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lukasz.kurpaska@ncbj.gov.pl (L.K.); jacek.jagielski@ncbj.gov.pl (J.J.)

3 Laboratory for Nuclear Materials, Paul Scherrer Institute, 5232 Villigen, Switzerland; philippe.spatig@psi.ch
4 Department of Chemistry and Materials Science, Aalto University, Kemistintie 1, 02150 Espoo, Finland;

michal.trebala@aalto.fi (M.T.); simo-pekka.hannula@aalto.fi (S.-P.H.)
5 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, (CIEMAT), Avda. Complutense 40,

28040 Madrid, Spain; susana.merino@ciemat.es (S.M.); g.diego@ciemat.es (G.d.D.)
6 Centrum Vyzkumu Rez, Hlavní 130, 250 68 Husinec-Řež, Czech Republic; hygreeva.namburi@cnl.ca (H.N.);
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Abstract: The paper presents a statistical study of nanoindentation results obtained in seven
European laboratories that have joined a round robin exercise to assess methods for the evaluation of
indentation size effects. The study focuses on the characterization of ferritic/martensitic steels T91 and
Eurofer97, envisaged as structural materials for nuclear fission and fusion applications, respectively.
Depth-controlled single cycle measurements at various final indentation depths, force-controlled
single cycle and force-controlled progressive multi-cycle measurements using Berkovich indenters
at room temperature have been combined to calculate the indentation hardness and the elastic
modulus as a function of depth applying the Oliver and Pharr method. Intra- and inter-laboratory
variabilities have been evaluated. Elastic modulus corrections have been applied to the hardness data
to compensate for materials related systematic errors, like pile-up behaviour, which is not accounted
for by the Oliver and Pharr theory, and other sources of instrumental or methodological bias. The
correction modifies the statistical hardness profiles and allows determining more reliable indentation
size effects.

Keywords: nanoindentation; nano-mechanical; small scale testing; pile-up; elastic modulus correction;
indentation size effect; ferritic/martensitic steel
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1. Introduction

Nanoindentation is extensively used to provide information about the mechanical behaviour of
materials at the nano scale through the evaluation of force versus displacement curves measured during
instrumented indentation. The most frequently used technique to calculate indentation hardness and
moduli of materials is based on Oliver and Pharr’s method for the determination of the contact depth
by accounting for the curvature of the unloading segment of the force-displacement data as described
by a power law [1,2]. Recently, dynamic measurements in continuous stiffness measurements (CSM)
mode have appeared where a small sinus oscillation is superimposed to the quasi-static load cycle and
contact stiffness is continuously measured during loading. However, CSM methods present still some
challenges to evaluate to what extent the measurement mode affects the results of the test. Indeed, a
dependence of the derived mechanical properties on the oscillation parameters has been reported [3], as
well as mismatches between static and dynamic indentation hardness due to strain rate sensitivities [4]
and an influence of instrumental artefacts on the measured stiffness [5]. Beyond the measurement
of mechanical properties at small scale, nanoindentation can also be used as an experimental tool
for studying fundamental materials physics such as the formation of dislocation networks, plastic
instabilities, and phase transformations [6]. Continuous refinement of experimental and modelling
methodologies to assess mechanical properties at local level is enabling nanoindentation as a technique
to obtain microstructural information [7–11], notably through the exploitation of indentation size effects
(ISE) [12–15], which represents a link between small-scale mechanical and microstructural properties.
However, the usefulness of the extracted information depends on the reliability of nanoindentation
measurements. Common uncertainties in nanoindentation measurements cause bias and scatter of
the measured values and originate from the key calibrations of the instrument (Displacement, Force,
Indenter area function, Frame compliance), the zero-point determination to establish the initial depth
of penetration, and from the random noise contributions from the environment such as ground and
acoustic vibrations causing variation in force and displacement measurement. The results obtained are
also affected by the models used for the evaluation of data and the data analysis corrections for variation
in the exponent of the power law fit to the data and lateral dilation correction of the indentation
contact [16]. Specimen roughness can affect both the zero point and the actual area of contact and
residual stress (which may be intrinsic to the sample manufacturing route or polishing-induced)
causes an error in the contact mechanics estimate of the actual contact area. Joslin and Oliver [17]
have presented a method to remove the errors due to surface roughness by analyzing the composite
parameter hardness/modulus2 (H/E2) instead of treating hardness and modulus separately. Other
potential errors include surface forces/adhesion and material exhibiting pile-up or sink-in behaviour,
which can vary across the same sample, depending on the ratio of local yield stress (and so hardness) to
elastic modulus and the orientation of the indenter geometry to the local crystal orientation. Awareness
about the possible influences and errors in nanoindentation measurements is critical to elaborate
practices and methodologies that eliminate or reduce them or take them into account. A more detailed
consideration regarding estimation of uncertainties in instrumented indentation can be found in [18]
and in ISO 14577:2015-Annex H. Once valid indentation data have been obtained, there remains
the issue of indentation size effects, where smaller indentations are harder because the yield stress
of materials that deform via dislocation generation and movement has a fundamental length-scale
dependence [7,8,19,20].

T91 and Eurofer 97 are tempered martensitic steels which are candidate materials for structural
components in nuclear fission and fusion reactors. To predict the long-term material behaviour at
operating conditions in nuclear environments, their deformation behaviour under high irradiation
dose levels must be characterized. Nanoindentation and other more recent micromechanical testing
approaches have proved promising to assess radiation damage, either caused by ions or by neutrons,
thanks to the possibility of testing shallow depths affected by ion irradiation and/or small volumes
of activated materials after neutron irradiation [21–23]. Due to the limited availability of irradiated
samples, developing methodologies for robust characterizations as performed in different laboratories



Nanomaterials 2020, 10, 130 3 of 15

and by different instruments is advantageous. The methodology should take into account pile-up
formation, since the ferritic/martensitic steels exhibit high dislocation density and therefore, significant
resistance to dislocation motion and low strain hardening capability, which may force the material
upwards during the indentation process [16]. The Oliver and Pharr procedure [1] will then produce
inaccurate results because it does not take modifications of the contact area due to pile-up behaviour into
account [24]. In line with the original work by Joslin and Oliver [17], it has been recently demonstrated
that uncertainties related to the contact area determination (pile-up and residual stresses) can be
compensated during data analysis if the elastic properties of the material are a priori known and a
correction factor can be applied to the hardness values [23,25,26].

In this framework, seven laboratories have engaged in a round robin testing campaign to probe
T91 and Eurofer97 surfaces prepared by the same sample preparation method and using the same
measurement protocols in various quasi-static nanoindentation testing modes. This work presents an
analysis of the nanoindentation data obtained by the different devices, accounting for uncertainties in
the contact area, in order to define a best practice methodology for the determination of indentation
size effects.

2. Materials and Methods

2.1. Materials

Two ferritic/martensitic steels, namely T91 and Eurofer97, were used for this study. The chemical
composition of the steels is given in Table 1. T91 specimens were cut from a hot rolled plate normalized
at 1050 ◦C during 1 min/mm (per mm thickness), quenched to room temperature, tempered at 770 ◦C
for 3 min/mm and then cooled in air. Eurofer97 samples were cut from broken Charpy specimens
prepared from forged bars hardened at 979 ◦C for 1 h 51 min and tempered at 739 ◦C for 3 h 42 min.
The materials and their tempering treatment were chosen for their featuring a nanoscopic martensite
lath structure with characteristic lath sizes in the range of 100 to 200 nm [13] that is fine enough to
have nanoindentation probe an effective medium thereby minimizing the effect of grain structure and
crystallographic orientation on hardness measured.

Table 1. Chemical composition of the T91 and Eurofer97 materials (in wt.%; Fe balance).

Element Cr Mo Mn Si V Ni Nb Cu Al

T91 8.873 0.871 0.386 0.218 0.195 0.115 0.077 0.080 0.009
Eurofer97 8.87 <0.001 0.42 0.06 0.19 0.0075 <0.001 0.021 0.008

Element C N P S Sn O W Ta Ti
T91 0.097 0.0440 0.020 0.0005 - - - - -

Eurofer97 0.12 0.018 0.004 0.003 <0.005 0.001 1.10 0.14 0.008

Element Co As Sb Zr
T91 - - - -

Eurofer97 0.005 <0.005 <0.005 <0.005

The materials were cut into plates of 1 mm thickness and polished with successively finer abrasives
and polishing solutions (diamond suspensions of 9 µm, 3 µm and 1 µm particles) finalising by a gentle
manual polishing in oxide polishing suspension with silica nanoparticles for 5 min. All samples were
polished in one laboratory and distributed to the laboratories participating in the study. The roughness
of the surface was checked by Atomic Force microscopy to be below 20 nm (Figure 1). The surface
residual stresses were checked in one sample of each material using X-ray diffractometry. The values
in both materials were close to 425 MPa compressive stress.
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Figure 1. 50 × 50 µm2 AFM scan of Eurofer97 showing a surface area roughness of 5.1 nm.

2.2. Nanoindentation Tests

Indentation tests were conducted in a variety of nanoindentation test devices from several
providers (Anton Paar, Corcelles, Switzerland; Bruker, Santa Barbara, CA, USA; Micro Materials
Ltd., Wrexham, UK; MTS, Eden Prairie, MN, USA; Keysight (former Agilent), Santa Rosa, CA, USA;
Zwick-Roell, Ulm, Germany). The thermal drift at room temperature was below 0.05 nm/s for the
different nanoindentation systems used in this study. The maximum load of the devices varied from
10 mN to 10 N, the load resolution from 1 nN to 100 nN and the displacement electronic resolution
from 0.3 pm to 50 pm. However, no distinction about the instruments’ capabilities is made in the
aggregation of data and statistical analyses that follow.

All tests were conducted at room temperature using Berkovich diamond tips. The tip area function
and the instrument frame compliance were calibrated according to ISO 14577-2:2015. Three quasi-static
nanoindentation measurement modes have been applied for the comparison of ISE, namely force
controlled single cycles (FSC), depth controlled single cycles (DSC) and progressive multi-cycles in
force control (PMC). FSC measurements were performed at five maximum forces, Fmax, equal to 1 mN,
5 mN, 10 mN, 50 mN and 100 mN, using 30 s of loading and unloading ramp times and 10 s dwelling
at Fmax. The instruments with maximum load below 100 mN performed the measurements at the Fmax

values divided by 10. DSC measurements were performed up to maximum depths, hmax, ranging from
50 nm to 500 nm, using 30 s of loading and unloading ramp times and 10 s dwelling at hmax. PMC
measurements were performed applying 10 consecutive loading-unloading cycles with the force being
increased by 0.1·Fmax in each cycle from 10 mN to 100 mN (or from 1 mN to 10 mN for the systems
reaching maximum loads below 100 mN). In every cycle the loading, unloading and dwelling times
were set to 10 s and the unloading was conducted down to 30% of the maximum force of the cycle. For
drift correction, a final 60 s dwelling at 10% of Fmax or hmax was applied to all measurements prior to
complete unloading. At least 15 measurements were taken and averaged for each Fmax in FSC and
for each hmax in DSC. As well, 15 PMC measurements of 10 cycles were taken and the results of the
15 measurements were averaged cycle by cycle.

2.3. Data Analysis

The data were analysed according to ISO 14577-1:2015 and using Oliver & Pharr methodology [1]
after application of zero point and thermal drift corrections. Contact depth hc, indentation hardness
HIT, and reduced plane strain modulus of the contact Er, are determined by Equations (1)–(3):

hc = hmax − ε(hmax − hr) (1)

HIT =
Fmax

Ap(hc)
(2)
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Er =

√
πS

2β
√

Ap(hc)
(3)

where hmax is the depth at maximum force, hr is the tangent depth, ε is a correction factor dependent
on the indenter geometry and the extent of plastic yield in the contact (0.6 < ε < 0.8), Ap is the projected
area of contact, S is the stiffness, and β is a geometric factor set to 1.034 for a Berkovich indenter. β is
introduced to correct the analysis equations, based on the geometry of an axis-symmetric cone, to the
shape of a Berkovich indenter [27].

3. Results

3.1. Hardness and Modulus Profiles

All samples were prepared by one laboratory while the samples were then tested at different
locations by methods agreed in advance and in controlled environments with stable levels of temperature
and humidity. Therefore, the test results are not expected to depend primarily on the laboratory
environment, the ageing of the materials, surface oxide formation or any other time-dependent
response, assuming a proper correction for thermal drift has been made. All measurements have an
inherent variability due to the random uncertainties of the test method. Between different laboratories
and instruments, additional offsets are possible. Typical sources of variability and offsets between
different laboratories are due to:

• calibration differences (force, displacement, the calibration of the indenter area function and the
correction of the frame compliance) and other measurement uncertainties,

• sample to sample property variations (compositional variation, polishing differences, residual
stress, etc.),

• or could be due to differences in the details of the analysis methods applied in the software of each
instrument: Oliver and Pharr uses a beta factor of 1.034, whereas ISO 14577:2002 uses a factor
of 1; software compliant with ISO 14577:2015 applies a variable ε (i.e., determines a correction
factor for εwhich depends on the exponent of the power law fitting the unloading curve) and a
lateral dilation correction to the contact area calculation (which depends on the hardness to elastic
modulus ratio of the test piece) [28].

Figure 2 shows the hardness and reduced modulus of T91 and Eurofer97 as a function of contact
depth measured in the different laboratories using FSC, DSC and PMC nanoindentations, while Figure 3
shows the hardness profiles combined for all measurement methods and laboratories. The datasets
used to plot Figures 2 and 3 are provided as Supplementary Materials (see Spreadsheet S1). The
hardness profiles (Figure 2) exhibited comparatively low scatter for FSC and PMC methods, whereas
a large scatter was observed in the modulus values. The calculation of hardness depends on the
calibration of the projected area and the determination of the contact depth. In addition to these factors,
the calculation of the modulus depends also on the determination of stiffness. The prevalence of scatter
in the modulus values indicates that there is a higher uncertainty in the determination of stiffness
by the different testing devices than in determining contact depth. The extreme outlier observed in
Figure 3 (Lab 7, yellow data) is probably due to an inaccurate instrument calibration, in particular a
largely underestimated frame compliance.
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Figure 2. Indentation hardness, HIT, and reduced modulus, Er, of T91 (a–c) and Eurofer97 (d–f)
measured by single cycles in force control (FSC), single cycles in depth control (DSC) and multicycles
in force control (PMC) at different laboratories.
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Figure 3. Indentation hardness, HIT, of T91 (a) and Eurofer97 (b) measured at the different laboratories
for all methods combined (FSC, DSC and PMC).

3.2. Elastic Modulus Correction (EMC)

T91 and Eurofer97 are relatively high-strength and low-strain hardening materials, with a moderate
modulus to hardness ratio (E/H) in the order of 60. Because of these properties, one may suspect the
formation of pile-ups during indentation. Indeed, the values of hp/hmax are about 0.9, well beyond
the 0.7 threshold above which pile-up occurs [2,19]. Effects of pile-up are mainly reflected in a
systematic error in the determination of the projected contact area and, thus, an overestimation of
hardness and modulus. To account for these effects, an elastic modulus correction [25,26] has been
applied to the hardness values whereby hardness is corrected by a factor depending on the ratio of the
measured reduced modulus to a reference reduced modulus value, assuming that the elastic modulus
is independent of depth. The reference value for the reduced modulus, Er

ref, has been calculated by
Equation (4):

1
Eref

r
=

1− ν2
i

Ei
+

1− ν2
s

Eref
s

(4)

where υs is the Poisson ratio of the steel samples set to 0.3, υi is the Poisson ratio of the diamond indenter
set to 0.07, Ei is the indenter modulus set to 1141 GPa, and Es

ref is the macroscopic elastic modulus of
the steel samples, in this study set to 208 GPa for T91 and 217 GPa for Eurofer97. Applying Equation (4),
the reference reduced moduli for T91 and Eurofer97 are 190.6 GPa and 197.4 GPa respectively.

HIT,corr =
HIT(

Er(hc)

Eref
r

)2 (5)

We note that EMC is equivalent to analyzing HIT/Er
2, or according to Equations (2) and (3), Fmax/S2

which was applied by Joslin and Oliver in order to remove the errors due to surface roughness [17]. As
these authors noted HIT/Er

2 is a better indication of the material’s resistance to permanent indentation
than hardness or modulus alone.

Figure 4 shows the corrected hardness profiles of T91 and Eurofer97 measured in the different
laboratories using FSC, DSC and PMC nanoindentation, while Figure 5 shows the corrected hardness
profiles combined for all measurement methods and laboratories. EMC provides a correction of
individual HIT values. Comparing Figures 3 and 5 it is evident that EMC increases the scatter in the
results of each laboratory, while it decreases inter-laboratory sources of scatter and helps to identify
outliers (e.g., Lab 4, Lab 5 and Lab 7 in Figure 4a, or Lab 5 and Lab 6 in Figure 4b). The latter improves
data quality and comparability as it could effectively correct for calibration offsets between laboratories,
as can be seen by the fact that the extreme outlier observed in the raw indentation hardness profiles
(yellow data, Lab 7 in Figure 3) get much closer to the curves obtained in the rest of laboratories after
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EMC is applied (Figure 5). EMC also reduces indentation size effects by correcting the overestimation
in hardness due to pile-ups.

Figure 4. Indentation hardness corrected by the EMC factor, HIT,corr, of T91 (a–c) and Eurofer97 (d–f)
measured by single cycles in force control (FSC), single cycles in depth control (DSC) and multicycles
in force control (PMC) at different laboratories.
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Figure 5. Indentation hardness corrected by the EMC factor, HIT,corr, of T91 (a) and Eurofer97 (b) for all
methods combined (FSC, DSC and PMC).

3.3. Cross-Correlation Analysis before and after EMC

A statistical study has been carried out to investigate which combination of measurement method
and analytical correction works better to minimise intra- and inter-laboratory variations. A number of
mathematical functions have been proposed in the literature to describe ISE. Their basis has ranged
from empirical (Hall–Petch relation [29,30]) through to physical based arguments such as strain
gradient plasticity (Nix–Gao model [31]) and slip distance theory (Hou–Jennett model [7]). One simple
function is an exponential function. For the current statistical study, the raw data and the elastic
modulus-corrected hardness profiles have been fitted to exponential functions (Equation (6)), serving
as reference for analysing standard deviations in depth-dependent hardness and evaluating the quality
of data:

Hfit
IT = H0 + H1·e

−
hc
h1 (6)

The choice of the exponential functions is motivated by the fact that this class of functions offers
sufficient variability to describe the decay of hardness with increasing depths while getting along with
a minimum number of (three) fit parameters. Hence, the choice represents a matter of practicality for
quantitatively analyzing the combined inter- and intra-laboratory scatter in terms of the goodness of
fits, not a choice made on physical grounds in order to determine an ISE accurately.

The EMC hardness plots (Figures 4 and 5) allow outliers to be identified and excluded from the
characterization. The corrected hardness with exclusions has also been fitted to exponential curves and
statistically analysed in terms of the deviation between measured and expected values (goodness-of-fit)
as well as of degree of correlation with the measured elastic properties (cross-correlations of hardness
and reduced modulus). Figure 6 shows the exponential fits to the raw hardness data, the EMC corrected
hardness and the EMC corrected hardness with exclusions of measurements in FSC mode (Figure 6a–c)
and measured by all methods (Figure 6d–f) for T91. The same analysis has been done for the sets of
data from DSC and PMC measurement modes as well as for Eurofer97 (plots not shown).

The goodness of the fits has been evaluated by the standard error of the regression (reduced
Chi-squared, χ2) and used to assess the intra-laboratory data scatter. Inter-laboratory deviations have
been assessed by the standard deviation, σR, of the cross-correlation functions of hardness and reduced
modulus given by Equations (7) and (8) for raw hardness and EMC corrected hardness respectively:

RHITEr =

〈(
HIT −Hfit

IT

)
·

(
Er − Eref

r

)〉
σHIT ·σEr

(7)
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RHIT,corrEr =

〈(
HIT,corr −Hfit

IT,corr

)
·

(
Er − Eref

r

)〉
σHIT,corr ·σEr

(8)
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Figure 6. Exponential fits to raw hardness data, EMC corrected hardness and EMC corrected hardness
with exclusions of T91 measured in FSC mode (a–c) and by all methods combined (d–f).

Table 2 lists the χ2 values representing the goodness of the fits and the standard deviation of the
hardness vs. modulus cross-correlations for FSC, DSC, PMC and all-methods data sets obtained for T91
and Eurofer97. In the case of the auto-correlations, in general the deviation decreases when the EMC
correction is applied, except for the PMC method, which already presented a very small χ2 in the raw
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data (χ2 = 0.05). Applying the exclusions, the χ2 values drastically decrease in all cases, the lower values
being achieved by using the PMC method, both in T91 and in Eurofer97. Regarding cross-correlations,
the EMC hardness presented more discrepancy as correlated to the reduced modulus (higher standard
deviation of the hardness-reduced modulus cross-correlation function), while it significantly decreases
by applying exclusions. Again, the PMC method presented the highest cross-correlation.

Table 2. Standard error of the exponential fit regressions to raw hardness data and EMC corrected
hardness, χ2, and standard deviation of cross-correlations between hardness and elastic modulus, σR,
for T91 and Eurofer97 obtained from indentations using different control measurement modes.

Material Method Goodness of Hardness Fits, χ2 Standard Deviation of
Cross-Correlations, σR

Raw,
HIT

EMC,
HIT,corr

EMC with
Exclusion, HIT,corr

Raw,
HIT

EMC,
HIT,corr

EMC with
Exclusion, HIT,corr

T91

FSC 1.78 0.81 0.074 0.96 1.28 0.498
DSC 0.35 0.31 0.029 1.67 2.25 0.589
PMC 0.05 0.14 0.005 1.50 1.64 0.187

All methods 0.71 0.40 0.037 1.26 1.61 0.487

EU97

FSC 1.58 0.81 0.159 0.75 1.40 0.797
DSC 0.57 0.69 0.144 0.85 1.43 0.785
PMC 0.05 0.15 0.020 1.03 0.81 0.254

All methods 0.71 0.56 0.143 0.87 1.49 0.759

4. Discussion

4.1. Uncertainty Analysis and Effects of Elastic Modulus Correction

Accuracy achieved in deriving mechanical properties from nanoindentation measurements is
affected by both random errors and systematic bias occurring either during the testing procedure or in
the data analysis phase. Random errors, e.g., indenting on a pit in the sample surface, are difficult
to correct, but can often be reduced by averaging many results; systematic error can appear as a
measurement bias, which can be estimated and corrected for. The origins of systematic errors include
laboratory-specific errors, such as inaccurate calibrations of force, displacement, frame compliance and
indenter tip shape, or material/sample-specific factors, such as surface and bulk residual stresses and
pile-up or sink-in behaviour during indentation. The different sources of systematic error produce
different effects in the measured indentation hardness and modulus. A blunt indenter tip calibrated
correctly will produce the same modulus but a different hardness to a sharp tip. Compressive residual
stresses (e.g., due to mechanical polishing) and pile-up behaviour produce an apparent increase in
both hardness and modulus, whereas a too small frame compliance correction reduces modulus
and hardness. A high surface roughness would tend to cause random uncertainty. It can cause a
variable offset of the zero point from the average surface position of the sample and would cause a
variation in the actual area of contact with the indenter. Depending on its lateral surface wavelength,
roughness may cause increase or decrease in measured stiffness. When the indent size is smaller
than the roughness wavelength, this results in indentation in hills or valleys, causing an offset in the
contact depth and or stiffness measured due to local curvature of the sample surface. When the indent
size is much greater than the roughness wavelength, the contact senses a less dense/low modulus
surface layer of asperities before the onset of contact with fully dense material. Roughness, therefore,
produces a complex series of conflicting effects on hardness and modulus parameters extracted from a
nanoindentation test and this is why the standard ISO 14577 restricts indentation into surfaces to be
where average roughness is less than 5% of the contact depth.
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The elastic modulus correction applied in this study relies upon the assumption that there is no
error in the measured stiffness. If this assumption holds, EMC reduces the error that compressive
residual stresses and pile-up behaviour cause in the estimate of the area of contact. However, if
an imprecise frame compliance correction has been applied, this is an error in the stiffness value
measured and not in the area of contact; in this case the specific correction formula used will introduce
a compensating error rather than a correction. The use of elastic modulus of a reference material to
obtain the value of frame compliance in a nanoindenter is a standard procedure (see ISO 14577-2:2015)
but this relies upon the opposite assumption, i.e., that the area of contact obeys the assumptions of the
contact mechanics analysis being applied to calculate the contact stiffness and that the error is in the
contact stiffness alone. While the raw hardness profiles of individual datasets (Figures 2 and 3) are
consistent with a monotonic decrease of hardness with depth (ISE), there is a large variability amongst
the different laboratories regarding hardness (ISE) and modulus profiles. In stiff indents, such as at
high force or in material with high modulus-to-hardness ratio ( E

√
H

), the force removal curve is very
steep and small errors in frame compliance, force or displacement (e.g., due to vibrations, drift or
creep) can cause large changes in the measured stiffness and result in a high uncertainty in E. However,
the estimate of contact depth is little affected and so the uncertainty in H is low. The result is a large
measurement variability in E and a low measurement variability in H. In this case, EMC generates a
correction factor that compensates for and nulls out the random uncertainty in the modulus results.
When this is applied to the hardness values, it significantly increases the scatter of data in the hardness
profiles (Figures 4 and 5). This increase in random uncertainty can, however, be reduced or avoided by
using averaged results. The standard error of an averaged stiffness measurement, even with large
random uncertainty, is rapidly reduced by averaging a greater number of measurement results, which
becomes easily possible by using the PMC method. Even though the in-house scatter of hardness
results increased after EMC, in this case, the approach was necessary to account for the systematic
offsets in the indentation results caused by pile-up and residual stresses that exist in both materials.
Furthermore, changes of pile-up behaviour caused by irradiation, if not corrected for, can lead to
ambiguous results when using nanoindentation to study irradiation induced hardening of materials of
nuclear interest. Reduction of offsets between data sets through EMC, normalises the data into a single
statistical population that can be used as a base to identify outliers, the exclusion of which largely
reduces the overall variability, as revealed by the example statistical analysis performed (Figure 6 and
Table 2) and discussed below.

4.2. Statistical Analysis of Measurement Methods for Improved ISE Determination

The nanoindentation response of the two ferritic/martensitic steels resemble each other and so
do the outcomes of the statistical analysis. In both cases, amongst the different testing methods
PMC outperformed the two other methods in terms of goodness of fits, to the extent that already the
regressions of the raw PMC datasets are better than the corrected FSC and DSC datasets. Likewise,
the residual cross-correlations provide evidence that PMC performs much better than the single cycle
methods. This is likely because in PMC, the depth dependence of hardness and modulus are measured
at the same point on the surface of the specimen, while FSC and DSC probe different points of the
surface to measure the hardness and modulus profiles. Thus, random errors introduced from point to
point sample variability (such as surface inhomogeneity) will affect more the single cycle measurements
and this may be reflected in the larger scatter and poorer cross-correlation of single cycle modes. In
addition, the results for different depths in the case of the PMC method rely on the same zero-point
determination, thus reducing the scatter related to uncertainties related to zero-point correction. Also
contributing is the fact that more data points were obtained when using PMC (data was obtained at
10 depths because 10 cycles were applied, providing 10 averaged data points in the hardness and
modulus profiles) as compared to FSC (5 data points in the hardness and modulus profiles) and DSC
(7 data points). The standard error in a fit is reduced as the number of fitted data points increases.
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For both materials, EMC hardness compilations where outliers have been removed exhibit
significantly improved goodness of the exponential fits to the depth dependent hardness data as
well as the residual cross-correlations between hardness and modulus. Therefore, the EMC offers a
strong approach towards obtaining reliable hardness profiles to study and exploit ISE, in particular for
materials amenable to pile-up or sink-in behaviour during the indentation process.

5. Conclusions

Nanoindentation has been widely used for qualitative purposes, e.g., comparative screening
of materials. Special attention has to be paid to proper calibration of: force, displacement, frame
compliance and indenter tip area; to a precision that would allow for quantitative hardness and
elastic modulus determination. In particular, calibration of the frame compliance and the tip area
function are critical for the present inter-laboratory comparison. While systematic errors associated
with the correction of frame compliance are still to be considered, systematic errors originating from
the projected contact area determination (tip area calibration, pile-ups and residual stresses) have been
taken into consideration and significantly reduced by the application of an Elastic Modulus Correction,
as evidenced by the statistical examination of hardness profiles showing improved goodness-of-fits
and hardness-to-modulus cross-correlation when EMC is applied and used to identify outliers. The
methodology provides a robust framework for the study of size dependent mechanisms of deformation
based on nanoindentation testing.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/1/130/s1,
Spreadsheet S1: Datasets of hardness, reduced modulus and contact depth values of T91 and Eurofer97 measured
by quasi-static nanoindentation in different laboratories.
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