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Active Incremental Learning of a Contextual Skill Model

Murtaza Hazara*, Xiaopu Li*, and Ville Kyrki

Abstract— Contextual skill models are learned to provide
skills over a range of task parameters, often using regression
across optimal task-specific policies. However, the sequential
nature of the learning process is usually neglected. In this paper,
we propose to use active incremental learning by selecting a task
which maximizes performance improvement over entire task
set. The proposed framework exploits knowledge of individual
tasks accumulated in a database and shares it among the tasks
using a contextual skill model. The framework is agnostic to
the type of policy representation, skill model, and policy search.
We evaluated the skill improvement rate in two tasks, ball-in-
a-cup and basketball. In both, active selection of tasks lead to
a consistent improvement in skill performance over a baseline.

I. INTRODUCTION

Skill learning in animals is incremental [1]. For example,
monkeys retain existing motor skills for future learning [2]
such that skills learned for particular tasks are used to improve
future learning. Similarly, schema theory states that humans
also learn skills incrementally [3], [4], [5]. In fact, mainly
because of sequential flow of information [6], limited memory
and processing power, people cannot have access all the
previously acquired information about previously learned
tasks. Thus, they tend to retain and update generalizable
aspects of a task for future use. For example, when learning
to throw a basketball, a person can first learn to score from
a fixed location. They will then move on to another location.
Subsequently, generalizing to new situations (e.g. location)
becomes easier as the individual learns incrementally the
underlying regularities of the ball throwing skill (see Fig. 1).

In robotics, regression has been applied to learn the
generalizable aspects of tasks using a contextual skill model
(CSM) [7], [8], [9], [10], [11]. These methods have achieved
zero-shot generalization where learning is not necessary for
new situations. However, they assume the availability of
optimal sample policies in advance of the generalization
where each sample has been learned independently from a
human demonstration (LfD). On the other hand, contextual
policy search (CPS) learns optimal policies from scratch
while maintaining a linear CSM [12], [13]. However, CPS
requires learning of a task for a new situation. Furthermore,
CPS neglects the sequential nature of decision making.

In contrast to isolated learning where a CSM has been
built from independent optimal policies learned using LfD,
incremental learning combines regression with policy search
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Fig. 1: Learning basketball skill using KUKA LBR 4+ in
MuJoCo.

to construct a CSM incrementally from scratch [14]. In this
framework, tasks are assumed to arrive sequentially and
knowledge is shared among related tasks in a database (DB).
Incremental learning has been shown to generalize better
than the isolated learning both in terms of interpolation,
extrapolation and the speed of learning [15]. Furthermore,
it has been transferred incrementally from simulation to the
real world [16].

However, the learning process in [15], [14] is passive
where the agent does not have control over the order of tasks.
Instead of choosing tasks randomly, they could be selected to
maximize future learning performance [17]. However, they
assume learning is continued with a task until it converges,
that is, an optimal policy is achieved.

In this paper, we propose a novel active incremental
learning framework. The main focus of this paper is to
endow incremental learning with a task manager. The task
manager selects a new task by maximizing future learning
while considering the current task performance. In this way,
continuous incremental learning is achieved with a minimum
effort generalization to new situations.

The main benefit of the proposed framework is being
agnostic to the policy representation, the contextual skill
model and to the used policy search approach. We evaluated
how efficiently the proposed framework can learn a skill
model in two tasks in simulation. Results demonstrated that
active learning achieved significant improvement over random
task order consistently in both skills. Furthermore, in both
tasks, the generalization performance consistently improved
indicating continuous incremental learning.

II. RELATED WORK

In this section we will briefly review the generalizable
skill models learned either using regression or CPS, active
learning and incremental learning.



A. Generalization using Regression

Regression has been used to learn a CSM from previously
learned optimal policies [7], [8], [9], [10], [18] where dynamic
movement primitives (DMPs) has been their main policy
representation. Calinon et al. [7] uses a Gaussian mixture
model as the CSM and generalize it to new situations using
expectation maximization. Although their model is capable
of linear extrapolation, it is only applicable when the task
parameters can be represented in the form of coordinate
systems. Stulp et al. [8] used Gaussian kernels for the CSM
and merged it with the forcing function of DMPs which is
also represented using a weighted sum of Gaussian kernels.
The merging by multiplication of the two Gaussian kernels
resulted into a two dimensional kernel which is a function
of task parameter where the kernel centers can be selected
automatically and arbitrarily. Forte et al. [9] utilized Gaussian
process regression (GPR) where the inverse of the kernel is
calculated using only the training samples resulting in fast
generalization suitable for on-line application. Ude et al. [10]
has provided a generalizable LfD framework where they use
GPR for mapping the task parameters to meta-parameters
such as goal and duration of DMPs, and they apply LWR
to encode their CSM. All the previous generalizable LfD
frameworks have used a local model for their CSM which
can achieve interpolation across training samples. On the
other hand, parametric CSM which can achieve extrapolation
using linear [19] and non-linear models [18] have also been
proposed.

B. Generalization using contextual policy search

The generalizable LfD models using regression have
assumed the availability of optimal policy parameters in a
database of motor primitives (MPs). These optimal policy
parameters have either been imitated from several human
demonstrations, or learned using reinforcement learning (RL)
in an isolated manner. On the other hand, contextual policy
search (CPS) do not assume the availability of these optimal
MPs in advance of generalization. In fact, CPS learn the
policies in an online manner from the scratch. CPS has been
applied to learn a CSM using a model-based approach [12]
and and also a model-free approach [13]. In both of these
approaches the CSM is linear and modeled using a Gaussian
function whose hyper-parameters are updated iteratively.
However, CPS neglects the sequential nature of decision
making.

C. Active Learning

Unlike passive contextual skill modeling where an agent is
provided with a manually selected list of task parameters to
learn, active learning provides the agent with a tool to select a
task parameter automatically. The objective of active learning
is to select a task which maximizes future skill performance.
Active learning has been considered in [20], [21], [17]. We
will review very briefly [20] and [21] and elaborate on [17]
since it is the most relevant to our proposed approach.

In [20], a heuristic reward function is used with a dis-
counted multi-arm bandit to actively select the next task.

In [21], a task is selected based on active contextual entropy
search (ACES) which is an information theoretic approach
minimizing uncertainty about optimal policy parameters for
task parameters.

Da Silva et al. [17] provided a non-parametric Bayesian
approach for active learning of a contextual skill model.
They model reward R(τ) for a certain task τ using a
Gaussian process (GP) with a spatio-temporal kernel which
can accommodate the non-stationary behavior of a reward
function. They learn a posterior P (Rt(τ)|τ,Dt) with mean
µt(τ) and variance σ2

t (τ) from current database Dt =
{(τ1, r(τ1)), . . . , (τN , r(τN ))} corresponding to the evaluated
total reward r(τi) of optimal policies which have been
practiced for previously selected tasks τi. They consider
the skill performance SPt =

∫
P (τ)µt(τ)dτ across the task

space where p(τ) denotes the probability of task τ occurring.
They introduced an acquisition function which involves the
expected improvement for a candidate task τc

EISPt(τc) =

∫
P (τ ′)(µ̂t+1(τ ′)− µt(τ ′))dτ ′, (1)

where µ̂t+1 represents the mean of Gaussian posterior R̂t+1

which is computed by fitting a GP to the updated database
Du = Dt ∪ {(τc, ĵ(τc))}. They used an optimistic upper
bound ĵ(τc) = µt(τ) + 1.96

√
σ2
t (τ) estimated based on the

current GP posterior reward model Rt. A task will be selected
according to τ∗ = arg maxτ EISPt(τ).

D. Incremental Learning

The current dominant machine learning paradigm is isolated
learning, where a model is learned for a task in an isolated
fashion (see Figure 2.a). Once a new task is encountered, the
learning process must be repeated while the previously learned
models are ignored. Hence, learning several tasks require
substantial amount of data as each task is learned separately
and from the scratch. In fact, this isolated framework does not
share information across the tasks. In contrast, schema theory
suggests that human learning involves sharing information
among related tasks, using a knowledge base and adapting it
to accommodate information acquired from learning a new
task. This feature has been addressed in the context of lifelong
learning framework.

Lifelong (incremental) learning is a framework which pro-
vides continuous learning of tasks arriving sequentially [22],
[23], [24]. The essential component of this framework (see
Fig. 2.b) is a database (DB) which maintains the knowledge
acquired from previously learned tasks τ1, τ2, · · · , τN−1.
Incremental learning starts from the task manager assigning
a new task τN to a learning agent. In this case, the agent
exploits the knowledge in the DB as a prior data for enhancing
the generalization performance of its model on the new task.
After the new task τN is learned, DB is updated with the
knowledge obtained from learning τN . In fact, the incremental
learning framework provides an agent with three capabilities:

1) continuous learning
2) knowledge accumulation
3) re-using previous knowledge to enhance future learning



Fig. 2: Two machine learning paradigms: (a) isolated learning
versus (b) incremental learning.

III. METHOD

A. Problem Definition

We assume that tasks arrive sequentially and we will have a
database Dt = {(τ i,θτ i

)|i = 1 . . . N} at time t consisting of
N sample set of task parameters τ i and their associated policy
parameters θτ i . A skill model St extracts the knowledge
accumulated in Dt by fitting a regression model mapping a
task parameter τ to policy parameters θ = S(τ ). Using
St(τ ), we can generalize the policy parameters for any
situation characterized by a measurable task parameter τ .

We also assume that executing the policy with parameters
θτ generated by S(τ ) for a specific task τ will result into
a deterministic performance behavior evaluated by r(τ ;S).
Next, we define the skill performance

SP (St) =

∫
P (τ )r(τ ;St)dτ , (2)

where P (τ ) denotes the probability which the task τ occurs.
We assume that the tasks occur with the same probability.
Thus, we can rewrite (2) into

SP (St) =
1

τmax − τmin

∫ τmax

τmin

r(τ ;St)dτ . (3)

Using the skill performance, we can define the expected skill
performance

EISP (τ c) = SP (St+1)− SP (St)

=
1

τmax − τmin

∫ τmax

τmin

r(τ ;St+1)− r(τ ;St)dτ , (4)

where St+1 represents the skill model which is fit to the
updated database Dt+1 = Dt ∪ {(τ c,θτc)}. It is worth
mentioning that the proposed EISP in (4) corresponds to the
expected skill performance definition (1) considered in [17].

B. Active Incremental Learning

Policy search optimizes a parametric policy by updating
its parameters iteratively. To be able to predict reward
improvement over a single iteration, we need to model
the learning rate of policy search, that is, the evolution of
total rewards over time. We assume the learning rate can
be modeled with function J(t) that approaches the optimal
rewards R∗ as t → ∞. Furthermore, we assume that J(t)
does not depend on task parameters. In other words, the
convergence profile is independent of the task parameters,

even if the current rewards for different tasks may vary,
indicating that the policy has at that point converged more
for some tasks than others. On the other hand, to model
the consistency of the skill across tasks, we assume that
rewards achieved by the skill model are similar for similar
task parameters. This consistency is then modeled with current
reward model R(τ ). Using these models, we can evaluate
EISP for any task.

We assume a policy expressed in the form

u = θTg(x), (5)

where u denotes an action, θ represents a vector of policy
parameters, and g is the vector of basis functions (kernels).
Several policy encoding follows the parametric representation
in (5) such as dynamic movement primitives [25], radial
basis functions [26], or a linear policy. For learning the
corresponding optimal policy parameter θτ0

, we can apply
a model-based RL approach such as PILCO [27] or Black-
DROPS [28]. We can also apply model-free RL such as
PoWER [29], REPS [30], and PI2 [31], [32].

Incremental learning of a contextual skill model begins with
initializing the database D, skill model S(τ ), and learning
rate model J(t;βJ) in lines 1-5 (see Algorithm 1). We utilize
an exponential family to represent the learning rate

J(t;βJ) = exp(a(t− b)) + cJ (6)

where βJ = {a, b, cJ} denotes the hyper-parameters of the
learning rate model. The hyper-parameters are estimated
using [33] with data gathered while optimizing policy
parameters θτ0

for an initial task parameter τ 0. After that, we
estimate the skill model S(τ ) using the database D containing
the initial sample (τ 0,θ

∗
τ0

).
We then update the skill model S(τ ) in an incremental

manner (lines 7-16). This is achieved by running an iterative
process where the main steps are predicting reward improve-
ment in line 10, evaluating the expected improvement of
skill performance EISP for all alternatives in a discrete
evaluation set of tasks τ eval in lines 9-12, selecting the most
promising task τ ∗ which maximizes EISP in line 13 and
updating the corresponding policy parameters θτ∗ by running
one (or ∆) update steps of policy search in line 14. Note that,
the policy parameter θτ∗ is not necessarily (sub-)optimal for
τ ∗ since we did not run the policy search until convergence.

In order to model the reward R(τ ) across tasks, we evaluate
the reward achievable by the current estimate of the skill
model St(τ ) for every task τ j ∈ τ eval in the evaluation
set τ eval in line 7. This is achieved by calculating the
corresponding policy parameter vector θτ j

using the skill
model St(τ j); executing the policy with θτ j

will lead to
reward r(τ j). Using the evaluated rewards, we can build a
reward model

R(τ ;βR) ∼ GP (τ , βR), (7)

using GP with hyper-parameter βR which can be optimized
by maximizing evidence function [34].

In order to be able to calculate the EISP for every
candidate task τ c, we need to predict the reward improvement



if we continue optimizing the corresponding policy parameters
θτc for ∆ update steps of policy search. The expected
improvement for a specific candidate task τ c is calculated
using the learning rate model J(t;βJ). First, the time index tc
corresponding the candidate task τ c is computed by reading
from the inverse of the learning rate model

tc = J−1(R(τ c;βJ)). (8)

Then, the expected reward improvement for the candidate
task ∆R(τ c) is computed by

∆R(τ c) = J(tc + ∆;βJ)−R(τ c;βR). (9)

Next, we compute the expected reward r(τ , St+1) where St+1

represents the skill model built using D = D ∪ (τ c,θτc
).

The policy parameters θτc
for the candidate task τ c have

been computed using the current estimate of the skill model
St(τ c). Instead of evaluating the improvement, we predict it
using

r(τ ;St+1) = R(τ ;βR) + ∆R(τ )× exp(cd ‖τ − τc‖2),
(10)

which is based on our second assumption that the reward
across task parameters changes smoothly. The constant cd
controls the similarity across tasks. We used cd = −0.1 in
our experiments. Now that we have predicted the reward
improvement, we evaluate the EISP (4) in discrete form as

EISP =
1

τmax − τmin

τmax∑
τ=τmin

r(τ ;St+1)−r(τ ;St) (11)

.

Algorithm 1 Active Incremental Learning of a CSM S(τ )

Input: τ = {τ i | 1 ≤ i ≤ n}, τ eval = {τ j | 1 ≤ j ≤ k}
Output: Skill model S(τ).

Initialization :
1: Choose initial task parameter τ 0.
2: Optimize policy for τ 0 using RL to determine θ∗τ0

.
3: Estimate parameters βJ for learning rate model J(t;βJ).
4: Initialize database of policies D = {(τ 0,θ

∗
τ0

)}.
5: Estimate skill model S(τ ) with D.
6: repeat
7: Evaluate r(τ ) for τ ∈ τ eval.
8: Estimate parameters βR for reward model R(τ ;βR)

using r(τ ).
9: for each τ c ∈ τ eval do

10: Predict reward improvement ∆R(τ c) using (9).
11: Evaluate EISP (τ c) using (4) and (10).
12: end for
13: Choose next task τ∗ = arg maxτ EISP (τ).
14: Optimize policy for one step for τ∗ to determine θτ∗ .
15: Update D = D ∪ {(τ∗, θτ∗)}.
16: Re-estimate S(τ) with D.
17: until S provides success for all τ ∈ τ eval.
18: return Skill model S(τ).

Fig. 3: Learning ball-in-a-cup skill using KUKA LBR 4+ in
MuJoCo.

IV. EXPERIMENT

We studied experimentally the benefit of the proposed
active incremental learning framework on improving the
expected skill performance using ball-in-a-cup and basketball
tasks on KUKA LBR 4+ in an environment simulated with
MuJoCo. We utilized DMPs as the policy encoding since
it provides us with a low-dimensional policy representation
which is a less data-demanding model than high-dimensional
policy representations such as deep RL. In this case, the
action u in (5) corresponds to the forcing function of DMPs
ud = αx(βx(g − x) − ẋ) + u where u = θTg [15]. In this
section, we explain the tasks, contextual skill model, and then
analyze the result of active incremental learning.

A. Ball-in-a-Cup Task

The ball-in-a-cup game consists of a cup, a string, and a
ball; the ball is attached to the cup by the string (see Fig. 3).
The objective of the game is to get the ball in the cup by
moving the cup. We chose the ball-in-a-cup game because
variation in the environment can be generated by changing
the string length. The string length is observable and easy to
evaluate, thus providing a suitable task parameter, which was
varied within τ ∈ {29 cm, 30 cm, . . . , 43 cm}. Nevertheless,
changing the string length results into a significant change in
the dynamics of the task which requires a complex change in
the motion to succeed in the game. Hence, the generalization
capability of a CSM can be easily assessed using this game.
Similar to our previous set-up in [15], the trajectories along y
and z axes were encoded using separate DMPs. Utilizing 20
kernels per DMP, in total N = 40 parameters are needed to
describe the motion model for a single task parameter value.

B. Basketball Task

The basketball game consists of a ball holder, a basket, and
a ball; the holder is attached to the end-effector of KUKA
LBR 4+ (see Fig. 1) and the basket is set at a certain distance
from the robot. The objective of the game is to throw the ball
at the basket. In this case, the task parameter is the distance
of the basket from the base of the robot, which was varied
within τ ∈ {120 cm, 130 cm, . . . , 240 cm}. KUKA LBR 4+



Fig. 4: Learning rate of model-free policy search observed
for ball-in-a-cup with different task parameters.

has seven DOF, but only joints 2, 3, and 6 were used; the
rest of the joints were kept fixed. Using 20 kernels per DMP,
total of N = 60 parameters need to be determined for a task
parameter value.

C. Contextual Skill Model

To map the task parameters to policy parameters, we
used GPDMP which is a parametric CSM with non-
linear basis functions. We selected GPDMP because of its
generalization capabilities which has been shown to perform
better than the linear CSM [18] or local models using model
selection [15]. Besides that, it has been used in simulation
to real world transfer [16].

D. Learning Rate Model

In order to verify our assumptions on the learning rate,
we performed an experiment where we learned ball-in-a-cup
game for different task parameters using model-free policy
search. We started the learning process from the same initial
policy parameters for all task parameters. The learning rate
curves are shown in Fig. 4, with different colors indicating
different task parameters. It can be observed, firstly, that the
exponential model fits observed learning rates well. Secondly,
the alignment of the curves indicates that the learning rate
does not depend on the task parameter—even though the
initial rewards may differ, the convergence rates are similar
across task parameters. Similar observations were made for
the basketball task, figure omitted here for brevity.

E. Active Incremental Learning

To study the performance benefit of the active task choice
in incremental learning, we applied the proposed algorithm
(see Algorithm 1) for learning ball-in-a-cup and basketball
skills. As a baseline we used random order for tasks. We
performed both active and random task selection 5 times.

The initial task parameters were τ0 = 35 cm for the string
length in ball-in-a-cup, τ0 = 180 cm for the distance in
basketball. Using PoWER [29] to train the initial task, policy
converged after 6 policy updates for the ball-in-a-cup, 5
updates for the basketball. During incremental learning, ∆ =
2 updates were made in each policy search iteration using
PoWER.

Fig. 5: Skill performance on ball-in-a-cup skill: active (in
blue) versus random task selection (in grey).

Fig. 6: Skill performance on basketball skill: active (in blue)
versus random task selection (in grey).

Skill performance SP over time is shown in Figs. 5 (ball-
in-a-cup) and 6 (basketball) where blue curve denotes the
proposed active method and grey curve is the baseline, error
bars denoting 1 standard deviation. As expected, the skill
performance improves over time for both methods. However,
the active method improves the skill performance more
consistently, both in terms of learning faster on average as
well as having smaller variance. With the active learning, the
entire range of task parameters was successful after 20/23
policy updates (ball-in-a-cup/basketball correspondingly),
while the success rate for the baseline after the same number
of policy updates was 75%/80% (ball-in-a-cup/basketball
correspondingly).

V. CONCLUSION

We proposed an active incremental learning framework
for learning a contextual skill model. The framework allows
learning of several related tasks in parallel such that informa-
tion across policies is combined into the skill model while
the order of tasks is optimized to maximize performance over
all tasks. Experiments indicated that the active selection of
task order during learning improves learning performance
significantly.

The proposed approach models the learning rate de-
terministically which is obviously not true in general in
reinforcement learning, even if the results show that the
mean behavior is sufficient to provide consistent behavior.
In environments where there is high stochasticity or with



reinforcement learning methods that exhibit large variance,
including uncertainty in the learning rate model might be
useful. This could be done, for example, by introducing
uncertainties for the parameters of the model or adding a noise
term to it. Moreover, the current learning rate was assumed
to be independent of task parameters, which was found to
be a valid approximation in our experiments. However, the
model could be parametrized with respect to task parameters,
even though estimation of this higher-order model would
require more data, decreasing its usefulness. Altogether, the
task-independent learning rate model was found to be a good
trade-off between model complexity and usefulness.

During learning, the individual intermediate policies (sam-
ples in D) have not yet converged to optima. Thus, fitting
the skill model using some of these samples, especially
ones that have not been updated for a long time, may be
counterproductive in improving the CSM. This problem has
also been reported in the context of supervised learning [35],
[36]. We avoided this problem by dividing the task space
into several regions and choosing the most recent sample
from each region. However, the issue how to use intermediate
samples warrants further research.

In this work, the proposed framework was demonstrated
with generalized linear policy and skill models and model-
free policy search. However, the framework is agnostic to
the type of policy representation, contextual skill model, and
policy search. A main assumption behind the framework,
exponential-type convergence of rewards over time, is typical
for reinforcement learning. Therefore, it appears appealing
to study the application of the framework in other contexts
to address in part the challenge of how to guide exploration
in reinforcement learning.
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