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A B S T R A C T

Forest inventories rely on field plots, the measurement of which is costly and time consuming by manual means.
Thus, there is a need to automate plot-level field data collection. Mobile laser scanning has yet to be demon-
strated for deriving stem curve and volume from standing trees with sufficient accuracy for supporting forest
inventory needs. We tested a new approach based on pulse-based backpack mobile laser scanner (Riegl VUX-
1HA) combined with in-house developed SLAM (Simultaneous Localization and Mapping), and a novel post-
processing algorithm chain that allows one to extract stem curves from scan-line arcs corresponding to in-
dividual standing trees. The post-processing step included, among others, an algorithm for scan-line arc ex-
traction, a stem inclination angle correction and an arc matching algorithm correcting for the drifts that are still
present in the stem points after applying the SLAM algorithm. By using the stem curves defined by the detected
arcs and tree heights provided by the pulse-based scanner, stem volume estimates for standing trees in easy
(n = 40) and medium (n = 37) difficult boreal forest were calculated. In the easy and medium plots, 100% of
pine and birch stems were correctly detected. The total RMSE of the extracted stem curves was 1.2 cm (5.1%)
and 1.7 cm (6.7%) for the easy and medium plots, respectively. The RMSE were 1.8 m (8.7%) and 1.1 m (4.9%)
for the estimated tree heights, and 9.7% and 10.9% for the stem volumes for the easy and medium plots,
correspondingly. Thus, our processing chain provided stem volume estimates with a better accuracy than pre-
vious methods based on mobile laser scanning data. Importantly, the accuracy of stem volume estimation was
comparable to that provided by terrestrial laser scanning approaches in similar forest conditions. To further
demonstrate the performance of the proposed method, we compared our results against stem volumes calculated
using the standard Finnish allometric volume model, and found that our method provided more accurate volume
estimates for the two test sites. The findings are important steps towards future individual-tree-based airborne
laser scanning inventories which currently lack cost-efficient and accurate field reference data collection tech-
niques. The tree geometry defined by the stem curve is also an important input parameter for deriving quality-
related information from trees. Forest management decision making will benefit from improvements to the
efficiency and quality of individual tree reference information.

1. Introduction

Forests have a central role in a modern sustainable bioeconomy.
Forests provide economical, ecological and social ecosystem services,

such as timber, biofuel, habitat for biodiversity, recreation, functional
food (berries and mushrooms) and climate regulation, to name a few
examples (Kettunen et al., 2012). Inaccurate forest resource and bio-
diversity data can result in incorrect management decisions, which may
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have large economic and social impacts (Haara et al., 2019). Stem
volume is among the most important tree attributes to be obtained in a
forest inventory, and correlates strongly with tree biomass, the total
volume of a tree, and many other ecological traits (Zianis et al., 2005).
However, it is not possible or practical to measure the volume and other
attributes of every single tree in a plot with conventional field mea-
surement approaches, since individual tree measurement is costly and
labour intensive.

Developments in laser scanning technologies (e.g., Lovell et al.,
2003) have resulted in breakthroughs in the forest resource inventories.
It has been estimated that Airborne Laser Scanning (ALS) -based in-
ventories carried out every five years could provide added value to the
decision-making at the level of 56e/ha (Kangas et al., 2019). Thus,
improvements in the accuracy of forest inventories could greatly benefit
both forest owners and all other parties involved in the wood trade.
According to Kangas et al. (2019), the profit of forest owners could be
increased by 4e/ha if the root-mean squared error (RMSE) of the stem
volume estimates could be reduced by one percentage point. For the
entire Finland, which currently has an estimated 20 Mha of econom-
ically-exploited forest, this would correspond to national savings in the
order of 80 M€ with such an improvement in accuracy.

However, the calibration of ALS-based inventories (ALS prodiving
the coverage of all forests to be measured) requires accurate field re-
ference data at the individual tree and/or sample plot levels. The most
commonly measured field reference data includes tree attribute in-
formation of tree species, stem diameter at breast height (DBH) or stem
curve, and tree height. Throughout this paper, we use the term stem
curve to refer to the stem diameter at different heights. Conventional
measurements are conducted using calipers, measuring tapes and
hypsometers. Stem volume is typically estimated using an allometric
model based on the measured DBH, the tree height and possibly also the
diameter at the height of 6 m. In a conventional area based inventory,
some 300–600 field reference plots are needed for model calibration in
Finland. These inventories would benefit from more automated and
cost effective approaches to acquiring the required field reference data.

In recent years, several promising laser scanning techniques have
been studied with the goal to automate plot-level field data collection.
These methods encompass Terrestrial Laser Scanning (TLS) and Mobile
Laser Scanning (MLS). The capacity and performance of state-of-art TLS
and MLS, including UAV (Unmanned Aircraft Vehicle)-based mea-
surements, to serve as field reference data for forest inventory in boreal
forest conditions are summarized in Liang et al. (2019).

The TLS methods can be divided into two categories based on the
number of scanning locations used within a single sample plot. In the
single-scan TLS approach, the laser scanner is placed at the centre of the
plot, and one panoramic full field-of-view scan is made. In the multi-

scan TLS method, several scans are made to map the sample plot.
Collecting the field data takes less time with the single-scan method in
comparison to the multi-scan method; however, the single-scan method
suffers from the omission of trees due to laser beam occlusion. In order
to capture all trees in the plot, the multi-scan method is needed. Mature
and robust algorithms applied to multi-scan TLS data provide high
quality stem volume and biomass estimates that are comparable in
accuracy with the best national allometric models (Liang et al., 2014a;
Liang et al., 2018a).

Current shortcomings of the TLS methods include the aforemen-
tioned tree occlusion and need for multiple scans, as well as the lack of
available software for processing and limited capacity to provide tree
height information. Recently, Liang et al. (2019) proposed that the
problem of obtaining accurate tree height estimates from TLS data
could be resolved by combining TLS and UAV laser scanning data. This
would allow the estimation of stem volume with a relative RMSE of
10% in boreal conditions, thereby enabling the use of stem volumes
extracted from the TLS data as field reference data.

MLS techniques can be divided into phone-based scanning, vehicle-
based scanning, Unmanned Aircraft Vehicle (UAV)- based, hand-held
and other personal laser scanning techniques, including the backpack
mobile laser scanning. It should be noted that MLS systems applied
inside the forest canopy benefit greatly should they use SLAM
(Simultaneous Localization and Mapping) technology, which enables
accurate positioning of the scanner in forest environment hampering
the GNSS (Global Navigation Satellite System) signal. SLAM technology
has been incorporated into some commercial scanners, such as Gexcel
HERON, Kaarta Stencil and GeoSLAM Horizon and Zebedee systems.
Several experimental MLS systems incorporating SLAM have also been
developed by different groups (e.g. Forsman et al., 2016; Kukko et al.,
2017; Pierzchała et al., 2018). Past studies using MLS data have focused
primarily on determining the DBH and the detection rate of trees (see,
e.g., Chen et al., 2019; Cabo et al., 2018; Bauwens et al., 2016; Del
Perugia et al., 2019; Marselis et al., 2016; Bienert et al., 2018; Čerňava
et al., 2019; Zhao et al., 2018; Wu et al., 2013; Liang et al., 2014b,
2018b, 2019; Pierzchała et al., 2018; Saarela et al., 2017; Kukko et al.,
2017). In the past studies, DBH has been obtained with accuracies
ranging from 1 to 4 cm, and the detection rate for individual stems has
varied between 80 and 95% in relatively easy forests (i.e. homogeneous
relative sparse stands similar to that shown in Fig. 1(a)). Notably fewer
studies reported the stem volume. The reported relative RMSE for stem
volume ranges from 20 to 50% in easy and medium difficult boreal
forest plots (Liang et al., 2018b, 2019; Bienert et al., 2018).

The objective of this study is to introduce a method for stem curve
and volume estimation using mobile backpack laser scanning data that
is sufficiently accurate to satisfy the operational requirements for field

Fig. 1. Photographs of (a) the easy plot and (b) the medium plot.
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inventory reference data collection. We demonstrate the method for
individual trees (pines and deciduous trees) in boreal forest conditions.
Our method is based on (1) a pulse-based 2D laser scanner (tilted from
the vertical) mounted on a backpack and supplying dense point clouds
and providing also tree heights with reasonable accuracy, (2) SLAM
correction that allows us to reduce the positioning error of the MLS
scanner inside the forest, (3) constructing the stem curve by matching
good quality arcs obtained from different scan directions with a novel
algorithm correcting for the positional drift that is still present in the
stem points after the SLAM algorithm, (4) estimating the stem volume
from the extracted stem curve without any allometric models as op-
posed to the conventional approach. Since both the stem curve and the
tree height can be obtained from a single sensor, the stem volume can
be estimated in a reliable manner. Herein, we compared the individual
stem volumes obtained with the proposed MLS method against highly
accurate field reference acquired semi-manually with multi-scan TLS.
Additionally, the obtained volumes are compared against conventional
volume measurements that are based on measuring the DBH with a
caliper, the tree height with a hypsometer and subsequently estimating
the stem volume using the national allometric stem volume model.

2. Materials and methods

2.1. Test sites

The two test sites used in this study were located in the boreal forest
zone near Evo, Finland (61.19°N, 25.11°E). Each of the test sites had a
size of 32 m × 32 m, and the main tree species on the sites were Scots
pine (Pinus sylvestris), Norway spruce (Picea abies), Silver birch (Betula
pendula), and Downy birch (Betula pubescens). These test sites were
established in 2014 for the European Spatial Data Research (EuroSDR)
Project of International Benchmarking of TLS in Forest inventory. In
earlier studies (see, e.g., Liang et al., 2018, 2019, Wang et al., 2019a,
2019b), these forest stands were divided into three complexity cate-
gories (“easy”, “medium”, and “difficult”) based on stem density, spe-
cies composition of the vegetation, visibility of the tree stems, and the
distribution of DBH values. Based on this classification, one of the test
sites used in this study falls into the category “easy”, whereas the other
test site was classified as a “medium” plot. The test sites are shown in
photographs in Fig. 1a and b.

The easy plot contains 42 trees corresponding to a stem density of
410 stems/ha, whereas the medium plot contains 44 trees corre-
sponding to a density of 430 stems/ha. Although the stem densities on
the plots are very similar, the other properties of the test sites differ
markedly. As can be seen from Fig. 1a, the easy plot represents a typical
managed forest in the boreal region of Finland with minimal understory
vegetation and clear visibility. The trees in the easy plot are relatively
homogeneous with small variations in the tree diameters and heights.
Additionally, over 90% of the trees are pines, whereas the rest of the
trees are spruces.

In the medium plot, the amount of understory vegetation is mod-
erate, and the local stem density varies markedly within the plot. In the
medium plot, there are also several spruces that are located within a
short distance from other trees. Furthermore, the variations in the tree
diameters and heights are notably larger than those of the easy plot,

and the species composition is more varied. More detailed statistics of
the plots are presented in Table 1.

2.2. Data acquisition with mobile laser scanning

The data for the study were collected using a kinematic Akhka-R3
backpack mobile laser scanning unit (see Fig. 2). The unit has been
developed and built at the Finnish Geospatial Research Institute. The
positioning system consists of a NovAtel Flexpak6 GNSS receiver and
GGG-703 antenna to observe GPS and GLONASS satellites com-
plemented with LITEF UIMU-LCI inertial measurement unit built on
fiber optical gyroscopes and MEMS accelerometers to measure and
output the movements of the platform at 200 Hz data rate. The 3D
information of the forest is measured using a Riegl VUX-1HA laser
scanner operating at 1550 nm wavelength and cross-track profiling of
360 degree field of view. This results in a dense helical scan pattern
following the system trajectory to capture the ground and trees. The
beam size is 4.5 mm at the exit, and diverges at a rate of 0.5 mrad
resulting in a beam footprint of 6.6 mm at 10 m, and 13 mm at 25 m
range. The ranging is specified to provide 5 mm accuracy with 3 mm
precision (1 ) at 30 m range. At the maximum scan frequency, the
scanner, using a revolving mirror, produces 250 cross-track profiles per
second with 1017 kHz pulse repetition rate and can detect up to seven
echoes per each pulse, which makes the instrument very attractive for
vegetation analysis. Also, the reflectivity of the object surfaces are
stored providing opportunities for spectral analysis, especially in foliage
as the 1550 nm wavelength is sensitive to moisture - a possible early
indicator for vegetation stress (Junttila et al., 2017).

Scans at the test sites were acquired using the maximum scan fre-
quency of 250 Hz and 1017 kHz pulse rate. Thus, the angular step width
for the study was 0.0885°, i.e. 0.00154 mrad, which corresponds to a
15.4 mm point spacing along the scan line at 10 m range. Along the
track, the walking speed was typically 3–5 km/h resulting in a cross-
track line spacing of 3–6 mm, respectively. The maximum unambiguous
range at the given settings was 135 m for targets with 80% reflectivity.
Darker surfaces, which natural forest surfaces, e.g. bark, leaves and
needles typically are, yield shorter ranges: the specification for surfaces
with 10% reflectivity is 50 m. However, the ranging is strongly de-
pendent on the pulse repetition rate: with a lower frequency (user se-
lectable 330, 507 and 762 kHz) a higher pulse energy and, thus, longer
range can be achieved. Ranges beyond pulse rate specific unambiquity
ranges can be solved in data processing using Riegl RiMTA software
package provided that the signal is strong enough (sufficiently high
surface reflectance) to get back to the scanner.

The 170 k€ worth system (with appropriate software) weighing
about 15 kg could operate with swappable battery power for up to 8 h
at a time. Single forest plot data collection could be done in minutes,
but additionally the system initialization takes a few minutes at the
beginning and at the end of data collection. Data georeferencing was
carried out in RiWorld (Riegl Gmbh, Austria) supplemented with the
trajectory processed in Waypoint Inertial Explorer (NovAtel Inc.,
Canada). Certain preparatory steps of the process were conducted in
TerraScan (Terrasolid Ltd., Finland).

On the study sites, the data was collected by walking on the plot
area to cover all the trees as completely as possible. The path was in

Table 1
Statistics of the forest stands on the two test sites. Note that only trees with their DBH exceeding 5 cm have been included in the statistics. The standard deviations of
tree height and DBH are reported inside the parenthesis.

Test site Number of trees Stem density Average DBH Average tree height Tree species distribution

(stems/ha) (cm) (m) Pines (%) Spruces (%) Birches (%)

Easy 42 410 24.9 ±( 5.5) 20.6 ±( 3.0) 92.9 7.1 0.0
Medium 44 430 25.8 ±( 10.1) 20.5 ±( 6.2) 70.4 18.2 11.4
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general going around the plot to cover the trees from all four sides, and
then the plot was split in four. Terrain and forest conditions, e.g. the
saplings and bushes, fallen trees, big boulders, cliffs et cetera, regularly
necessitate modifications to the routing on site. Ultimately, the scan-
ning objective was to minimize the omission of trees, and in this study,
the trajectories intersected multiple times within the plots to allow for
loop closures providing key locations for trajectory optimization in the
post-processing.

As the GNSS-IMU positioning is affected by the forest canopy, the
trajectory solution deteriorates due to multipath effects and attenuation
or complete loss of the GNSS signals. The post-processed differential
solution (Waypoint Inertial Explorer) for the GNSS-IMU data collected
by the Akhka-R3 positioning system for the trajectory is shown in
previous studies to provide 0.5–0.8 m accuracy under boreal forest
canopy (Kaartinen et al., 2015; Kukko et al., 2017), and the estimate
holds for the data used in the study as well. This could be achieved
using either physical or virtual GNSS base stations for the differential
computation. However, such drifting of the trajectory solution can
make it difficult to apply the MLS data for automated modeling without
further geometric improvement.

2.3. Simultaneous localization and mapping

In a forest environment, trees block and degrade GNSS signals,
which causes the trajectory solution of the scanning instrument to drift
(e.g. Kaartinen et al., 2015). The drift can often be many meters even
with high quality sensors. This drift can cause the acquired point clouds
to have multiple copies of all objects since measurements taken at
different time steps do not align spatially. To correct for this, we use a
method inspired by SLAM methods, specifically the graph SLAM opti-
mization method implemented and described in detail in Kukko et al.
(2017). The steps of the method range from data collection, georefer-
encing, ground classification and other preparations for the raw point
cloud data to trunk detection, trunk feature association, generating the
graph representation of the features and the trajectory, optimization
and finally georeferencing of the point cloud using the optimized tra-
jectory.

In a traditional mobile robotics SLAM scenario, we often have an
initial guess of the movement based on wheel odometry, which is then
corrected with the help of sensors such as cameras or laser scanners. In
our mobile laser scanner case, the initial guess of movement is the
trajectory calculated from the GNSS and IMU measurements. While the
GNSS/IMU trajectory drifts away from the real trajectory, the drift is
gradual so we can extract features (in our case tree stems) that are
measured over a short period of time from the point cloud based on the
initial trajectory. As trees are static, the observations of them at dif-
ferent times, i.e., loop closures in terms of lidar/feature data reach, but

not necessarily complete trajectory loops, enable us to correct much of
the error found in the initial trajectory. This is done by formulating the
initial trajectory as a pose graph and by minimizing the errors caused
by the additional constraints gained from the observations of the tree
stems. After optimization, the laser scanner measurements can be
georeferenced again with the corrected trajectory in order to obtain a
higher quality point cloud.

The pose graph optimization is commonly used in the robotics to
perform simultaneous localization and mapping (SLAM) for mobile
robots. For pose graph optimization the trajectory is formulated as a
graph where the poses at consecutive timestamps (200 Hz in our case)
and the detected features at certain time instance (captured as a mean
of the feature points timestamps) form the nodes, and the edges (or
constraints) between the nodes are formed from the measured relative
transformations between them.

2.4. Reference measurements of stem curves, tree height and stem volume

In order to assess the performance of the proposed approach, we
compared the estimated stem curves and stem volumes with values
from high-quality reference measurements. The reference values for the
stem curves were obtained with the help of a multi-scan TLS point
cloud, from which the tree stems were manually detected and circles
were manually fitted to the stem points at several different heights. The
fitting aimed at overlapping the circle arc with the majority of stem
points. The reference diameters were recorded at the heights of 0.65 m,
1.3 m, 2.0 m, 3.0 m and even upwards up to the maximum measurable
height with one meter spacing. All trees with DBH over 5 cm were
measured. The reference tree positions were determined based on the
circle coordinates in the TLS point cloud at 1.3 m height when the tree
was visible. Trees that were not visible in TLS point clouds were added
to the tree map manually in the field using measuring tape and bearing
compass.

Since the reference stem curves were based on TLS measurements
conducted in 2014, the trees had roughly two years of time to grow
between the reference measurements and the acquisition of the MLS
data in April 2016. In order to estimate the tree growth between the
years 2014 and 2016, we carried out field measurements of the DBH for
all of the trees in the two test sites during the summer of 2019.
Subsequently, we computed the increase in the DBH values between the
years 2014 and 2019 for each of the trees separately, and interpolated
the growth between the years 2014 and 2016 based on the measured 5-
year growth. For each tree, it was assumed that the diameter had grown
homogeneously on the whole height interval of the reference mea-
surements. On average, the tree diameters had grown approximately
1.8 cm during the 5-year period, which corresponds to 0.7 cm growth
between the years 2014 and 2016. Note that it is unlikely that the radial

Fig. 2. (a) Akhka-R3 backpack mobile laser scanning system used in the study. Trajectory observations are recorded with a GNSS-IMU system while the laser scanner
simultaneously measures the environment by cross track profiles 250 times a second. Data is stored on a tablet computer which also displays the on-the-fly trajectory
data to aid the mapping in the forest. (Image: A. Kukko, 2016) (b) Cross section of the easy pine forest plot shows the potential of the backpack MLS technique in
capturing the dominant tree stems and canopy structure, sub-dominant understory trees and terrain. Conducting the mapping from the ground helps the tree height
determination and allows for DBH measurements.
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growth increments have been the same at each height and at each year.
However, this is the best assumption we can make without over-
complicating the matter. The possible errors caused by this simplifica-
tion were considered negligible when compared with other sources of
errors due to measurements.

Reference heights for the trees were extracted from ALS data since it
had been suggested and verified on these sample plots that ALS point
clouds can yield very accurate tree height estimates (e.g., Liang et al.,
2019; Wang et al., 2019a). For small trees shadowed by larger trees, the
reference height was manually estimated as the height difference be-
tween the tree top and the digital terrain model created from the ALS
point cloud. For large trees, the reference height was taken to be the
difference between the digital terrain model and the average z co-
ordinate of the five highest lying points within a range of 0.5 m from
the tree location.

The reference values for stem volume were determined based on the
reference measurements of stem curves and tree heights. Since there are
no reference measurements for stem diameter close to the tree top, the
stem curve has to be extrapolated in this height interval based on ex-
isting data. To achieve this, we fitted a parabola

= +R z a h z a h z( ) ( ) ( ),1 1
2

2 (1)

and a square root function

=R z b h z( )2 1 (2)

to the reference measurements of stem radii R at different heights z. In
Eqs. (1) and (2), h is the reference height of the tree, and a a b{ , , }1 2 1 are
parameters to be determined with ordinary least squares regression.
Note that both of the fitting functions force the stem radius to equal
zero at the top of the tree for all parameter values. After determining
the fitting parameters, the reference stem volume V was determined as

= + =V R z z R z z R z z
2

( ) d ( ) d ( ) d ,
h h h

0 1
2

0 2
2

0 eff
2

(3)

i.e., the volume was taken to be the average value predicated by the fits.
Note that = +R z R z R z( ) ( ) ( ) /2eff 1

2
2

2 is the effective radius corre-
sponding to the volume estimate. This fitting procedure is illustrated in
Fig. 3, where we show one reference stem curve with the effective
diameter =D R2eff eff , and the fits based on Eqs. (1) and (2).

The fitting process used to estimate the reference volume has sev-
eral advantages. First, the fitting functions can approximate the shape
of a stem curve as shown in Fig. 3. Second, the risk of over-fitting is
minimal due to the small number of fitting parameters. As a result of
the gap between the highest measurable stem diameter and the tree top,

the risk of over-fitting is substantial for more complicated models in-
volving several parameters. For example, the model used by
Laasasenaho (1982) is a polynomial of degree 34 and would therefore
be prone to severe over-fitting.

To further estimate the accuracy of the reference volumes, we note
that there are three possible sources contributing to the error: the re-
ference diameter measurements, the reference height measurements
and the fitting process itself. The accuracy of the manually measured
stem diameter references from TLS point clouds have reportedly low
RMSE (RMSE < 1 cm). The overall effect of these errors to tree-spe-
cific stem volume estimations has varied between 1 and 10%, in con-
ditions similar to those in this study (Saarinen et al., 2017).

By comparing the tree heights extracted from the ALS point cloud
against ordinary field measurements, we have additionally estimated
that the error in the reference heights should be at most 0.4 m (2%).
Importantly, a small error in the tree height only affects the fit at
heights above the highest reference diameter (see Fig. 3). This has al-
lowed us to estimate that the error in the reference volumes due to the
uncertainty in the reference heights is on the order of 1% in our case,
where the reference diameters extend to the height of 13 m on average.
Furthermore, we have estimated that the relative RMSE of stem volume
due to the fitting process itself is on the order of 1–2% on the height
interval, where reference diameter measurements are available. Since
this height interval contains on average over 80% of the volume of the
whole stem, it is probable that the error introduced by the fitting pro-
cess is on the order of 2–3% for the volume of the whole stem.

2.5. Statistical analysis

Here, we briefly present the statistical methods used for evaluating
the performance of the proposed algorithm. In order to quantify the
accuracy of stem detection, we use the completeness and correctness
defined as

= ×Completeness Number of reference trees found
Total number of reference trees

100%, (4)

= ×Correctness Number of reference trees found
Total number of trees found

100%, (5)

where the total number of trees found refers to the trees found within
the 32 m × 32 m test site.

The bias and root-mean-square error (RMSE) of a variable x are
computed as

=
=

x x
N

bias ,
i

N
i i

1

,ref

(6)

=
=

x x
N

RMSE
( )

,
i

N
i i

1

,ref
2

(7)

where N is the number of matched trees, =x{ }i i
N

1 denotes the set of es-
timated values, and =x{ }i i

N
,ref 1 are the corresponding reference values.

Additionally, we use the following definitions for the corresponding
relative bias and RMSE

= ×
x

bias % bias
¯

100%,
ref (8)

= ×
x

RMSE % RMSE
¯

100%,
ref (9)

where x̄ref is the mean of the reference values.
Note that the bias and RMSE of stem curve estimates has to be

computed in a slightly different way since we obtain a varying number
of diameter estimates for each tree. Therefore, we compute the total
bias and RMSE for the stem curve estimates as

Fig. 3. In order to determine the reference volume, we fit a square root function
(dotted black line) and a parabola (dashed red line) to the reference stem curve
(blue circles). The stem volume is obtained as the average of the volumes es-
timated with the parabolic and square root fits. This corresponds to the effective
fit shown with the solid green line.
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where Ni is the number of successfully extracted diameter estimates for
the ith tree, D z( )i j is the extracted diameter of the ith tree based on the
smoothing spline fit evaluated at the height zj, and D z( )i j,ref is the
corresponding reference value. Note that we can compare the extracted
diameters with the reference values only at such heights for which both
of the values exist. Therefore, the number of heights used for compar-
ison Ni depends on the height range that yields good quality arcs.

3. Theory of the proposed algorithm

In this section, we introduce the algorithm that allows for the ex-
traction of the stem curve and volume from an MLS point cloud. The
goal of the algorithm is to extract arcs of good quality from the scan
lines cast on the tree trunks, and subsequently, cluster these arcs into
groups corresponding to individual trees. In order to obtain an accurate
stem curve estimate for each tree, we further match the arcs and correct
for the possible inclination of the tree stem. It should be noted that the
algorithm is fully automatic and does not require any manual proces-
sing of the data. We present the flow chart of the proposed algorithm in
Fig. 4.

3.1. Digital terrain model and watershed segmentation

First, a DTM (Digital Terrain Model) is created from the point cloud
in order to find out the ground elevation of the test sites. To generate
the DTM, we apply a voxel-based method, in which the test site is di-
vided into ×50 50 pixels in the xy plane and further to 20 height in-
tervals in the z direction. For each pixel, the ground level is assumed to
lie in the lowest height interval containing sufficiently many points
(> 1%) as compared with the total number of points within the pixel.
Subsequently, the ground level in the pixel of interest is obtained by

taking the average elevation of the points within this ground voxel.
After applying Gaussian smoothing for the discretized ground elevation,
we obtain the final DTM. To proceed, we subtract the ground elevation
from each data point in the point cloud so that the new z coordinates
represent point heights from the ground.

Subsequently, we perform segmentation for the point cloud in order
to divide the sample plot into smaller regions that contain roughly one
tree. This is advisable since dividing the data into smaller segments can
greatly reduce the time needed to experiment with the parameters of
the arc extraction algorithm (see Section 3.2). To perform the seg-
mentation, we first form the canopy height model by finding the height
of the highest point within each pixel (see, e.g., Hyyppä et al., 2001).
After applying Gaussian smoothing to the canopy height model, we
perform watershed segmentation in order to divide the test site into
watershed regions (Hyyppä et al., 2001). Note that each watershed
region can be treeless, or contain one or several trees. It is also possible
that some trees end up partly in different watershed regions.

3.2. Arc finding and clustering individual arcs to trees

In the next stage of the algorithm, we aim to extract arcs of good
quality from the points measured from the tree trunks. Fig. 5 illustrates
a couple of arcs formed by consecutive points reflected from the same
tree. The extraction of individual arcs has many advantages as com-
pared with many other approaches used for stem detection. First, the
positioning errors of the mobile laser scanner can be on the order of
10–20 cm even after applying the SLAM algorithm (as described in
Section 2.3). According to previous studies, the positioning error of MLS
without SLAM is in the order of 80 cm (Kaartinen et al., 2015). Despite
the SLAM correction, the positioning error of the scanner can result in
severe deformation of the stems in the point cloud. This deformation of
the stems can easily propagate to errors in the diameter estimates if the
detection of stem points is not based on arc finding or equivalent
methods. Second, the points from tree branches can efficiently be fil-
tered out by reconstructing the stem from individual arcs. The same
does not apply for, e.g., methods, in which the tree stem is divided into
height intervals in order to perform circle or cylinder fitting at different
heights (Raumonen et al., 2013).

Our arc finding algorithm can be viewed as an extension of that
proposed by Forsman et al. (2016). Since the data points recorded by
the 2D laser scanner are in time order, we can find individual scan-line
arcs by monitoring the distance between consecutive data points. The
key idea of the algorithm is that a large distance between consecutive
points indicates that the points have not been reflected from the same
stem. Unlike Forsman et al. (2016), we aim to find arcs at all heights
instead of just the breast height, and we do not always stop the arc due
to a few noise points in the middle of an arc (e.g. in order to account for
tree branches).

We also set specific quality criteria for the arcs, which allows us to
only extract arcs of requested quality, as described in detail below. With
the parameter values used in this study, the typical number of arcs for a
single tree ranges from hundreds of arcs to thousands of arcs. Note that
we use exactly the same parameter values for both of the test sites.
More precisely, the algorithm with the quality criteria is summarized as
follows:

1. Suppose Pi is the first point of the current arc candidate. On the first
round, Pi is naturally the first point P1 of the data set. Accumulate
new points to the arc candidate until the distance between con-
secutive points exceeds a threshold value ( =d 3max cm).
a. If the current arc candidate contained less than =N 10start points
before a large gap ( =d 3max cm), we neglect the arc candidate
and start accumulating a new arc candidate according to in-
struction 1 but using +Pi 1 as the new starting point.

b. If the current arc candidate contained 10 points or more before
the large gap, we fit a circle to the arc candidate after projectingFig. 4. Flowchart illustrating the proposed algorithm.
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it on to the xy plane.
i. If one or more of the next =N 5noise,max points is located within

=l 8max mm of the arc of the fitted circle in the xy plane, we
continue accumulating the arc candidate from the first point
within 8 mm of the fitted circle. When the next large gap is
detected, we proceed based on the instruction 1(b). Note that
the noise points far from the arc candidate are not included in
the arc candidate.

ii. If none of the next 5 points is located within 8 mm of the fitted
circle, we stop accumulating the arc. If the arc candidate
contains over =N 30min points, we move to testing the quality
of the arc as explained in instruction 2. After the possible
quality testing, we start accumulating a new arc candidate
according to instruction 1 but using the first of the previous 5
noise-type points as the starting point.

2. The arc candidate with over 30 points is tested for quality before it is
accepted as a proper stem arc. We fit a circle to the arc candidate
after projecting it on to the xy plane. The arc candidate is accepted
as an arc if the radius of the fit is between =R 3min cm and

=R 40max cm, the central angle of the arc is above
= = °0.6 rad 108min , and the standard deviation of the radial re-

siduals is below = 6R mm.

Note that the parameters of the arc finding algorithm are chosen
based on the typical distance of consecutive points in the point cloud,
the noise level of the arcs, the features of the forest and the desired
accuracy of the extracted stem curve. The parameter values have been
selected based on heuristics and physics of the point clouds as men-
tioned. Higher performance for tree attribute retrieval can be obtained
by optimizing them more carefully.

It is a well-known problem that the finite width and footprint of the
laser beam can result in a slight distortion of the arcs and thus an
overestimation of the tree diameter (Forsman et al., 2018). As can be
seen from Fig. 5b, this effect is typically most prominent close to the
edges of an arc, and therefore, we drop two points from the beginning
and ending of each arc following a strategy slightly modified from m
Forsman et al. (2016). Furthermore, it should be noted that the arc
finding algorithm is applied to points located over 1 m above the
ground level since reflections from the ground and the understory ve-
getation can result in unreliable arcs.

For the circle fitting, we use the algebraic fit proposed by Al-
Sharadqah and Chernov (2009) since it is efficient to compute and it is
hyperaccurate in the sense, that it approximates the geometric least-
squared-distance fit with no bias at all. Thus, the hyperaccurate fit is a
clear improvement over the simple Kåsa fit (Kåsa, 1976) that tends to

underestimate the radius for short and noisy arcs (see, e.g., Pratt, 1987;
Al-Sharadqah and Chernov, 2009), and it is also a slight improvement
over the Pratt fit (Pratt, 1987). It is noteworthy that in contrast to other
approaches (e.g., Liang et al., 2012) we do not need to utilize robust but
slow circle finding algorithms since the arc finding algorithm auto-
matically filters out data points that correspond to reflections from the
branches.

The hyperaccurate circle fit amounts to solving the following gen-
eralized eigenvalue problem

=Z Z S ,T (12)

where the ith row of Z equals = +x y x yZ ( , , , 1)i i i i i
T

:
2 2 , is a coefficient

vector = A B C D( , , , )T corresponding to a circle
+ + + + =A x y Bx Cy D( ) 02 2 , is the generalised eigenvalue and S is

a matrix encoding the hyperaccurate circle constraint

=

z x y
x
yS

8¯ 4 ¯ 4¯ 2
4 ¯ 1 0 0
4¯ 0 1 0
2 0 0 0

,

(13)

where z̄ denotes the mean value of the set + =x y{ }i i i
N2 2

1, and x̄ and ȳ
denote mean values of x and y coordinates, respectively. The coeffi-
cients of the hyperaccurate circle fit are obtained as the generalized
eigenvector minimizing the function =Z Z ZT T

2
2 . The center of the

fitted circle x y( , )0 0 and the radius R can readily be solved from the
coefficients as
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,
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,
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After finding the arcs, the centers of the arcs are clustered in the xy
plane by applying the DBSCAN algorithm (Ester et al., 1996) in order to
determine which arc corresponds to which tree. By combining the arc
finding algorithm with DBSCAN clustering, it is possible to reconstruct
the stems without any points reflected from branches or understory
vegetation. The parameters of the DBSCAN clustering are the neigh-
borhood radius that gives the length scale for the smallest possible
separation of two clusters and the point number threshold NminPts that is
used to determine whether a certain point is a core point within a
cluster. A large range of DBSCAN parameter values result in an equally
good clustering since the distance between different trees is markedly
larger than the deviation of the arc centers corresponding to a single
tree.

In our implementation, we set =N 25minPts and use 25 cm as the
neighborhood radius since it can be safely assumed that the inter-tree
distance is larger than the mean DBH 25 cm. Note that our choice of
NminPts implies that a tree needs to yield at least 25 arcs for it to be

Fig. 5. (a) 3D view of a couple of good quality arcs corresponding to a tree trunk. Note that the scale of the z axis is not equal to that of the x and y axes. (b) 2D
projection of the points shown in panel (a).

E. Hyyppä, et al. ISPRS Journal of Photogrammetry and Remote Sensing 161 (2020) 246–262

252



detected in the clustering. Note also that it is advantageous to find the
arcs in each of the watershed regions separately and thus perform
DBSCAN clustering only for a small number of trees at a time if a simple
quadratic implementation of the DBSCAN algorithm is used. After the
clustering, we check whether there are trees whose arcs have ended up
in two neighboring watershed regions. This can be done by combining
all pairs of trees that have an inter-tree distance on the order of their
radii.

3.3. Correcting the effect of a non-zero inclination angle with principal
component analysis

Due to the inclination of the mobile laser scanner with respect to the
horizontal direction, the extracted arcs are not horizontal but clearly
inclined. The highest and lowest point elevation within a single arc can
differ by several tens of centimeters or even half a meter. Therefore, the
inclination of a particular tree stem can result in major underestimation
or overestimation of the stem diameter when the inclination angle of
the tree exceeds: 3–4°. Fig. 6a shows an inclined tree in the medium
plot, for which the stem diameters are clearly overestimated when the
circle fitting is performed in the xy plane as illustrated in Fig. 6(b).

To correct for this error source, we note that the arcs should be
projected to the plane perpendicular to the growth direction of the tree
before the final circle fitting. The growth direction of a tree can be
found by applying principal component analysis to the arc centers
found for a tree. The growth direction is given by the first principal
direction. This correction clearly improves the diameter estimates for
the most inclined trees as can be seen from the example shown in
Fig. 6(b).

3.4. Arc matching and stem curve extraction

In order to determine the stem curve of an individual tree, we divide
the arcs into height intervals based on the average z coordinate of the
arcs. In our implementation, the height intervals have a constant width
of 20 cm and they start upward from 1 m above ground. To accurately
estimate the stem diameter within each height interval, we use a pro-
cedure that aims to match the arcs optimally in order to avoid any
errors resulting from the positioning errors of the mobile laser scanner
(post-SLAM correction). The idea of matching displaced stem models
corresponding to a single tree has previously been considered by
Holmgren et al. (2019) and Čerňava et al. (2019). Holmgren et al.
(2019) use tree spine calibration to refine the stem model first using

multiple trees in the calibration and subsequently refining the stem
model for each tree individually. The approach adopted by Čerňava
et al. (2019), aims to match the extracted stem models of a single tree in
three dimensions by first identifying the stem model with the highest
number of points and then applying a translation to each of the other
stem models such that they match as well as possible with the stem
model with the highest number of points. However, this approach re-
quires that there is sufficient overlap between the stem models to be
matched, which is not always the case.

In this section, we present a different approach to this post-SLAM
matching problem, which does not require any overlap between the
arcs to be matched but assumes that the stem is approximately circular.
Note that the goal of this arc matching algorithm is to improve the
modeling accuracy of each of the detected stems and not to perform
SLAM for the entire point cloud. Before matching the arcs belonging to
a certain height interval, we project the points to the plane perpendi-
cular to the growth direction of the tree as explained in the previous
section. The arc matching algorithm can be summarized as follows:

1. First, we fit a circle with the hyperaccurate circle technique to each
of the arcs separately. This is illustrated with three simulated arcs in
Fig. 7(a). Based on the circle fits, we center the arcs such that the
centers of the fits coincide with the origin after applying the
translation.

2. Subsequently, we fit a single circle to all of the data points.
Importantly, the center of the fitted circle is fixed to the origin. This
is illustrated in Fig. 7(b).

3. Next, we separately fit to each of the arcs a circle with its radius
being fixed to the value obtained in the previous step. Based on the
centers of the fitted circles, all of the arcs are re-centered such that
the new center coincides with the origin. This is illustrated in
Fig. 7(c). The steps 2 and 3 are re-iterated for sufficiently many
times until the algorithm converges. In our implementation, we use
5 iterations by default.

4. Finally, the radius of the matched arcs is estimated by fitting a circle
to all of the data points. Again, the center of the fitted circle is fixed
to the origin. The resulting fit for the simulated data is shown in
Fig. 7(d).

Fitting a circle with its center fixed to the origin can be realized
easily as follows

Fig. 6. (a) 3D view of all the extracted arcs (light blue dots) of a birch with inclination of θ = 8.6° with respect to the vertical direction. The red circles illustrate the
arc selected as an example, and the first principal direction is shown with a black line. Note that the scale of the z axis does not equal that of the x and y axes, which
makes the tree look more inclined than it actually is. (b) Projection of the example arc to the xy plane (red circles) and to the plane perpendicular to the 1st principal
direction (green squares). The dashed lines show the circular fits and the solid blue line illustrates a circle whose radius equals the reference value.
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where Rfit is the least-squared-distance fit of the radius, N is the number
of data points and =x y{( , )}i i i

N
1 is the set of data points. However, fitting a

circle with a fixed radius is not as straightforward, and to our knowl-
edge, there does not exist any non-iterative methods for this con-
strained optimization problem. Therefore, we formulate the problem as
a nonlinear optimization problem, where the objective function f to be
minimized is the sum of squared radial residuals
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where x y( , )0 0 is the circle center to be determined and Rfixed is the fixed
value of the radius.

In Fig. 8(a) and (b), we illustrate the performance of the arc
matching algorithm for arcs extracted from a pine located in the
medium category plot. As can be seen from Fig. 8(b), the algorithm
manages to match the displaced arcs well even though the arcs on
different sides of the tree do not properly overlap. Note that it is pos-
sible but rare that the arcs to be matched are from different trees that
are located nearby. In this case, the arc matching algorithm can pro-
duce an unreliable diameter estimate which can, however, be filtered
out using the outlier removal step described below.

For each tree, the diameter is estimated with arc matching at all the

height intervals containing at least 3 arcs. We model the stem curve
with a cubic smoothing spline (see, e.g., De Boor, 1978; Pollock, 1993)
fitted to the diameter estimates since a smoothing spline provides a
non-parametric fit that has suitable smoothness properties for stem
curve modeling (e.g., Nummi and Möttönen, 2004; Koskela et al., 2006;
Saarinen et al., 2017). Before fitting the smoothing spline, we try to
automatically remove clearly outlying diameter estimates. A diameter
estimate Dj at height zj is deemed as outlying using the following pro-
cess:

1. Find the k nearest height intervals for the height zj (including the
height interval itself), and determine the median (MEDIAN) and
median absolute deviation (MAD) for the diameter estimates cor-
responding to these k height intervals. The point z D( , )j j is deemed as
outlying if both of the following conditions are satisfied
(a) > ×D| MEDIAN| 2 MADj
(b) >D| MEDIAN| 3.0j cm

Note that median is a robust estimator of location and median ab-
solute deviation is a robust estimator of scatter and therefore, they are
appropriate for detecting whether a data point is an outlier. In our
implementation, we use =k 5.

When fitting the smoothing spline to the diameter estimates, we
neglect the diameter estimates classified as outliers. In the fitting pro-
cess, we also weight each diameter estimate by the inverse of the

Fig. 7. Schematic of the arc matching algorithm. (a) Three simulated arcs of 30 points with normally distributed noise. The circles drawn with the solid line illustrate
the hyperaccurate circle fit to each of the arcs. (b) The same arcs after shifting their coordinates such that the center of each fit coincides with the origin. The solid
black line illustrates a circular fit with the center fixed at the origin. (c) Subsequently, we fit a circle to each of the arcs such that the radius of each fit is forced to
equal the radius obtained in panel (b). (d) After iterating the process presented in panels (b) and (c), we obtain the final fit shown with the solid black line.
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uncertainty estimate of the diameter. The uncertainty estimate of the
diameter is, thus, given by
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where N is the total number of points in all arcs within the height
interval of interest, and the coordinates x y( , )i i refer to the coordinates
after the arc matching. The optimal value for the smoothing parameter
is chosen separately for each tree by applying leave-1-out cross va-

lidation. Some examples of the resulting stem curves are illustrated in
Fig. 10 in Sec. 4.2 and in Figs. A14-A17 in the Appendix. As can be seen
from the figures, clear outliers are rare even for quite difficult trees.

3.5. Tree height and stem volume

The advantage of MLS is in the capacity to measure both the stem
curve and the tree height simultaneously leading to accurate stem vo-
lume estimation. Surprisingly it has not been applied earlier. As de-
monstrated by Bienert et al. (2018), it should be possible to determine
the heights of individual trees with an accuracy on the order of 1 m
from MLS data. Following the approach of Liang et al. (2018b), we
determine the heights in a different way for large and small trees since
small trees might be shadowed by larger trees. For all trees, we first find
all points that are located within 0.5 m of the 3D line defined by the
mean position of the tree and the growth direction of the tree. Subse-
quently, we divide the z axis to height intervals with a uniform spacing
of 0.5 m, and count the number of points within each height interval for
each tree separately. For large trees with the stem diameter exceeding
20 cm at some height, the tree height is obtained as the average of the 5
highest points in the highest height interval containing at least 10
points. This allows us to exclude outlying points located above the
canopy. For small trees with the stem diameter below 20 cm at all
heights, we first find the lowest height interval that is above the highest
extracted arc and contains less than 20 points. It is assumed that this
height interval is located right above the height interval containing the
tree top. Subsequently, the tree height is set to equal the average z
coordinate of the 5 highest points within the height interval corre-
sponding to the tree top.

Having extracted the stem curve and the tree heights for all the
extracted trees, the stem volume can be estimated by applying the fit-
ting procedure explained above in Sec. 2.4. Note that we neglect the
outlying diameter estimates also in the volume estimation.

4. Results

4.1. Tree detection

In order to compare the trees found using our algorithm with the
reference trees, we matched each found tree with the closest reference
tree provided that the distance between our detected tree and the re-
ference tree was less than 0.5 m. For the easy plot, we detect 40 out of
the 42 reference trees, i.e., the completeness of stem detection is 95%.
The algorithm is able to detect all of the 39 pines meaning that the
completeness of pine detection is 100%. However, the algorithm de-
tected only 1 out of the 3 spruces, due to the large number of branches
and the poor visibility of spruce stems.

In the medium plot, our algorithm found 37 out of the 44 reference
trees, i.e., the completeness of stem detection was 84%. Again, the al-
gorithm detected all of the 31 pines and also all of the 5 birches, but only
one of the 8 spruces. The only spruce detected by our algorithm was the
largest and oldest of the 8 spruces, and therefore, it does not have as
many branches as the other spruces in the lower part of its stem as il-
lustrated in Fig. A17. The spruces that were not detected are relatively
small with a mean DBH of approximately 10 cm and the detection suffers
from poor stem visibility due to the branch structure natural to them. The
correctness of stem detection for pines and birches was again 100%.

4.2. Stem curve

In this section, we compare the stem curves extracted using our
algorithm against the reference measurements. On average, our algo-
rithm manages to extract arcs of good quality in the height interval of
1.2–7.4 m for the easy plot. The corresponding height range for the
medium plot was 1.4–7.8 m. Depending on the properties of the tree,
the height of the highest good quality arc ranges from approximately
4 m to 10 m.

Using the definitions of Sec. 2.5, the total RMSE of the extracted
stem curves was 1.2 cm (5.1%) for the easy plot and 1.7 cm (6.7%) for
the medium plot. The bias of the extracted stem curves was 0.3 cm
(1.2%) in the easy plot and 0.5 cm (2.1%) in the medium plot. These
results are illustrated in Fig. 9(a). In Fig. 9(b), we provide a scatter plot
of the stem curve estimates against the reference measurements. The
coefficient of determination R2 was 0.90 for the easy plot and 0.95 for
the medium plot.

Note that the trees in the easy plot are fairly homogeneous with only
small variations in the diameter estimates, which explains the fact that

Fig. 8. (a) Arcs of a pine in the medium plot before applying the arc matching algorithm. The data points (red circles) correspond to arcs having a mean z coordinate
in the range 1.2–1.4 m. The dashed black line illustrates the hyperaccurate circle fit to the data points. (b) The same arcs after applying the arc matching algorithm.
The solid blue line illustrates the circular fit obtained as a result of the arc matching procedure. Note that in both figures, we have projected the data points to the
plane defined by the 2nd and 3rd principal directions in order to correct the non-zero inclination of the tree.
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the coefficient of determination is lower in the easy plot despite of the
better relative accuracy. Fig. 9(c) and (d) illustrate the relative bias and
RMSE values of the stem curves for individual stems. Of note, the RMSE

is less than 15% for all trees except for one small birch, whereas previous
MLS studies on similar test sites have reported mean relative RMSE va-
lues that are greater than 15% for easy plots (Liang et al., 2018b).

Fig. 9. (a) Relative RMSE and bias of the stem curve estimates at the individual tree level for the easy plot (blue) and for the medium plot (red). (b) Scatter plot of the
stem curve estimates vs the reference stem curve values in the easy (blue circles) and medium plots (red circles). The scatter plot shows the diameter estimates of all
the matched trees at such heights for which both the estimated and the reference diameter are available. The coefficient of determination is =R 0.902 for the easy plot
and =R 0.952 for the medium plot. (c) Histogram of the relative biases of the stem curves at the individual tree level for the easy plot (blue) and for the medium plot
(red). (d) Histogram of the relative RMSE values of the stem curves at the individual tree level for the easy plot (blue) and for the medium plot (red).

Fig. 10. (a) Example stem curve of a pine in the medium plot. The red circles depict the diameter estimates extracted using our algorithm, whereas the corresponding
reference measurements are denoted with blue squares. The error bars show the standard deviation of the radial residuals after the arc matching algorithm. The
smoothing spline fit to the extracted stem curve is illustrated with the solid black line. For this pine, the bias of the diameter estimates is 0.47 cm = 1.7% and the
corresponding RMSE value is 0.57 cm = 2.0%. (b) Photograph of the pine whose stem curve is visualized in the panel (a).
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In Fig. 10, we show an example of a stem curve extracted using our
algorithm together with a photograph of the corresponding tree in
order to illustrate the performance of the proposed method. The figure
presents a typical stem curve of a pine whose stem is not occluded by
any smaller trees. As can be seen from the figure, the stem curve can be
extracted with high precision almost up to the height of 10 m. The high
accuracy of the stem curve extraction is a result of the fairly circular
cross section of the tree and a low number of branches in the lower part
of the stem.

4.3. Tree height

The bias of tree height estimation (as described in Section 3.5) was
1.3 m (6.0%) in the easy plot and 0.68 m (3.0%) in the medium plot.
The corresponding RMSE values are 1.8 m (8.7%) and 1.1 m (4.9%) for
the easy and medium plot, respectively. The positive bias of the height
estimation implies that the heights determined from the MLS point
cloud are overestimated as compared with the reference ALS mea-
surements. There are a few possible reasons for this slightly counter-
intuitive result. First, both of the plots contain a single small tree whose
height was overestimated by roughly 5 m since the tree top of the small
tree is located inside the canopy of one of its neighboring trees. For
example, this occurs for the small birch illustrated in Fig. A16. Second,
the error in the tree height seems to depend systematically on the tree
location in the easy plot. This is most likely an artefact resulting from
the SLAM algorithm. Third, the MLS point cloud has a significantly
higher point density than the corresponding ALS point cloud and
therefore, it is probable that some of the tree tops are actually more
accurately captured by the MLS point cloud.

4.4. Stem volume

In order to assess the performance of our method for volume esti-
mation, we estimate both the volume of the whole stem and the stem
volume in the interpolation range. The 'interpolation range' is the
height interval for which both the reference measurements and the
estimated diameters are available. Fig. 11(a) illustrates the process of
determining the volume of the whole stem for an example tree. Note
that even in an optimal case, we manage to extract the stem curve re-
liably only up to the height of 10 m, and therefore we need to use a
model with few parameters when extrapolating the stem curve in order
to avoid artefacts caused by overfitting.

In the interpolation range, the bias of the estimated volume was
1.6% for the easy plot and 3.0% for the medium plot. The corre-
sponding RMSE values were 6.6% for the easy plot and 11.6% for the
medium plot. We have estimated that the interpolation range contains
on average 47% of the volume of the entire stem in the easy plot and
46% of the volume of the entire stem in the medium plot.

Subsequently, we consider the accuracy of estimating the volume of
the entire stem with the proposed method. The stem volume estimates are
visualized in 11(b) using a scatter plot. In the easy plot, the bias of the
volume estimates was 0.012m3 (2.2%), whereas the corresponding RMSE
error was 0.053 m3 (9.7%). In the medium plot, the bias of the volume
estimates was 0.002 m ( 0.33 %), and the RMSE error was 0.083 m3

(10.9%). The average stem volume based on the reference measurements
was 0.54 m3 in the easy plot, and 0.76 m3 in the medium plot.

To demonstrate the performance of the proposed method, we further
compare our results against volume estimates computed using the
Finnish allometric model established by Laasasenaho (1982) as illu-
strated in Fig. 11(c) and (d). In applying the allometric model, we used
field measured DBH and tree height as inputs and took into account the
species of the tree, and compared the resulting estimates to the reference
data. In the easy plot, the bias of the resulting volume estimates was
−1.5% and the corresponding relative RMSE error equaled 11.7%. In the
medium plot, the bias of the allometrically predicted volumes was
−3.8%, whereas the relative RMSE was as large as 26.0%. The large

RMSE of the allometrically predicted volumes in the medium plot is
mainly due to one large birch whose volume ( =V 3.0ref m3) is severely
underestimated ( =V 1.9allometric m3) by the allometric model. If the large
birch is neglected from the analysis, we obtain approximately 10% for
the relative RMSE of the stem volumes predicted by the allometric
model. Thus, the accuracy of our method presented herein was equiva-
lent or better than that of the allometric model for the two test sites.

5. Discussion

5.1. Comparison with past studies

Tree detection - Many previous works have been carried out in the
pursuit of tree detection. Bauwens et al. (2016) detected 91% of the trees
using handheld MLS. In a study conducted by Bienert et al. (2018), 87.5%
of trees were detected in the leaf- off dataset with eight commission errors
in one plot and 100% of trees with 49 commission errors in the other plot.
In Zhao et al. (2018), HiScan-Z mobile laser scanning system resulted in
correctness and completeness rates of better than 92% for street trees. Wu
et al. (2013) applied MLS System of East China Normal University and
concluded that street tree detection is over 98%. Liang et al. (2018b,
2019) reported tree detection rate of 95% in easy and 82% in medium
forests. Thus, our algorithm enables tree detection with completeness and
correctness levels on par with other state-of-the-art approaches since we
achieve a completeness rate of 95% in the easy plot and 84% in the
medium plot, and the correctness level is 100% for both the plots.

Diameter at breast height and stem curve - The international
benchmarking with TLS data showed that multi-scan TLS allows for
DBH estimation with a relative RMSE of 5–10% in easy and medium
visibility forest stands (Liang et al., 2018a). Phone-based mobile laser
scanning (SLAM included) has been studied by Fan et al. (2018),
Hyyppä et al. (2017), Tomaštik et al. (2017) using Google Tango.
Tomaštik et al. (2017) included approximately 120 trees using Cloud-
Compare software in which the DBHs were manually measured using a
point-to- point measurement tool, and the RMSE of DBHs was ap-
proximately 2 cm. Hyyppä et al. (2017) used automated circle fitting to
estimate the DBH and found that the obtained results matched those
from tape measurements with an RMSE of 0.73 cm. In Fan et al. (2018),
the Levenberg-Marquardt algorithm was used in the analysis of the
point clouds resulting in an RMSE of 1.26 cm (6.39%) for DBH. In an
attempt to measure several dozens of plots in a day, the phone-based
approach is much too time-consuming since it requires measuring every
tree separately (Hyyppä et al., 2017). In previous hand-held scanner
studies, represented by various Zebedee solutions and commercial high-
end SLAM solutions, the reported accuracy of DBH estimation ranges
from about 1 cm in easy urban forests (Cabo et al., 2018; Bauwens
et al., 2016; Del Perugia et al., 2019) to 2.5–4 cm depending on the
forest type (Marselis et al., 2016; Del Perugia et al., 2019).

There are only a few papers reporting the accuracy of stem curve
estimation. In Liang et al. (2018b), the relative RMSE of TLS-based stem
curve estimation was found to be less than 10% in various forests. The
corresponding RMSE values based on MLS data were 18% and 30% for
easy and medium difficult forests, respectively. They concluded that as
the forest complexity increased, the quality of the point cloud data
decreased due to the reduced positioning accuracy, the decreased ac-
cessibility of the plot and the coverage of data, and the increased oc-
clusion effects. Due to these problems, MLS-based stem curve extraction
has not before been accurate enough for deriving the stem volume with
a low RMSE. In our study, these problems are greatly alleviated by the
improved data processing work flow allowing for accurate MLS-based
stem curve modeling. As a result, the accuracy of stem curve extraction
using our method is on par with the previously reported results ob-
tained with TLS in similar forest stand conditions (Liang et al., 2018b
and Liang et al., 2018a).

Tree Height – Several previous studies have highlighted the low
quality of tree height estimates derived from MLS data. For example,
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Liang et al. (2019) reported 10% underestimation and more than 30%
standard deviation for tree height estimation in medium difficult boreal
forests using phase-shift ranging laser. The major added value of the
approach used here is that the applied backpack laser scanner is pulse-
based allowing several returns per pulse to be recorded from longer
distances. The data also provided good ground reference for the height
determination.

Stem Volume – we note that our method allows one to extract the
stem volumes with an accuracy that is by far better than the results re-
ported previously using MLS data (from 20 to 50% error for easy and
medium easy plots) obtained with MLS (Liang et al., 2018b, 2019;
Bienert et al., 2018) and on par with the accuracy of stem volume esti-
mation using TLS in similar forest conditions (Liang et al., 2018b). Re-
cently, Liang et al. (2019) evaluated the performance of UAV LS for 22
sample plots of various forest stand conditions in a boreal forest: the tree
attributes were compared with state-of-the-art terrestrial and mobile
laser scanning and the results showed that in easy forest stand condi-
tions, the performance of UAV LS point cloud is comparable with the
terrestrial solutions with relative RMSE less than 20% for stem diameter
and 50% for stem volume. Some have suggested that the combination of
UAV LS and TLS is the first solution to reach accuracies required for field
inventory reference data (e.g. 10%). Herein, we have demonstrated that
our approach using MLS data can achieve the desired level of accuracy.

5.2. Applicability and further developments

As illustrated in Fig. 12, the workflow proposed in this paper allows
us to extract the stem curve accurately from a wide height interval. The
RMSE of stem curves is below 6% all the way up to the height of 8 m in
the easy plot, and the RMSE stays below 9% at all heights up to 9 m in
the case of the medium plot. Interestingly, the RMSE is the smallest at
the height of 4 m for both of the plots. At the height of 4 m, the RMSE is
approximately 4% for both of the plots. The bias of the stem curve
estimates shows a slightly declining trend in the height range 1–8 m.
Note that the RMSE and bias values corresponding to the height of 9 m
are based on a small number of trees since there are only 3 (7) trees in
the easy (medium) plot, for which we can obtain the stem diameter
estimate at this height.

It is natural that the RMSE increases high above the ground for a
couple of reasons: first, the number of branches increases as we ap-
proach the top of the tree. Second, the distance from the scanner to the
stem increases the higher we go, which results in a decreased mea-
surement accuracy and an increased spacing between consecutive
points. Both of these effects result in a smaller number of good quality
arcs.

In terms of sampling effort, MLS is an effective and efficient data
collection tool. Based on our tests in Finnish boreal forests, it is possible

Fig. 11. (a) Estimated stem curve of an example pine (red circles) with the effective fit (solid black line) based on Eqs. (1) and (2). The effective fit is used to
extrapolate the volume of the whole tree. Furthermore, we show the reference diameter values (blue squares) with the corresponding effective fit (dashed green line)
used to estimate the reference volume of the whole tree. (b) Extrapolated stem volume vs the reference stem volume for the easy (blue circles) and medium plots (red
circles). The coefficient of determination is =R 0.922 for the easy plot, and =R 0.982 for the medium plot. (c) Relative RMSE and bias for the volume estimates of the
whole stem in the easy plot. The blue bars show the results of our algorithm, whereas the green bars depict the results obtained by applying the allometric
Laasasenaho model to field measurements. (d) Same as panel (c) but for the medium plot.
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for a single surveyor to collect data from approximately 40 forest plots
in a single day. In contrast, a team of two surveyors applying conven-
tional measurement methods can only measure two sample plots in a
single day. If the multi-scan technique is applied, TLS measurements
can be conducted for half a dozen sample plots in a single day. One
potential solution to improve the data collection efficiency of MLS even
further is to use stripwise plots. In this approach that we are currently
studying, the data is collected along an approximately linear working
path of the surveyor and the same path may be recollected to get loop
closure for SLAM processing. Such a concept would provide more re-
ference data in a more cost-effective way.

Importantly, the algorithm for MLS data processing presented
herein is feasible from the point of view of the computation time. Using
our Matlab implementation, we can process a single point cloud con-
taining 215 million points (~5 GB in las-format) in approximately
30 min on a modern laptop computer. The two point clouds studied in
this work cover an area of approximately 0.2 ha each. This implies that
during a single day, our implementation of the algorithm could process
a point cloud covering 10 ha assuming that the point density is as high
as ×1.1 105 pts/m2. Note that this means that both the data acquisition
and the data processing are capable of reaching the>40 sample plots/
day limit. With further parallelization and optimization, the running
time of the proposed algorithm can potentially be greatly reduced.

In this paper, the focus was on finding and measuring the trees with
visible stems. In Finnish boreal forests, this means pines and birches.
The approach possibly works for other broad-leaved species such as
oak, maple, aspen, mountain ash, linden and alder.

One important research step for the future is to improve the cap-
ability of the proposed method in more complex forests. Spruce is also a
very common tree species in Finland and would need to be measured
and modelled with different approaches due to the occlusion of the
stem arising from the high number of branches. Fig. 13 illustrates the
occlusion problem by showing a photograph of a spruce whose stem
could not be detected. Old spruces have visible trunks and similar al-
gorithms as presented in this study can be applied. Youngest spruces
should be measured using their outer shape and stem properties should
be estimated from their height and crown diameters at each height.
Those in between should apply approaches that find the trunks from
very noisy data. Solutions based on surface normal may help. Ad-
ditionally, one should note that complex forests provide challenges for
SLAM and georeferencing of the data prior processing. Multibeam laser
scanning may provide a SLAM solution in complex forests.

There are areas where individual tree based forest inventory could
be needed, but it is not currently applied due to the lack of field re-
ference data at individual tree level. Techniques in this paper allow for
the collection of field data cost-effectively. Individual tree -based in-
ventory will lead to increased accuracy of forest data, which can lead to
increase in the society savings.

6. Conclusions

In the scientific literature, the combination of TLS and UAV LS is
often purported as the required future solution to estimating individual
tree stem volumes with sufficient accuracy for operational applications
(i.e. relative RMSE of approximately 10%). Herein, we tested an ap-
proach based on a pulse-based backpack laser scanner for estimating
stem volumes in Finnish boreal forest conditions. We applied in-house
developed SLAM and novel algorithms using post-SLAM and inclination
angle correction to derive stem curves of the standing trees from high-
quality arcs. By using the derived stem curves and tree heights, stem
volume estimates for trees in easy and medium boreal forest plots were
calculated. We note that our approach and processing method allows
one to extract stem volumes for pines and birches with an accuracy that
clearly exceeds the previously reported values obtained using MLS data.
Importantly, the RMSE of stem volume estimation (~10%) is on par
with methods using data integrated from multiscan TLS and tree height
measurements. In addition, we were able to measure tree heights with
the accuracy required for operational forest inventories. Since the bias
of the method was small, our approach can also be used to provide plot
level estimates. Therefore, the findings are important steps towards
future individual-tree-based ALS inventories.
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Fig. 12. RMSE and bias of stem curve in the easy and medium plots as a function
of height from ground. Note that a positive bias indicates that our estimates for
stem diameter are on average larger than the corresponding reference values. To
evaluate the bias and RMSE at a given height, we only consider such trees, for
which the stem diameter estimate exists at the given height.

Fig. 13. An example of a spruce in the medium plot whose stem could not be
detected by the arc-based algorithm due to the high density of branches causing
laser beam occlusion of the stem.
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Appendix

In this section, we show a few more examples of the stem curves that were extracted using our algorithm. Fig. A.14 shows the stem diameter as a
function of height for a pine whose stem curve is accurately extracted by our algorithm thanks to a fairly circular stem section and minimal occlusion
of the stem.

Importantly, the proposed workflow succeeds in extracting the stem curve also for more difficult trees. Figs. A.15–A.17 illustrate stem curves of
trees that are much more challenging due to a variety of reasons. Fig. A.15(a) shows the stem curve of a pine whose trunk is partly occluded by the
branches of a nearby spruce. As can be seen from Fig. A15, the algorithm can still find arcs of good quality from that side of the pine trunk that is not
surrounded by the branches of the spruce. Additionally, our arc-based method naturally filters out data points corresponding to the branches of the
spruce before the circle fitting process.

Fig. A14. (a) Stem curve of a pine in the easy plot. The red circles depict the diameter estimates extracted using our algorithm, whereas the corresponding reference
measurements are denoted with blue squares. The error bars show the standard deviation of the radial residuals after the arc matching algorithm. The smoothing
spline fit to the extracted stem curve is illustrated with the solid black line. For this pine, the bias of the diameter estimates is 0.44 cm = 1.8% and the corresponding
RMSE value is 0.65 cm = 2.6%. (b) Photograph of the pine whose stem curve is visualized in the panel (a).

Fig. A15. (a) Stem curve of a pine that is located next to a smaller spruce whose branches surround the stem of the pine at some heights. The red circles depict the
diameter estimates extracted using our algorithm, whereas the corresponding reference measurements are denoted with blue squares. The error bars show the
standard deviation of the radial residuals after the arc matching algorithm. The smoothing spline fit to the extracted stem curve is illustrated with the solid black line.
For this pine, the bias of the diameter estimates is −1.3 cm = -4.7% and the corresponding RMSE value is 1.9 cm = 6.5%. (b) Photograph of the pine whose stem
curve is visualized in the panel (a). Note the spruce on the right of the pine.
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In Fig. A16(a), we show the stem curves of two birches that are located right next to each other as illustrated in Fig. A16(b). Since the positioning
error of individual points is on the order of 10–20 cm after the SLAM algorithm, it is possible to resolve the birches from one another in the clustering
step of the algorithm (see Sec. 3.2). Due to the large inclination angle of the smaller birch ( = °8.6 ), the PCA correction described in Sec. 3.3 is vital
in obtaining an accurate estimate of the stem curve. The fairly large RMSE error in the stem curve of the larger birch (2.6 cm = 10.4%) can be
attributed to its fairly non-circular stem.

Fig. A17(a) illustrates the stem curve of the only spruce detected with our algorithm in the medium plot. As shown in Fig. A17(b), the branches
located in the lower part of the spruce have dropped a significant proportion of their needles. Due to the moderate visibility of the stem, it is possible
to obtain arcs of good quality from a reasonably wide height interval since our arc extraction algorithm can handle noise points in the middle of an
arc as explained in Sec. 3.2. Note also that the existence of outlying diameter estimates (see definition in Sec. 3.4) is rare even for difficult trees.
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