
positive pair, the frames are taken by the two cameras at the
same time. For a negative pair, the frames are of different logs.
The target probability is 1 for positive pairs (match) and 0 for
negative pairs (no match). The network is trained for 50,000
iterations which is enough for the loss function to converge,
regardless of the studied learning rates and architectures (see
below).

The fully-connected layer is initialized with small random
weight parameters and small biases and updated using a base
learning rate of 1e-3. The convolutional layers are either ini-
tialized and learned like the fully-connected layer or pretrained
for the ImageNet Recognition Challenge [24]. While using
the pretrained parameters, the convolutional layers are updated
like the fully-connected layer, or the base learning rate can be
reduced to 0 or 1e-4 to either fix or finetune the parameters.

The learned representations are validated in two steps to
choose the best settings for initialization and learning speed
(Section IV-A) and the best architecture (Section IV-B). As
explained in Section III-B, this paper considers four archi-
tectures that have either a single correlation layer (for conv3,
conv4 or conv5 outputs) or three correlation layers (for conv3,
conv4 and conv5 outputs). Processing the pine dataset is more
time consuming due to the larger number of logs. Thus, for
simplicity, the settings and architecture are chosen only based
on the spruce dataset. In Section IV-C, the final evaluation is
done by applying the same chosen settings and architecture
for both datasets.

While evaluating the training, validation or testing perfor-
mance, there is always exactly one correct candidate for each
example frame; the same location imaged at the same time by
the database camera. The database of incorrect candidates is
formed by the frames of all other logs of the whole dataset (of
the given species), except that the test logs are ignored until
the final evaluation of the chosen architecture. The tests are
implemented using the Caffe deep learning framework [26].



TABLE II
EFFECT OF LEARNING MODE ON MATCHING ACCURACY.

Correlation Inputs Learning Mode Training Validation
conv5 Fixed 54.1% 56.6%
conv5 Finetune 99.9% 99.5%
conv5 Normal Speed 99.8% 99.1%

No. of Spruce pairs (logs) 2062 (108) 1212 (64)
False candidates from all training and validation logs.

IV. RESULTS

A. Transfer Learning

This section presents how the initialization of the parameters
and the learning speed affect the performance of the candidate
network that has a single correlation layer on top of the conv5
outputs. It was found that a randomly initialized network does
not learn anything; the performance stays random regardless of
the learning rate. Thus, all networks in this paper are initialized
with the convolutional parameters pretrained for the ImageNet
Recognition Challenge [24].
Table II shows the correct matching rates (proportion of log

images matched correctly) for the spruce dataset using three
learning modes; the convolutional parameters are either held
fixed, finetuned slowly or learned normally like the parameters
of the fully-connected layer. Tuning the convolutional param-
eters seems necessary; the architecture with fixed pretrained
parameters identifies correctly only about 55% of the log
images. The difference between finetuning or learning at the
normal learning rate is small. Finetuning gives slightly better
matching rate for the validation logs; thus, the remainder of
this paper trains the networks using finetuning.

B. Architecture

This section presents how the architecture affects the per-
formance of the proposed model in the spruce dataset. The
candidate architectures have either a single correlation layer
on top of a specific convolutional layer or three correlation
layers on top of the last three convolutional layers. All archi-
tectures are trained by finetuning the pretrained convolutional
parameters slowly while learning the parameters of the fully-
connected layer at the normal speed.
Table III shows the correct matching rates (proportion of log

images matched correctly) for the spruce dataset using the four
candidate architectures. Overall, the architectures perform very
similarly. The architecture that has a single correlation layer
on top of the fifth layers (conv5) of the two convolutional
branches is slightly the best both in training and validation;
thus, the final evaluation is done only using that architecture.

C. Final Evaluation

This section presents the final performance using the set-
tings and architecture chosen in the previous subsections. The
network has a single correlation layer on top of the conv5
outputs, and the pretrained convolutional layers are finetuned
slowly while learning the classification layer at the normal
speed. Table IV shows the final performance (proportion of

TABLE III
EFFECT OF ARCHITECTURE ON MATCHING ACCURACY.

Correlation Inputs Training Validation
conv3 99.7% 99.3%
conv4 99.8% 99.2%
conv5 99.9% 99.5%

conv3 & conv4 & conv5 99.6% 99.4%
No. of Spruce pairs (logs) 2062 (108) 1212 (64)
False candidates from all training and validation logs.

TABLE IV
FINAL MATCHING ACCURACY.

Dataset Correlation Inputs Training Validation Testing
Spruce conv5 99.9% 99.5% 98.8%
Pine conv5 98.5% 97.7% 97.1%
No. of Spruce pairs (logs) 2062 (108) 1212 (64) 788 (42)
No. of Pine pairs (logs) 4129 (253) 2468 (152) 1627 (101)
False candidates from all logs, separately for each dataset.

log images matched correctly) when the model is trained
separately for the spruce and pine datasets. There are some
signs of overfitting as the performance is slightly worse for the
validation and testing data. However, the accuracy is very good
even for the test logs that were not used for training, validation
or developing the methodology. The model performs slightly
worse for pine logs than for spruce logs.

Looking more carefully at the identification process for
each image reveals cases where the network is i) confident
and correct, ii) less confident but correct, iii) confident but
incorrect, and iv) less confident and incorrect. Fig. 4 shows
some examples of these cases. Each row in the figure shows
first an example frame that should be identified and then four
database frames that the trained model thinks are the most
likely matches. The probability that a given database frame is a
match for the given example frame is computed and displayed
separately for each database frame. The ground truth match is
shown in red rectangle if it is in the top four.

The first row of Fig. 4 shows a successfully identified spruce
log. The network is almost certain that the best match is correct
and that the other database frames are incorrect. The top four
database frames are all very similar to the example, containing
a brighter vertical region on the right side of the log. The
second row of Fig. 4 shows a failed matching of a spruce log.
In this case, the automatic edge detection is inaccurate for the
example crop, and the ground truth match is not in the top
four. In this case, the network is less confident; it gives the
most likely match a probability of less than 60%.

The third row of Fig. 4 shows a successfully identified pine
log. This case is fairly difficult since the most distinguishable
bright regions in the lower part of the image are visibly
different in the example frame and its ground truth match. The
difficulty is reflected by a relatively low matching probability
of 72%. The fourth row of Fig. 4 shows a failed matching of a
pine log. This case is interesting in at least two ways. First, the
automatic edge detection for the example image is inaccurate;
the whole breadth of the log is not inside the cropping window.



Example Crop Pm = 0.998 Pm = 0.123 Pm = 0.104 Pm = 0.098

Example Crop Pm = 0.719 Pm = 0.334 Pm = 0.193 Pm = 0.135

Example Crop Pm = 0.931 Pm = 0.920 Pm = 0.724 Pm = 0.680

Example Crop Pm = 0.591 Pm = 0.417 Pm = 0.349 Pm = 0.342

Fig. 4. Examples of the identification process. Each row shows one example frame followed by its top four most likely matches from the database. The
probabilities Pm measure how likely a given database frame is a match. Red rectangle shows the ground truth match if it is in the top four.

In effect, the cropped example and its ground truth overlap
rather little, making matching very difficult (matching is done
for the full crop). Also, the fourth example contains a dark
pattern, likely a shadow of an object in the mill while imaging
the log. The top four matches all show the same shadow.

V. DISCUSSION

The final test results using separate datasets show that
the proposed model works very well in practice. For both
spruce and pine, the model finds the correct match for most
log images, from databases of thousands of images. The

identification accuracy is slightly better for spruce than pine;
however, the model works almost perfectly for both species.

The results show that our methods effectively transfer
previously learned representations to the context of identifying
individual tree logs. Our log datasets are not extensive enough
for learning informative features without pretraining. On the
other hand, directly using parameters pretrained for large-
scale image recognition provides only moderate performance
(accuracy of about 55%). Reaching good performance requires
additional finetuning to effectively transfer the pretrained
representations to the current context. The learning rate used
to update the convolutional parameters does not notably affect



the accuracy; the pretrained parameters might serve mainly as
an effective initialization. However, the learning rates might
have been sufficiently small so that the network still utilizes
features relatively similar to the pretrained network.
Multiple architectures were compared using the training

and validation datasets of the spruce logs. The results show
that the architecture has relatively little effect on the iden-
tification accuracy. In the chosen architecture, correlation is
computed between the outputs of the fifth layers of two
identical convolutional branches. Similar accuracy is reached
by taking the correlation between the third or fourth layers
or at multiple levels of the branches. This can be explained
in at least two ways. First, the last three convolutional layers
might learn representations that are about equally useful for
log identification. Second, the higher layers might learn more
informative features, but the benefit is reduced due to the
smaller spatial shape of the correlation map. The shape also
affects the number of parameters in the classification layer.
The relatively small effect of the architecture has important

implications for the real-world forestry applications. Sawmills
process large numbers of logs at a high pace and have limited
computational capacity. The user can choose the architecture
most efficient for the target hardware and software platforms.
For instance, computing the correlations of only the conv3
outputs allows removing the fourth and fifth convolutional
layers from the network. On the other hand, the conv4 and
conv5 outputs have a smaller spatial shape, requiring less
storage space for the convolutional features precomputed for
the database. If matching correlations takes most of the time,
it might be more efficient to transfer the outputs of smaller
shape to an efficient remote cloud service.
The proposed model performs slightly worse for pine than

spruce. In our dataset, identification might be more difficult for
pine logs since their bark is often partly or mostly missing. The
surface might be more distinctive when the bark is unbroken,
although the lack of bark does not seem to notably decrease
the performance. Running the validation process also for the
pine dataset might improve the accuracy.
The pine dataset contains about twice as many incorrect

candidates for matching as the spruce dataset (8000 versus
4000), which can make it more difficult to find the single
correct match. The identification accuracy tends to decrease in
the size of the database; however, this effect seems to weaken
when there are at least about 1000 incorrect candidates. This
finding is very relevant since practical databases are likely to
contain at least about ten times as many frames as the one
used in this paper. Real databases must have images from all
sides of the logs and the images must be flipped in the vertical
direction to account for the different orientations of the logs.
There are several ways to potentially improve the accuracy

of the proposed model. Our preliminary tests suggest that iden-
tifying logs using multiple frames improves the identification
accuracy, potentially so much that finetuning the convolutional
parameters becomes unnecessary. However, at least for the
current datasets, a single frame is enough to identify the logs
very reliably. This paper used downsampled frames so small

that many frames had to be increased in size after cropping the
frames to match the input size of the network. The quality of
the input frames can be increased without changing the input
size of the network since our cameras take high-resolution
images. High-resolution images would also allow increasing
the input size, although this decreases efficiency and might
require repeating the pretraining process. Finally, although the
automatic edge detection for cropping the frames prior to
running the network works very well, our results show that
inaccurate edges sometimes lead to identification errors.

The way the network estimates the correlation map and
converts it into the match likelihood is subject to limitations.
The correlation map is computed using the full extent of
the convolutional feature maps instead of comparing smaller
patches, and the potential differences in the scales of the input
frames are ignored. Thus, the resulting map is likely to be
inaccurate when the input frames overlap relatively little or
are taken at different distances from the trunk. Considering
classification, since the frames of positive pairs (true matches)
were imaged at the same time by a stereo camera system,
the fully-connected layer learns that matching frames must
have high responses in a specific location of the correlation
map. Thus, the trained network performs poorly when there
is a larger vertical shift between matching images or when
the example frame is horizontally from the other side of the
correct database frame. Our datasets ignore these cases; thus,
the implicit assumption is that the database is imaged densely.

More realistic datasets are needed for testing, e.g. creating
the database while harvesting and matching later in a sawmill.
Our dataset contains some variability between the examples
and ground truth matches due to the difference in the viewing
angles of the cameras and the inaccuracies of the automatic
cropping method, but the differences tend to be small. More
challenging datasets might need more modern and powerful
architectures (e.g. ResNet [27] instead of AlexNet [1]). It is
also important to estimate the number of image pairs needed
for training and to compare the performance of convolutional
neural networks to other common methods like Local Binary
Patters [22] or Histograms of Oriented Gradients [28].

It is necessary to study the robustness to changes in logs
after creating the database. Moisture, lighting, living organisms
and mechanical operations can damage or otherwise change
the visual appearance of the logs. Using multiple images from
the log could increase reliability when the changes are local.
One practical limitation is that some processing phases in
the real forestry processes might involve removing the bark
entirely, making the previously imaged database unusable. In
that case, a given log must be identified right before the bark
is removed, and the database must be updated to maintain
traceability. This can be cumbersome since the log must be
imaged from all sides after removing the bark.

The implementation is currently not efficient enough to use
in sawmills. Even on a relatively efficient GPU, matching one
example frame with a database of 4000 images takes about 10
seconds. About one third could be avoided by precomputing
the convolutional features for the database. Then, most of the



processing time during online test usage is spent on computing
correlations between the convolutional features. The imple-
mentation for computing correlations has not been extensively
optimized. Due to their limitations, using the correlation and
classification layers might not even be the best method for
matching. Alternative matching methods might be difficult to
use in SGD training that requires computing the gradients of
all calculations. Our implementation is simple to use in SGD
training, and it allows finetuning the convolutional parameters,
which is very important according to our results. However, the
matching approach could be replaced with something better or
more efficient while using the trained network since gradients
are not needed during online identification.

VI. CONCLUSIONS

This paper develops a two-stream convolutional neural
network for log identification. Logs are matched based on
the correlations of deep features computed for the example
and database frames. The developed model performs very well
for both spruce and pine logs; a single image of the trunk is
typically sufficient for identifying a log from a set of thousands
of log images. Although it is necessary to improve the methods
to generalize the results and to run additional tests with more
comprehensive datasets, the results suggest that the model
could be applied in challenging real-world forestry conditions,
in various applications of log identification.
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[16] J. Žbontar and Y. LeCun, “Computing the stereo matching cost with a
convolutional neural network,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Jun 2015, pp. 1592–1599.

[17] Z. Zheng, L. Zheng, and Y. Yang, “A discriminatively learned cnn em-
bedding for person reidentification,” ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), vol. 14, no. 1,
pp. 13:1–13:20, Dec. 2017.

[18] W. Li, R. Zhao, T. Xiao, and X. Wang, “Deepreid: Deep filter pairing
neural network for person re-identification,” in 2014 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Jun 2014, pp.
152–159.

[19] M. Vihlman, H. Hyyti, J. Kalmari, and A. Visala, “Detection and species
classification of young trees using machine perception for a semi-
autonomous forest machine,” in 2015 IEEE International Conference
on Robotics and Automation (ICRA), May 2015, pp. 1543–1548.

[20] S. Bertrand, R. B. Ameur, G. Cerutti, D. Coquin, L. Valet, and
L. Tougne, “Bark and leaf fusion systems to improve automatic tree
species recognition,” Ecological Informatics, vol. 46, pp. 57–73, 2018.

[21] S. Boudra, I. Yahiaoui, and A. Behloul, “A comparison of multi-scale
local binary pattern variants for bark image retrieval,” in Advanced
Concepts for Intelligent Vision Systems, S. Battiato, J. Blanc-Talon,
G. Gallo, W. Philips, D. Popescu, and P. Scheunders, Eds. Springer
International Publishing, 2015, pp. 764–775.
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