Pearce, J. M.

Limiting liability with positioning to minimize negative health effects of cellular phone towers

Published in:
ENVIRONMENTAL RESEARCH

DOI:
10.1016/j.envres.2019.108845

Published: 01/02/2020

Document Version
Peer reviewed version

Published under the following license:
CC BY-NC-ND

Please cite the original version:
Limiting Liability with Positioning to Minimize Negative Health Effects of Cellular Phone Towers

Joshua M. Pearce

Abstract

The use of cellular phones is now ubiquitous through most of the world and the basic operation of cellular phone networks demands widespread human exposure to radio-frequency radiation (RFR). Wireless data needs are increasing due to the major shift in the source of Internet use from personal computers to smart phones. Thus, both the density of cellular phone base stations and their power output is expected to increase the global human RFR exposure. Although direct causation of negative human health effects from RFR from cellular phone base stations has not been finalized, there is already enough medical and scientific evidence to warrant long-term liability concerns for companies deploying cellular phone towers. In order to protect cell phone tower firms from the ramifications of the failed paths of other industries that have caused unintended human harm (e.g. tobacco) this article summarizes the peer-reviewed literature on the effects of RFR from cellular phone base stations. Specifically the impacts of siting base stations are closely examined and recommendations are made for companies that deploy them to minimize their potential future liability.

Negative human health effects from proximity to cellular phone base stations

There is a large and growing body of evidence that human exposure to RFR from cellular phone base stations causes negative health effects1,2,3 including both i) neuropsychiatric complaints such as headache, concentration difficulties, memory changes, dizziness, tremors, depressive symptoms, fatigue and sleep disturbance4,5,6, and ii) increased incidence of cancer and living in proximity to a cell-phone transmitter station7,8. The mechanism for causing cancer could be from observed genetic damage using the single cell gel electrophoresis assay assessed in peripheral blood leukocytes of individuals.
residing in the vicinity of a mobile phone base station and comparing it to that in healthy controls.\(^9\)

Overall, in epidemiological studies to date that assessed negative health effects of mobile phone base stations (seven studies explored the association between base station proximity and neurobehavioral effects\(^{4,6,10,11,12,13}\) and three investigated cancer\(^{7,8,14}\)), 80% reported increased prevalence of adverse neurobehavioral symptoms or cancer in populations living at distances < 500m from base stations\(^1\).

The literature also indicates that these effects may be cumulative based on i) mice exposed to low-intensity RFR became less reproductive and after five generations of exposure the mice were not able to produce offspring indicating intergenerational transfer of effects\(^{15}\); ii) DNA damage in cells after 24h exposure to low-intensity RFR, which can lead to gene mutation that accumulates over time\(^{16}\) and iii) increased sensitivity to behavior–disruption experiments in rats\(^{17}\) and monkeys\(^{18}\), iv) an increase in permeability of the blood–brain barrier in mice suggesting that a short-term, high-intensity exposure can produce the same effect as a long-term, low-intensity exposure\(^{19}\). Studies on short-term exposure generally show no effects. For example, early studies saw no effect from short-term exposure, however, studies found effects after prolonged, repeated exposure in guinea pigs and rabbits\(^{20}\).

There are several studies showing the effect intensifies with reduced distance to the cell tower. The first\(^7\) found increased symptoms and complaints the closer a person lived to a tower\(^7\) and similar results were found in later studies\(^3-6\).

U.S. Law Unhelpful for Preventing Future Liability

Current U.S. law has created a somewhat peculiar overriding federal preemption that precludes taking the “environmental effects” of RFR into consideration in cell tower siting (see Section 704 of The Telecommunications Act of 1996). The current, U.S. standards are based solely on thermal effects.
(which do not appear to be a problem) and thus do not mitigate against non-thermal effects (for which there is a growing litany of concern in the medical/scientific community). Due to the findings of many studies briefly summarized above many researchers argue for the revision of standard guidelines for public exposure to RER from mobile phone base station antennas. As Roda and Perry summarize, “… because scientific knowledge is incomplete, a precautionary approach is better suited to State obligations under international human rights law.” This is perhaps most forcefully concluded by the BioInitiative Report published by the BioInitiative Working Group, which is based on an international research and public policy initiative to give an overview of what is known of biological effects that occur at low-intensity electromagnetic fields exposure. This precautionary approach is gaining favor in Europe, but is less common in the U.S. American companies are therefore ill advised to simply follow “regulatory compliance” on this front, as there appears to be a clear cause for concern in the scientific/medical communities. If causation were to be proven through detailed studies, cellular phone companies would potentially be in position of future legal exposure for causing widespread human health problems and premature death. It is, therefore, in American companies’ best interest to act before government and regulation catches up with the science.

Current Cell Tower Positioning

Current cell tower locations are chosen based on a “search ring” priority basis of geographic optimum for technical coverage of high concentration of wireless transmissions (e.g. users). This combination of technical parameters (e.g. geography) to enable coverage and dependable service and costs (e.g. positioning on mountaintops on accessibly by helicopter) is then weighed against and local regulations such as local zoning.

To overcome these challenges in urban areas cellphone companies often locate cellphone base stations
at schools, because the monthly rental fee (~$1500) is welcome income for economically-challenged school districts that have influence on local zoning. However, some jurisdictions have already prohibited the placement of cell phone towers near schools or hospitals because of the increased sensitivity of these populations, as in India. Other regions such as Europe could follow a similar approach. Now even in North America, Canada’s Standing Committee on Health are considering more precautionary approaches to RFR.

Precautionary Cell Phone Base Station Positioning

A review article of the health effects near base stations concluded that deployment of base stations should be kept as efficient as possible to minimize exposure of the public to RFR and should not be located less than 500 m from the population, and at a height of 50 m. This potentially presents a serious challenge to cell phone company RF engineers. However, it is possible to obtain necessary coverage while at the same time minimizing human exposure at the highest intensities. There are several first steps a cellular phone company can take to minimize human exposure particularly of the most vulnerable populations.

First, voluntarily restrictions can be made on the placement of cellular phone base stations within 500 m of schools and hospitals. This will synchronize base station deployment strategies between regions. This can be done by utilizing the existing hexagon planning map structure of an area with an overlay using an additional semi-automated process with a geographic information system (GIS) such as the Geographic Resources Analysis Support System (GRASS) to identify any regions within 500m of existing schools and hospitals. All hexagons with schools or hospitals are marked as unusable for RF engineer planning (e.g. colored red). This restriction only makes planning slightly more difficult, but does present a challenge in regions where schools were specifically targeted as base station locations in
(e.g. Verizon deployments in the U.S.). Future work is needed to determine if the increased legal exposure warrants the cost of moving existing stations. However, the increased cost to locate future stations away from schools and hospitals should be minimal.

The second technical hurdle is more challenging. Ideally, all cell phone users would have coverage while minimizing the population density near cellular phone base stations (thus minimizing health impacts). This can be planned using GIS tools, freely-accessible U.S. Census data, parcel data and/or satellite images. The population density can be color coded for straightforward decision making for RF engineers. As a cellphone base station costs $250-350,000 to install in the U.S., using a precautionary approach to potential future regulation can save substantial relocation fees.

The cell phone industry should also consider cell splitting, small cell deployment, beam and null steering antennae as possible technical means for reducing RF exposure. Moreover, more research on cognitive radio should also be conducted, so that the overall RF exposure is reduced. These measures will ultimately benefit the entire telecommunications industry, while potentially significantly reducing global RF pollution.

Finally, exposed companies should consider funding large-scale epidemiological studies with personal dosimeters for strict dose measurement and straight-forward tissue exposure. By quantifying the human medical threat themselves, more appropriate long-term planning can be made to minimize the risk of liability from unintended human harm due to cellular phone base station siting.

Acknowledgements:

References

in individuals residing in the vicinity of a mobile phone base station. *Electromagnetic biology and medicine*, (0), 1-11.

16 Phillips, J.L., Ivaschuk, O., Ishida-Jones, T., Jones, R.A., Campbell-Beachler, M., and Haggren,

