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ABSTRACT We investigate the asymptotic behavior for an overlooked aspect of spectrum-sharing systems
when the number of transmit antennas nt at the secondary transmitter (ST) grows to infinity. Considering
imperfect channel state information (CSI), we apply the transmit antenna selection and the maximal-ratio
combining techniques at the ST and the secondary receiver (SR), respectively. First, we obtain the signal-
to-noise ratio (SNR) distributions received by the SR under perfect and imperfect CSI conditions. Then we
show that the SNR distributions are tail-equivalent in the sense that the right tails of the two distributions
decay in the same rate as the number of transmit antennas nt grows to infinity. Based on the extreme value
theory, when the transmit power of the ST is solely limited by the interference constraint, we show that
the limiting SNR at the SR is Fréchet-distributed and the limiting rate scales as log(nt ). When the transmit
power of ST is determined by both the maximal transmit power and the interference power constraints,
the limiting SNR is Gumbel-distributed and the limiting rate scales as log(log(nt )). We further show that the
average rate can be estimated by the corresponding easier-to-obtain outage rate. Numerical results indicate
that the derived asymptotic rate expressions represent accurate approximations even when nt is ‘‘not-so-
large’’. Finally, we study the robustness of the secondary transmissions by analyzing the corresponding
average symbol error rates (SER) under general modulation and coding schemes. The findings indicate that
the SER is Weibull distributed, when the maximal transmit power and interference power constraints are
comparable.

INDEX TERMS Spectrum sharing, extreme value theory, rate scaling law, symbol error rate.

I. INTRODUCTION
Spectrum sharing has been considered as a promising
technology to efficiently utilize the radio spectrum, and sig-
nificant progress has been achieved in developing spectrum-
sharing techniques, for instance, dynamic spectrum access
and 5G heterogeneous networks [1], [2], licensed and
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unlicensed spectrum access [3], [4], drone networks [5], and
co-primary spectrum sharing with applications in device-to-
device communication [6]. In this work, we consider the
underlay paradigm that the secondary users (SUs) operate
as underlay systems. Therein, the SUs are allowed to coexist
with the primary users (PUs)1 while the SUs need to control

1Although we call the communicating entities as SU and PU, the analysis
in this paper can be applied in other communication systems that require
interference control for transmission.
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their transmit power in order to avoid harmful interference
to the PUs [2], [7], [8]. The performance of such spectrum-
sharing systems have been considered in literature, such
as [2], [7], [8] among others.

It is well-known that the multi-antenna techniques can
be used to improve the link-level performance of wireless
communications. The transmitter antenna selection (TAS)
scheme, among other transceiver designs, significantly
reduces the hardware complexity and costs by simplifying
the radio transmission units, as only a single RF chain
is needed at the transmitter. In addition, the TAS scheme
does not require synchronization among transmit antennas.
Hence, it is an effective transceiver design and has been
adopted in massive MIMO systems as well as the recent
non-orthogonal multiple access systems [9]–[11]. Compared
to other channel-dependent transmission schemes, TAS also
reduces the required channel feedbacks [12], as only a single
index of the transmit antenna to be activated is needed from
the receiver to the transmitter. Moreover, TAS technique has
been adopted in [13] to improve the robustness of massive
MIMO systems against passive eavesdropping.

A combined TAS and receiver maximal ratio combining
(MRC) scheme is analyzed in [14] in the traditional point-to-
point communication systems. Therein, authors investigated
the system performance in terms of the average bit-error
rate, and showed that the maximal diversity order is equal to
the product of the number of transmit and receive antennas.
In [15] and [16], authors investigated the outage probability
and the bit error rate of TAS/MRC for point-to-point com-
munications in Rayleigh and Nakagami-m fading channels,
respectively. Finally, in [17] authors deduce the expressions
for the outage probability in a TAS/MRC system assuming
multiple users with independent and identically distributed
(i.i.d.) Nakagami-m channels. The full diversity benefit is
achieved at a relatively high SNR level.

A. RELATED WORKS
The ergodic capacity of the SU with TAS at the secondary
transmitter (ST) and MRC at the secondary receiver (SR) is
investigated in [18] when there is no maximal transmit power
constraint for the ST. In [19], on the other hand, the capacity-
scaling law and diversity order for a cognitive radio system
with MRC receiver is investigated. Therein, the asymptotic
analysis is conducted in the high SNR regime without TAS.
Furthermore, authors in [20] analyze the multiuser diver-
sity gain for single-antenna overlaid cognitive radio systems.
We note that in [20] the interference towards the primary
receiver (PR) is avoided by the spectrum sensing and only
the maximum transmit power constraint is activated at the
transmitting ST.

When the instantaneous perfect channel state informa-
tion (CSI) of both ST-to-PR and ST-to-SR links are available
at the ST, authors in [21] present a closed-form expression for
the cumulative distribution function (c.d.f.) of the secondary
SNR applying the antenna selection, where the selection
criterion is based on the ratio between channel gains of the

ST-to-SR and ST-to-PR links. This c.d.f. is applied to obtain,
for instance, the outage probability, ergodic capacity, and
bit error probability (BEP). Though a simple expression is
provided for high SNR regime, the general expression for
the BEP consists of the parabolic cylinder function. In addi-
tion, the approximated expression of the ergodic capacity
includes the Laguerre polynomials, which do not explicitly
display the relation between the considered performancemet-
rics and the number of transmit antennas. Moreover, as the
number of transmit antennas grows, it is challenging for the
secondary receiver to feedback the full CSI of the ST-to-SR
link to the ST. In addition, TAS/MRC has been studied for
underlay spectrum sharing in [22], where asymptotic expres-
sions of outage probability have been obtained as the transmit
power of the SU goes to infinity. This scenario can be deemed
as a special case of the study in this work.

Authors in [23]–[25] have studied the impacts of the feed-
back delay and the co-channel interference on the perfor-
mance of the considered systems for multi-user multiple
amplify-and-forward (AF) relaying networks and spectrum-
sharing relaying networks. Results in [23] show that the
perfect feedback is required to achieve the full diversity
order of the multi-user multiple AF relaying networks. The
TAS/MRC approach has also been considered in [24] for
spectrum-sharing relaying networks. Therein, the exact and
approximate expressions for the outage probability of the sec-
ondary network are obtained, which shows that interference
power constraint is closely related to the achievable diversity
order and coding gain. Authors in [25] have considered a
transmit beamforming and MRC-enabled AF relaying sys-
tem with feedback delay and co-channel interference. Par-
ticularly, the exact expressions for the c.d.f. of the SINR
and the upper and lower bounds of the ergodic capacity
have been obtained. In [26], performance analysis of several
TAS schemes has been conducted for an energy harvest-
ing decode-and-forward relaying network, where the asymp-
totic outage probabilities have been obtained in high SNR
regimes.

The previous works either provide complicated expres-
sions for the performance metrics of the secondary systems
or conduct the performance analysis in high SNR regime,
when the perfect CSI of the communication channels are
accessible. However, it is not a practical scenario for the
secondary users to operate in the high SNR regimes with
error-free channel estimations. In this work, we carry out
the performance analysis of the secondary users at generic
SNR levels under imperfect CSI at the secondary receivers,
which has been overlooked in literature. Furthermore, based
on the existing results, it is difficult to gain insight into the
interplay between the transmit power and interference power
constraints of the secondary users and their impacts on the
performance of the considered TAS technique. For instance,
for a moderate SNR value, how the two constraints directly
affect the performance of the SU in terms of average rate,
outage rate, and average symbol error rate as the number of
transmit antennas increases.
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Note that when the interference power constraint is not
imposed, the limiting SNR distribution follows Gumbel
distribution [27]. However, to the best of our knowledge,
when both the transmit power and the interference power
constraints are active, the limiting SNR distribution and
the corresponding asymptotic performance metrics of the
TAS/MRC secondary systems, as functions of the num-
ber of transmit antennas, are unknown and are non-trivial
to deduce such results on the existing works. In par-
ticular, we show in this work that the additional inter-
ference power constraint does change the limiting SNR
distribution.

B. CONTRIBUTIONS AND PAPER ORGANIZATION
To address the above discussed issues, at generic SNR levels,
the extreme value theory (EVT) is applied to analyze various
performance metrics of the secondary spectrum-sharing sys-
tems subject to both the maximal transmit power constraint
at ST and the maximal interference power constraint at PR.
The performance of such secondary system is evaluated via
closed-form expressions for the limiting SNR distributions,
the average rate, the outage rate, and the average symbol error
rate (ASER) using general modulation and coding schemes.
Based on these results, the scaling laws of the SU average
rate and outage rate with respect to the number of transmit
antennas will be derived. We summarize the contributions of
this work as follows:
• Before applying TAS, the SNR distributions received
by the secondary receiver are obtained under perfect
and imperfect CSI conditions. In both cases, the SNR
distributions are shown to be tail-equivalent in the sense
that the right tails of the two distributions decay in the
same rate as the number of transmit antennas nt grows to
infinity. Therefore, under both perfect and imperfect CSI
conditions, the limiting SNR distribution after apply-
ing TAS can be obtained by using the same analytical
framework of EVT, which facilitates the following per-
formance analysis.

• The limiting SNR distribution of the SU converges to the
Fréchet distribution when the maximal transmit power
constraint dominates over the interference power con-
straint, which is hereafter referred to as the interference
power limited regime (IPLR); otherwise, the limiting
SNR distribution converges to the Gumbel distribution,
which is referred to as the non-dominant regime (NDR).

• The average rate scales as log(nt ) in IPLR, while scales
as log(log(nt )) in NDR, as nt increases. For large nt ,
in IPLR there is a non-zero gap between the outage rate
and the average rate, while in NDR the gap is vanishing
as log(1 + 1/ log nt ). We show that the average rate
can be estimated by the corresponding easier-to-obtain
outage rate.

• The SER follows the Weibull distribution for general
modulation and coding schemes with large nt . Based
on this result, a compact expression for the ASER is
deduced.

FIGURE 1. System Model: The i th antenna of the ST is selected.

The rest of the paper is organized as follows. In Section II,
we outline the system model and present the c.d.f. of the
SNR at the secondary receiver. In Section III, we briefly
summarize the principles of the EVT, and derive the limiting
distribution of the SNR at the secondary receiver. Using this
result, the SU average rate and the corresponding rate scaling
laws are investigated in Section IV. The SU outage rate is
analysed in Section V. The average symbol error rate of the
SU for general modulation types is deduced in Section VI.
We present the simulation results in Section VII. Section VIII
concludes this paper. Proofs of key technical results are pro-
vided in the Appendices.

C. NOTATIONS
We adopt the following notations: Q denotes instantaneous
interference power constraint at the PR; Pm is the maximum
transmit power constraint at the ST; gi ∈ C1×nr represents the
channel vector between the ith antenna of the ST and the
antenna array of the SR; hi ∈ C is the channel between
the ith antenna element of the ST and the PR; In denotes
n× n identity matrix; γ (a, x) =

∫ x
0 t

a−1e−t dt and 0(a, x) =∫
∞

x ta−1e−t dt denote the lower and the upper incomplete
Gamma function, respectively; γ0 = 0.5772 . . . is the Euler-
Mascheroni constant; The error function and complementary
error function are denoted as erf(x) = 2

√
π

∫ x
0 e
−t2 dt and

erfc(x) = 1− erf(x), respectively.

II. SYSTEM MODEL
Consider a spectrum-sharing system as shown in Fig. 1,
which consists of a SU pair and a PU pair. The ST is equipped
with nt antenna elements, assuming that the transmit antenna
selection is adopted. The secondary receiver (SR) has nr
antenna elements, and the received signals are combined
according to theMRCprinciple. The primary transmitter (PT)
and receiver (PR) are assumed to be equipped with one
antenna.2 To protect the PU communications, we consider
an interference power constraint imposed by the PR, where
the instantaneous interference from the ST to the PR is

2This corresponds to the legacy wireless systems, where the transceivers
have limited hardware capability.
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constrained within a pre-specified power threshold due to the
radio regulations. Meanwhile, the transmit power of the ST
is also limited by its maximum power constraint due to, for
instance, hardware limitations or by spectrum access policies
set by the regulators.

A. SIGNAL MODEL
When the ith transmit antenna of ST is used, the received
signal vector at the SR, y, reads

y =
√
µgP

(i)
s gi x + v, (1)

where µg denotes the average path loss between the transmit
antennas and the receive antennas, and P(i)s denotes the trans-
mit power of the ST. Here, x is the transmitted symbol of ST,
gi is the channel vector whose elements gi,j ∼ CN (0, 1),
j = 1, · · · , nr , represent the complex channel coefficient
between the ith transmit antenna and the jth receive antenna,
and v ∼ CN (0, σ 2Inr ) is the complex white Gaussian noise
vector. The channel vectors are i.i.d. standard complex Gaus-
sian distributed, independent across transmit antennas. In this
model, we adopt the same assumption for underlay spectrum
sharing paradigm as in [7], [21], [28]–[31] that the interfer-
ence from the PT is treated as Gaussian noise or via proper
cooperative schemes [32] such that we can obtain analytic
results with sufficient insights on the addressed problem.
With multiple PTs, this can be justified by the central limit
theorem and valid for certain network deployment topolo-
gies, for instance when the SR and the PT are far away
[7], [31].When the interference from the PU cannot be treated
as Gaussian noise, the SR receives a combination of the
signal, interference and noise, and the resulting SINRs of the
received symbols sent by different transmit antennas become
correlated. The following EVT analysis of such correlated
random variables is an open problem in general.We leave this
challenging problem for our future work. For the analysis,
we have adopted the following assumptions on the signal
model:

(A1) The channels follow a block fading process, i.e., the
entities of channel vectors remain constant over
each coding block and are i.i.d across from one
block to another;

(A2) The SR has the imperfect CSI of gi, namely ĝi,
to performmaximal ratio combining; the ST has the
imperfect CSI of hi, namely ĥi;

(A3) The PT and ST apply Gaussian codebooks.
We note that ĥi in (A2) can be obtained, when, for instance,
the primary receiver feeds back the channel measurement of
ĥi to the secondary transmitter [33]. These assumptions are
applied also in previous works, for instance, [33]–[37] among
others.

We consider the following imperfect CSI model, which
has been widely applied in literature, where the pilot and the
signal are sent separately within a fading channel block, for
instance, [23]–[25], [38]–[40] among others. The imperfect
CSIs of gi and hi are due to the Gaussian estimation errors

such that

ĝi = σggi +
√
1− σ 2

g g̃i, (2)

ĥi = σhhi +
√
1− σ 2

h h̃i, ∀i. (3)

where g̃i ∼ CN (0, Inr ) and h̃i ∼ CN (0, 1) are the normalized
channel estimation errors of gi and hi, respectively. The terms
0 ≤ σg, σh ≤ 1 denote correlations between the instanta-
neous channel coefficients and their estimations. When σg
and σh are equal to 1, the channel estimation is perfect; on
the other hand, when σg and σh are equal to 0, the channel
estimations fail completely and the channels are unknown to
the transmitter.

Due to the imperfect CSI ĥi, the ST cannot strictly satisfy
the interference power constraint set by the PR. Therefore,
we consider the outage probability model for the interference
power [24], where, in addition to the maximum transmission
power Pm of the ST, it causes an interference towards the PR
no larger than the power Q̄ with a pre-defined outage proba-
bility ν. That is, Pr

{
µhP

(i)
s |ĥi|2 ≤ Q̄

}
= ν. Following [24],

the transmit power of the ST is given by

P(i)s = min
{

κQ̄

µh |ĥi|2
,Pm

}
,

where κ is a power margin, and µh denotes the average path
loss between the ith ST antenna and the receive antenna of
the PR. Given the outage probability ν, the power margin κ
can be numerically obtained by using [24, Eq. (15)]. In this
paper, we consider that κ is absorbed into Q̄, i.e., Q = κQ̄,
so that the transmission power of the ST becomes

P(i)s = min
{

Q

µh |ĥi|2
,Pm

}
. (4)

By using MRC at the SR, the received signals at the SR
antenna array are weighted by the corresponding complex
channel coefficients and combined coherently [41]. The post-
processed signal after the MRC at the SR can be written as

ỹ = w†y =
√
µgP

(i)
s

ĝ†i
||ĝi||F

gi x +
ĝ†i
||ĝi||F

v, (5)

where w = ĝi
||ĝi||F

is the MRC weight vector, || · ||F is

the Frobenius norm, and (·)† denotes the complex conjugate
transpose operator. Assuming perfect CSI first, the channel
power gain ||gi||2F follows a Chi-square distribution with 2nr
degrees of freedom, and the c.d.f. of ||gi||2F is given by [42]
as:

F
||gi||2F

(x) = 1−
1

(nr − 1)!
0

(
nr ,

x
µg

)
, x ≥ 0. (6)

With the imperfect CSI in (2), the c.d.f. of ||ĝi||2F is given
by [38], which has been applied in, e.g., [40], as:

F
||ĝi||2F

(x) =
nr∑
m=1

Bnr−1m−1 (σ
2
g )

1−
0
(
m, x

µg

)
0(m)

 , (7)
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where Bki (t) =
(k
i

)
t i(1 − t)k−i denotes Bernstein basis poly-

nomial of degree k with
(k
i

)
being a binomial coefficient.

The post-processed SNR corresponding to the ith antenna
transmission at the MRC combiner of the SR is of the form

γ̂i = min

{
SQ‖ĝi‖2F
|ĥi|2

,SP‖ĝi‖2F

}
. (8)

where SP = Pm/σ 2, and SQ = Q/µhσ 2. If TAS is applied
at ST, its i∗th transmit antenna corresponding to the largest
receive SNR γ̂i∗ is selected to transmit the signals. That is,
the SR feedbacks the antenna index i∗, which fulfills

i∗ = arg max
1≤i≤nt

γ̂i. (9)

Assuming an ideal feedback channel between the ST and the
SR, the TAS scheme requires log2 nt bits of feedback infor-
mation. The largest SNR is denoted by γmax = max1≤i≤nt γ̂i.
Proposition 1: The c.d.f. of the post-processed SNR γ̂i

with imperfect CSI is given as:

Fγ̂i (x) =
nr∑
m=1

Bnr−1m−1 (σ
2
g )
{
1−

1
0(m)

[
0

(
m,

x
µgSP

)
−

(
x

µgSQ + x

)m
0

(
m,

x
µgSP

+
SQ
SP

)]}
. (10)

Proof: The proof of Proposition 1 is in Appendix A.
Note that by setting σ 2

g = 1, the c.d.f. of γi in (11) is
obtained from (10) as:

Fγi (x) = 1−
1

0(nr )

[
0

(
nr ,

x
µgSP

)
−

(
x

µgSQ + x

)nr
0

(
nr ,

x
µgSP

+
SQ
SP

)]
, (11)

which is in line with the existing results in [18] and [19].
Based on (9), the c.d.f. of γmax can be expressed as [43]

Fγmax (x) =
[
Fγ̂i (x)

]nt . (12)

Considering a simplified scenario with Pm → ∞ and
hence SP → ∞, the c.d.f. in (10) can be approximated,
by applying 0(nr , 0) = 0(nr ) [50, eqn. (8.350-4)], as

Fγ̂i (x) =
nr∑
m=1

Bnr−1m−1 (σ
2
g )
(

x
x + µgSQ

)m
. (13)

With perfect CSI at the ST, (13) can be reduced to

Fγi (x) =
(

x
x + µgSQ

)nr
. (14)

B. CONCEPT OF TAIL EQUIVALENCE
In this section, we prove that the limiting SNR distributions
under the perfect and the imperfect CSI conditions are tail-
equivalent so that the limiting behavior of the SNR γmax
remains the same as nt grows. For the sake of completeness,
the definition of tail equivalence in [44] is stated next.
Definition 1 (Tail Equivalence [44, Eq. (1.25)]): Let

F and G be two distribution functions, and set their

upper end-points as ω(F) = sup{y|F(y) < 1} and
ω(G) = sup{y|G(y) < 1}, respectively. Then F and G
are (right) tail equivalent for some ζ > 0 if, and only if,
ω(F) = ω(G) and

lim
x→ω(F)

1− F(x)
1− G(x)

= ζ. (15)

In the next proposition, we show that the SNR distribu-
tions with and without channel estimation errors are tail-
equivalent.
Proposition 2: The distribution functions Fγ̂i (x) in (10)

and Fγi (x) in (11) are right tail equivalent and

lim
x→ω(F)

1− Fγ̂i (x)

1− Fγi (x)
= ζ ≤ (σ 2

g )
nr−1. (16)

Proof: The proof of Proposition 2 is in Appendix B.
Obviously, with the perfect CSI, i.e., σ 2

g = 1, the ratio
between the two tails is one as expected. In presence of imper-
fect CSI, the right-hand-side of (2) reduces as the accuracy of
the channel estimation decreases, which means the receiver
with imperfect CSI sees a degraded SNR compared to the
case with perfect CSI. The SNR degradation is proportional
to (σ 2

g )
nr−1.

To the best of our knowledge, there is no explicit expres-
sions for the performancemetrics of the secondary users, such
as the average rate and the average symbol error rate, obtained
with the c.d.f. (10) or (12) due to their complexity. To enable a
tractable analysis and gain insight into the considered cogni-
tive radio system, we deduce the asymptotic expressions for
the average rate, outage rate, and average symbol error rate
using EVT by increasing the number of transmit antennas
nt → ∞ while keeping the number of receive antennas nr
fixed.

III. EXTREME VALUE THEORY
The EVT provides elegant and powerful statistical tools when
investigating the asymptotic distributions of the maximum or
the minimum of a set of random variables [45]. Recently,
EVT has proven useful in investigating the performance of
the wireless communication networks. The authors in [46]
conduct the asymptotic throughput analysis for the channel-
aware scheduling in multi-user communications. The asymp-
totic antenna selection gain and the capacity distribution for
a multi-antenna system are studied in [27] and the so-called
cumulative distribution function based multi-user schedul-
ing are investigated using EVT in [47] and [48]. Moreover,
authors in [34] investigate a single-antenna spectrum-sharing
multi-hop relay system, where the EVT is applied to obtain
the limiting distribution functions of the lower and upper
bounds on the end-to-end SNR of the relaying path.

A. PRELIMINARY
LetX1,X2, ...,Xn denote a sequence of i.i.d. random variables
with distribution FX (x) and Mn = max{Xi : 1 ≤ i ≤ n}.
Furthermore, assume that there exists sequences of real

138066 VOLUME 7, 2019
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numbers an and bn such that

lim
n→∞

Mn − an
bn

d
−−→ G, (17)

where
d
−→ denotes the convergence in distribution and G is a

non-degenerate distribution. By the Fisher-Tippet-Gnedenko
theorem [49] it is known that G is one of the extreme value
distributions: Gumbel, Fréchet, or Weibull, defined as:

Weibull: 9ξ (x) = e−(−x)
−1/ξ

, x ≤ 0, ξ < 0 (18a)

Fréchet: 8ξ (x) = e−x
−1/ξ

, x ≥ 0, ξ > 0 (18b)

Gumbel: 3ξ (x) = e−e
−x
, x ∈ R, ξ = 0, (18c)

where ξ denotes the extreme value index. Furthermore,
according to the assumption (17), the distribution FX (x)
belongs to the so-called Maximum Domain of Attrac-
tion (MDA) of G.
This EVT result forms a basis of the asymptotic approx-

imation for the SNR distribution (12) when the number of
transmit antenna nt is large. This asymptotic distribution
relies on the MDA of the underlying distribution FX (x).
As we show in the following discussions, the SNR distribu-
tion Fγi (x) for the perfect CSI scenario in (11) belongs to the
MDA of the Gumbel or the Fréchet distribution, depending
on the dominating power constraints Q and Pm. Since the
distribution functions Fγi (x) and Fγ̂i (x) are tail-equivalent as
been shown in Section II-B, the SNR distribution Fγ̂i (x) for
the imperfect CSI scenario in (10) lies on the same MDA,
where Fγi (x) belongs [44]. Prior to using the extreme value
distributions to approximate Fγmax(x) in (12), we first review
two relevant results from [45], which state the sufficient
conditions for a distribution to belong to the MDA of the
Gumbel and the Fréchet distributions.
Lemma 1 [45, Theorem 2.7.2]: Let ω(FX ) = sup{x :

FX (x) < 1} as the right end-point of the support of FX (x).
Assume that there is a real number x1, and for x1 ≤ x <
ω(FX ), fX (x) = F ′X (x) 6= 0 and F ′′X (x) exists. If

lim
x→ω(FX )

d
dx

[
1− FX (x)
fX (x)

]
= 0, (19)

then FX (x) lies on the MDA of the Gumbel distribution with
the c.d.f. expressed as

3ξ (x) = exp
(
− exp

(
−
x − an
bn

))
, (20)

with the normalizing coefficients an and bn determined by

an = F−1X (1− 1/N ) , bn = F−1X (1− 1/Ne)− an. (21)

Here e is the base of the natural logarithm, andF−1X (·) denotes
the inverse of the distribution function.

A sufficient condition that a distribution lies on the MDA
of the Fréchet distribution is given as follows:
Lemma 2 [45, Theorem 2.1.1]: Let ω(FX ) = sup{x :

FX (x) < 1} = ∞. Assume that there is a constant ν > 0
such that the following limit exists for all x > 0,

lim
t→∞

1− FX (tx)
1− FX (t)

= x−ν, (22)

where ν = 1/ξ . Then, FX (x) lies on the MDA of the Fréchet
distribution with the c.d.f. expressed as

8ξ (x) = exp

[
−

(
x
bn

)−1/ξ]
, ∀x > 0, (23)

with the coefficients determined by

an = 0, bn = F−1X (1− 1/N ) . (24)

We note that the choice of the normalizing coefficients
an and bn are not unique, and they can be selected as in
other forms without affecting the convergence of (17) to the
limiting distributions (18) [45]. Nevertheless, we show in
Section VII that the adopted normalizing coefficients (21)
and (24) can be used to construst accurate approximations
for the considered performance metrics when the number of
antennas nt is finite.

B. LIMITING SNR DISTRIBUTION OF THE SECONDARY
USER
We categorize the operational regimes of the considered
spectrum-sharing system into the following cases:

• Interference power limited regime (IPLR): Pm → ∞
with Q/µh fixed.

• Transmit power limited regime (TPLR): Q/µh → ∞
with Pm fixed.

• Otherwise, non-dominant regime (NDR).

Note that the system in TPLR can be reduced to the one
studied in [27]. We will, therefore, focus on the operational
regimes IPLR and NDR. Using Lemma 1 and Lemma 2,
we prove in the next propositions that the c.d.f. of the SNR
Fγi (·) in (11) lies on theMDAof the Gumbel or Fréchet distri-
butions for the two considered scenarios, i.e., IPLR andNDR,
respectively. Recall that, as defined in the previous section,
SP = Pm/σ 2, SQ = Q/µhσ 2, and limx→ω(F)

1−Fγ̂i (x)
1−Fγi (x)

=

ζ ≤ (σ 2
g )
nr−1.

Proposition 3: Given the transmit power (4), the distribu-
tion Fγ̂i (·) in (10) lies on the MDA of the Fréchet distribution
in IPLR, and the SNR distribution of TAS/MRC secondary
user is given by

Fγmax (x) = exp (−bn/x) , ∀x > 0 (25)

with the coefficient bn chosen as

bn =
µgSQ

[nt/(nt − 1)]ζ/nr − 1
. (26)

Proof: The proof of Proposition 3 is in Appendix C.
Proposition 4: Given the transmit power (4), the distribu-

tion Fγ̂i (·) in (10) lies on theMDA of the Gumbel distribution
in NDR. The SNR distribution of the secondary user with
TAS/MRC is given by

Fγmax (x) = exp
(
− exp

(
−
x − an
bn

))
, ∀x > 0 (27)
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FIGURE 2. Exact and approximate distributions of the SU SNR when the
best transmit antenna is selected in NDR (Gumbel), where SP = 5dB and
SQ = −5dB. The number of receive antennas nr = 2. The solid and dashed
curves depict the exact and approximated distributions with perfect CSI,
respectively. Markers ‘+’ and ‘o’, respectively, denote the exact and
approximated distributions with imperfect CSI, σ2

g = 0.9.

where the coefficients an and bn are

an = µgSP
[
log(nt )+ (nr − 1) log(log(nt ))

− log0(nr )+ log(ζ )+ log
(
1− e−SQ/SP

)]
,

bn = µgSP. (28)

Proof: The proof of Proposition 4 is in Appendix D.
Remark: In the considered spectrum-sharing cognitive

radio system, the maximum transmit power Pm and the inter-
ference power constraintQ play significant roles in determin-
ing the limiting distribution of the SNR as nt → ∞, and
thus, determining the asymptotic behavior of the secondary
cognitive radio system. As the system operational regime
shifts away from NDR, the limiting distribution transitions
from the Gumbel distribution, in the form of double expo-
nential function (18c), to the Fréchet distribution, in the
form of single exponential function (18b). In other words,
the dominance of the maximum transmit power determines
the tail behavior of the SNR distribution, where the Fréchet
distribution has a heavy tail and the Gumbel distribution has
an exponential tail. Since the performance of the transmit
antenna selection is determined by the tail behavior of the
SNR distribution [27], Proposition 3 is vital to reveal the
impact of the power constraints on the performance of the
cognitive radio system. In Fig. 2 and Fig. 3, we compare
the exact distributions (12) and the corresponding Gumbel
and Fréchet distributions with perfect and imperfect CSI,
respectively.

In the subsequent sections, we use Proposition 3 and
Proposition 4 to obtain the scaling laws for the average rate
and outage rate of the SU for the considered two scenarios,
i.e. IPLR and NDR.

IV. ASYMPTOTIC AVERAGE RATE
For the considered secondary system with TAS/MRC config-
uration, the instantaneous rate of the SU in nats/s/Hz can be

FIGURE 3. Exact and approximate distributions of the SU SNR when the
best transmit antenna is selected in IPLR (Fréchet), where SP = 25dB and
SQ = −5dB. The number of receive antennas nr = 2. The solid and dashed
curves depict the exact and approximated distributions with perfect CSI,
respectively. Markers ‘+’ and ‘o’, respectively, denote the exact and
approximated distributions with imperfect CSI, σ2

g = 0.9.

written as3

Rmax = max
1≤i≤nt

Ri, (29)

where Ri = log
(
1+ γ̂i

)
, i = 1, · · · , nt is the instantaneous

rate using the ith antenna. The average rate of SU can be
obtained by averaging over the SNR distribution as

C =
∫
∞

0
log (1+ γ )dFγmax (γ ), (30)

where the c.d.f. Fγmax (γ ) =
[
Fγ̂i (γ )

]nt is given in (12) and
Fγ̂i (γ ) is given in (10). To enable a tractable analysis for
the average rate, we apply the asymptotic SNR distribution
obtained in Section III. The obtained results represent the
asymptotic performance of the considered system when the
number of transmit antenna is large. However, numerical
results in Section VII show that they serve as good approx-
imations even for moderate number of transmit antennas.
In addition, the asymptotic analysis enables insight into the
rate scaling of the secondary user.

A. ASYMPTOTIC AVERAGE RATE IN IPLR
Replacing the limiting distribution in (23) into (30),
the asymptotic SU average rate for large nt can be obtained
as

CIPLR =

∫
∞

0
log(1+ x)de

−

(
x
bn

)−1

= bn

[∫
∞

0
log(1+ t)e−tbndt −

∫
∞

0
log(t)e−tbndt

]
= γ0 − ebnEi[−bn]+ log(bn), (31)

where bn is given in (26), γ0 = 0.5772 . . . is the Euler-
Mascheroni constant, Ei[w] = −

∫
∞

−w
e−t
t dt,∀w < 0 denotes

the exponential integral function [50, Eq. (8.211)], the second

3In this paper, we use Shannon capacity to approximate the rate.
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equality is obtained by applying substitution t = 1/x, and
the third equality is obtained by applying [50, Eq. (4.331-1)
and Eq. (4.337-2)]. Applying power series expansion for bn
in (26) as nt →∞, we obtain

bn =
(
ntnr −

nr + 1
2

)
µgSQ
ζ
+ O

(
1
nt

)
, (32)

where the notation f (x) = O(g(x)) is defined as
lim supx→∞ |f (x)/g(x)| < ∞. Since ezEi[−z] → 0 as z →
∞, the asymptotic, in nt , average rate CIPLR given in (31) can
be approximated as

C̃IPLR ≈ log (bn)+ γ0 ∝ log(ntnr ). (33)

Remark: This result indicates that the average rate scales
logarithmically with the product of nt and nr for large nt . For
fixed nr , the scaling law in terms of nt for the average rate
is log(nt ). However, this explicit and simple results cannot be
seen directly from [18, Eq. (12)].

In the next subsection, we consider another operational
scenario of the spectrum sharing system, where the maximum
power Pm of ST is comparable to the interference power
constraint Q/µh, i.e., operation in the NDR regime.

B. ASYMPTOTIC AVERAGE RATE IN NDR
Based on Proposition 4, the SNR distribution of the secondary
system in NDR lies on the MDA of Gumbel distribution. The
corresponding average rate can be obtained by applying the
limiting throughput theorem (LTD) from [46], which is listed
as follows.
Lemma 3 [46]: Let 0i denote the received SNR at the

secondary receiver when ith transmit antenna is used. Assume
that0i, i = 1, · · · ,N , are i.i.d. with a common distribution
F(γ ) and the supremum ω(F(γ ))→ ∞. The distribution of
throughput lies on the MDA of the Gumbel distribution if the
distribution of the SNR belongs to the MDA of the Gumbel
distribution.

Due to Lemma 3, we have limnt→∞ (Rmax − ãn) /b̃n
d
−→

3ξ (x) and 3ξ (x) is expressed in (20) with the following
normalizing coefficients obtained by (21) as

ãn = log
[
1+ F−1

γ̂i
(1− 1/nt)

]
,

b̃n = log
[
1+ F−1

γ̂ii
(1− 1/nte)

]
− ãn. (34)

Using [46, Lemma 2], the expectation of (Rmax − ãn) /b̃n
converges, and the average rate of the SU, C = E [Rmax], can
be approximated by integrating Rmax over (20) as

CNDR = ãn + b̃nγ0. (35)

The approximation is tight in the asymptotic regime nt →∞,
since the approximation error is induced from Proposition 4.
Observing the normalizing coefficients given in (34) for the
limiting throughput distribution and the ones in (21) for
the limiting SNR distribution (replacing N by nt ), we have
ãn = log (1+ an) and b̃n = log (1+ bn/(1+ an)). Based
on Proposition 4, it is observed that an scales logarithmically

with nt , and hence ãn scales as log log(nt ) and b̃n vanishes as
nt →∞. Therefore, the asymptotic average rate (35) in NDR
can be approximated as

C̃NDR ≈ ãn ∝ log log(nt ), (36)

which is in sharp contrast to the rate scaling law (33) obtained
for the IPLR.

V. ASYMPTOTIC OUTAGE RATE
In this section, we investigate the SU outage rate in IPLR
and NDR. Given a target rate r (nats/s/Hz), the SU rate
distribution after transmit antenna selection is defined as the
probability that the instantaneous rate Rmax is less than r :

Fout(r) = Pr {Rmax < r} , (37)

where Rmax is given by (29). The outage rate can be inter-
preted as the maximum rate, r , such that Fout ≤ ε, where
ε ∈ (0, 1) is the predefined outage threshold. Therefore,
the outage rate is expressed as

Cε = max{r : Fout(r) ≤ ε}. (38)

Obtaining the above exact outage rate is algebraically com-
plex. In order to have tractable analysis and gain insight into
the considered system, we obtain the asymptotic expressions
for the outage rate.

A. OUTAGE RATE IN IPLR
By using the limiting distribution of the SNR in IPLR, the out-
age rate of the SU is obtained in the following proposition.
Proposition 5: Given the outage probability threshold ε in

(38), in IPLR, the asymptotic outage rate of the SU with TAS
and MRC is expressed by

C IPLR
ε = log

[
1+ bn (log 1/ε)−1

]
, (39)

where bn is given in (26).
Proof: Using the limiting distribution (23), and

Proposition 3, we obtain the SU asymptotic outage probabil-
ity.

Fout(r) = Fγmax

(
er − 1

)
= e−

bn
er−1 , (40)

The proof is completed by inserting (40) into (38).
Inserting (32) into (39), the outage rate C IPLR

ε shows that
the SU outage rate scales as log (nt) for large nt in IPLR. The
capacity gap between the average rate CIPLR and C IPLR

ε is
calculated as

1IPLR
c = CIPLR − C IPLR

ε = γ0 + log log (1/ε)+1, (41)

where CIPLR is given in (31) and approximated in (33), and

1 = log
(
1+

log ε
bn − log ε

)
∝ 1/bn. (42)

As bn ∝ nt , it is obvious that 1 < 0 vanishes at a
rate n−1t . Therefore, given the outage threshold ε, the gap
between the average rate and the outage rate converges to
γ0 + log log (1/ε) as nt → ∞. Hence, γ0 + log log (1/ε)
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TABLE 1. Summary of the asymptotic laws of the outage rate.

represents the bound of the rate gap. For instance, given
ε = 10%, the rate gap between the outage rate and the
average rate is bounded approximately by 1.41125 nats/s/Hz.

B. OUTAGE RATE IN NDR
According to Lemma 3, the asymptotic distribution of Rmax
can be approximated as (20) with the normalizing coefficients
chosen as (34). The SU outage rate in NDR is given in the
following proposition.
Proposition 6: With TAS andMRC, the asymptotic outage

rate in NDR of the SU is given by

CNDR
ε = ãn − b̃n log log (1/ε) , (43)

where the normalizing coefficients ãn and b̃n are given in (34).
Proof: The proof of this proposition is straightforward

by substituting (20) into (38).
Next, we study the scaling behavior for the SU outage

rate in the NDR. From (43) and (35), we can see that the
SU outage rate CNDR

ε scales in the same manner as the SU
average rate CNDR. In addition, the capacity gap in NDR,
1NDR
c = CNDR − CNDR

ε , is given by

1NDR
c = b̃n

[
γ0 + log log (1/ε)

]
. (44)

where b̃n is given in (34), and vanishes as nt → ∞. Thus,
the rate gap between the average rate and the outage rate in
NDR diminishes as nt →∞.

We summarize the key results of the asymptotic laws of the
outage rate in Table 1.

VI. AVERAGE SYMBOL ERROR RATE
In this section we study the average symbol error rate (ASER)
for the considered system. Denote SERi as the symbol error
rate when the ith transmit antenna is selected, which is given
by

SERi =
α

2

[
1− erf

(√
βγ̂i

)]
, (45)

where the SNR γ̂i is distributed according to the CDF Fγ̂i (γ ).
A generic ASER expression for a wide range of modulation
and coding schemes was provided in [51] as

ASER = min
i

E [SERi] = E
[α
2

(
1− erf

(√
βγmax

))]
,

(46)

where α and β are modulation-related parameters, and γmax
denotes the maximal SNR max1≤i≤nt (γ̂i). As shown in [51],
for binary phase-shift keying, α = 1 and β = 1; for binary
frequency-shift keying with orthogonal signaling, α = 1

and β = 0.5; for M -ary pulse amplitude modulation,
α = 2(M−1)/M and β = 3/(M2

−1); and forM -ary phase-
shift keying, α = 2 and β = sin2(π/M ).

By applying the change of variables technique in (45),
the CDF of SERi is given by

FSERi (x) = 1− Fγ̂i

(
1
β

[
erf−1

(
1−

2x
α

)]2)
. (47)

Based on (46), the average symbol error rate after trans-
mit antenna selection requires the knowledge of the dis-
tribution of the minimal symbol error rate among {SERi},
i.e., min1≤i≤nt (SERi), and eventually the distribution of
γmax. To the best of our knowledge, it is problematic to
obtain the ASER (46) with general modulation and coding
schemes using the distribution function Fγmax (x) =

[
Fγ̂i (x)

]nt
and (47), where Fγ̂i (x) is given in (10). In the following,
we present the results achieved by applying EVT.

First, we derive the ASER in IPLR.
Proposition 7: The ASER for the SU of the considered

system in IPLR can be approximated as

ASERIPLR
=
α

2
e−2
√
βbn , (48)

where bn = µgSQ/
(
[nt/(nt − 1)]ζ/nr − 1

)
is given in (26).

Proof: By substituting (25) into (46), the symbol error
rate can be obtained as

llASERIPLR
=

α
2

∫
∞

0 erfc
(√
βx
)
de−

bn
x =

α
2 e
−2
√
βbn ,

where in the last step we apply [52, eq. 7.4.20].
This compact result cannot be obtained using
Fγmax (x) =

[
Fγ̂i (x)

]nt , where Fγ̂i (x) is given in (13). Then,
using the EVT, we prove in the following proposition that the
distribution of the SER (45) in NDR converges to the Weibull
distribution, which enables a simple approximation for the
ASER of the secondary system with TAS.
Proposition 8: As the number of transmit antenna nt

increases, the distribution of the SER after transmit antenna
selection in NDR converges in distribution to the Weibull
distribution, given by

FSERmin(x) = 1− exp

[
−

(
2x
αbn

)1/βµgSP
]

(49)

for 0 ≤ x ≤ α/2, and FSERmin(x) = 1 for x > α/2, where
the normalizing coefficients can be chosen as

bn = an − erf
(√
βF−1

γ̂i
(1− 1/nt)

)
. (50)

The ASER for the secondary user of the considered system
can be approximated as

ASER =
1
2
bn β α µgSP γ

(
β µgSP, b

−1/β µgSP
n

)
, (51)

where bn is given in (50), and γ (a, x) =
∫ x
0 e
−t ta−1d t is the

lower incomplete Gamma function [50, eq. 8.350-1].
Proof: The proof of Proposition 8 is in Appendix E.
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FIGURE 4. SU average rate versus nt with nr = 1.

FIGURE 5. SU average rate versus nt with nr = 5.

VII. SIMULATION RESULTS
This section presents the simulation results of the SU average
rate, the outage rate, and the average symbol error rate of
the considered system. The ST employs the transmit antenna
selection, while the SR employs the maximal ratio combining
technique. The transmission of the ST is constrained by the
peak interference constraint and the maximal transmit power
constraint shown in (4). The average channel gains are set
to 1. For each simulated curve, the considered performance
metric is averaged over 1 × 106 channel realizations. Under
imperfect CSI condition, the channel correlation coefficent
between the channel coefficient and the channel estimation is
chosen to be 0.9, i.e. σ 2

g = 0.9.
Fig. 4 and Fig. 5 depict the average rate of the SU as a

function of nt assuming 1 and 5 receive antennas, respec-
tively. The average rates are plotted for the IPLR and NDR
scenarios. We also plot log(nt ) and log log(nt ) to show the
corresponding scaling laws. We can see that even for the
case with less than 5 transmit antennas the asymptotic results
using EVT are quite accurate. We can also observe that
the SU average rate scales logarithmically in terms of nt
in IPLR. In NDR, the figures illustrate that the curves of
the SU average rate become more flat as predicted by the
scaling law in (36), i.e., the average rate scales as log(log(nt )).

FIGURE 6. SU outage rate versus nt with ε = 10% and nr = 1.

FIGURE 7. SU outage rate versus nt with ε = 10% and nr = 5.

In Fig. 5, the curves with marker � illustrate the average rate
for δ2g = 0.9. Compared to the curves of the perfect CSI
scenario, they have the same scaling behavior in NDR and
IPLR as nt grows to infinity. This confirms the analysis results
in previous sections that the SNR distributions for the perfect
and the imperfect scenarios are tail equivalent.

In Fig. 6 and in Fig. 7, we depict the SU outage rate
as a function of nt assuming 1 and 5 receive antennas,
respectively. The outage threshold ε is set to 10%. The EVT
approximations (39) in NDR and (43) in IPLR agree with
the simulation results. In addition, the outage rates in each
operational regime scale as the number of transmit antenna nt ,
following the same scaling law as the corresponding average
rate, i.e., in NDR Cε ∼ log log nt and in IPLR Cε ∼ log nt .
In Fig. 7, the curves with marker � show the outage rate for
δ2g = 0.9. Compared to the curves of the perfect CSI scenario,
they have the same scaling behavior in NDR and IPLR as nt
grows to infinity. This confirms the analysis results for SU
outage rate.

Fig. 8 shows the average rate and the outage rate of the SU
as a function of the ratio ρ = SP/SQ assuming one receive
antenna, where SP = Pm/σ 2 and SQ = Q/µhσ 2. We have
the following key observations: (a) the rates approach the
IPLR scenario as ρ increases; (b) given nt , the gap between
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FIGURE 8. SU average rate and outage rate versus ρ = SP/SQ with
ε = 10%, SQ = 0dB, and nr = 1.

FIGURE 9. Rate gap versus nt with nr = 1 and ε = 10%. In NDR SQ = 0dB,
and SP →∞ in IPLR.

the average rate and the corresponding outage rate first
increases (NDR regime) and then becomes constant (IPLR
regime) as ρ increases; (c) the values of nt impacts the
speed at which the rates transition from NDR to IPLR as
ρ increases; for instance, when nt = 20 the outage rate
almost saturates at ρ = 12, while for nt = 100 the outage
rate almost saturates at ρ = 20; (d) given nt , the outage
rate approaches to the IPLR scenario faster than the aver-
age rate does. These observations confirm that the asymp-
totic behaviors of the SU rate shift from the NDR regime,
governed by Gumbel distribution, to the IPLR regime, gov-
erned by the Fréchet distribution, as SP becomes dominant
over SQ.
The rate gap of the SU between the outage rate and

the average rate is depicted in Fig. 9. In addition, we plot the
rate ratio for the IPLR and the NDR, which is defined as the
ratio of the outage rate and the corresponding average rate.
We set SP → ∞ in IPLR, and SQ = 0dB in NDR. First,
the rate gap in IPLR is approaching to a constant value γ0 +
log log(1/ε) as indicated in (41). Second, the rate gap in NDR
is vanishing slowly as suggested by (44). This shows that
the average rate can be estimated by the outage rate, which
is, in practice, easier to obtain than the average rate in (30).

FIGURE 10. SU average symbol error rate versus nt . The number of
receive antennas nr = 1. The markers show the simulation results. The
values of Sp and SQ are in dB.

For instance, given ε = 10%, the rate gap between the outage
rate and the average rate is always bounded approximately by
1.41 nats/s/Hz. Moreover, the rate ratio curves confirm these
observations.

Fig. 10 shows the SU average symbol error rate for BPSK
and 4-PSK modulation schemes as a function of nt . For the
IPLR scenario, we assume that SQ = −5dB and SP = 20dB.
The results using EVT in IPLR and NDR are obtained from
Proposition 7 and Proposition 8, respectively. For each nt ,
the simulation results are obtained by averaging over 106

channel realizations. Obviously, the ASER decreases as nt
increases. The figure explicitly illustrates that the ASER
curves in IPLR have larger slops than the ones in NDR.
Moreover, it shows that when nt is small the interference
power constraint SQ has more influence on ASER than SP.
Assuming 4-PSK modulation, when nt < 50, the ASER for
SP = 20dB and SQ = −5dB has higher value than in the
case SP = 5dB and SQ = 0dB. However, when nt > 50,
the IPLR provides lower ASER than in NDR. Moreover,
the observations clearly illustrate that the ASER as a function
of nt decreases faster in IPLR than that in NDR, which has
been predicted in Section VI.

VIII. CONCLUSION
Applying Extreme Value Theory, we revealed a fundamental,
yet overlooked property of the SNR distribution of the sec-
ondary user in a spectrum-sharing system provided imperfect
CSI, where the limiting SNR distributions are governed either
by Fréchet or Gumbel distributions. In addition, we showed
that the SNR distributions for the perfect and the imperfect
scenarios are tail-equivalent. The obtained results enable a
compact, yet accurate approximation for the average rate,
the outage rate, and the average symbol error rate of the
SU for general modulation types. These results, which were
overlooked in literature, have been utilized to gain insights
into the behavior of the SU average rate, outage rate, and their
scaling characteristics in the considered spectrum-sharing
system.
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Particularly, the SU average rate and outage rate have
two scaling behaviors as the number of transmit antennas
nt increases: When the transmit power of the secondary
transmitter is mainly restricted by the maximal interference
constraint imposed by the primary receiver, i.e. the IPLR
regime, the rates of the secondary user scale as log(nt );
when such interference power constraint is comparable to
the maximal transmit power of the secondary transmitter, i.e.
the NDR regime, the rates scale as log(log(nt )), implying
rapidly diminishing gain on addingmore antennas.Moreover,
the observations of the rate gap between the outage rate
and the average rate allows us to estimate the average rate
from the corresponding easier-to-obtain outage rate.

APPENDIX A
DERIVATION OF PROPOSITION 1
Let Pĥ = Pr

(
|ĥi|2 ≤

SQ
SP

)
= 1 − e−SQ/SP . Recall that

SP = Pm/σ 2 and SQ = Q/µhσ 2.

Fγ̂i (x)

= Pr

(
min

{
SQ‖ĝi‖2F
|ĥi|2

,SP‖ĝi‖2F

}
≤ x

)

= 1− Pr

(
‖ĝi‖2F >

|ĥi|2 x
SQ

, ‖ĝi‖2F >
x
SP

)

= 1−
∫
∞

SQ
SP

Pr
(
‖ĝi‖2F >

xt
SQ

)
dF
|ĥi|2

(t)

−

∫ SQ
SP

0
Pr
(
‖ĝi‖2F >

x
SP

)
dF
|ĥi|2

(t)

=

∫
∞

SQ
SP

F
||ĝi||2F

(
xt
SQ

)
dF
|ĥi|2

(t)+ PĥF||ĝi||2F

(
x
SP

)

=

nr∑
m=1

Bnr−1m−1 (σ
2
g )
∫
∞

SQ
SP

1− 0
(
m, xt

µgSQ

)
0(m)

dF
|ĥi|2

(t)

︸ ︷︷ ︸
F (1)
γ̂i

(x)

+Pĥ
nr∑
m=1

Bnr−1m−1 (σ
2
g )

1−
0
(
m, x

SPµg

)
0(m)

 ,
where

F (1)
γ̂i

(x) =
∫
∞

SQ
SP

1− 0
(
m, xt

µgSQ

)
0(m)

dF
|ĥi|2

(t)

= 1−

1− 0
(
m, x

µgSP

)
0(m)

Pĥ

−

∫
∞

SQ
SP

F
|ĥi|2

(t)d

1− 0
(
m, xt

µgSQ

)
0(m)


︸ ︷︷ ︸

F (2)
γ̂i

(x)

with

F (2)
γ̂i

(x) =
∫
∞

SQ
SP

F
|ĥi|2

(t)d

1− 0
(
m, xt

µgSQ

)
0(m)


=

1
0(m)

[
0

(
m,

x
µgSP

)
−

(
x

µgSQ + x

)m
0

(
m,

x
µgSP

+
SQ
SP

)]
.

Hence, F
||ĝi||2F

(x) given in Proposition 1 is obtained.

APPENDIX B
DERIVATION OF PROPOSITION 2
The distribution functions Fγ̂i (x) and Fγi (x) are given in (10)
and (11), respectively. We define

Uk (x) ≡
1
0(k)

[
0

(
k,

x
µgSP

)
−

(
x

µgSQ + x

)k
0

(
k,

x
µgSP

+
SQ
SP

)]
,

where k is an integer and 0 ≤ Uk (x) ≤ 1. When k is
given, Uk (x) is a decreasing function of x. Therefore, we have
Fγ̂i (x) = 1−

∑nr
m=1 B

nr−1
m−1 (σ

2
g )Um(x) and Fγi (x) = 1−Unr (x).

Recall that 0(k + 1) = k0(k), 0(k, z) = 0(k)e−z
∑k−1

l=0
zl
l! ,

and 0(k+ 1, z) = k0(k, z)+ zke−z. We first prove in (52), as
shown at the top of the next page that Uk (x) is an increasing
function of k when other parameters are given.
We verify that

lim
x→ω(Fγi )

1− Fγ̂i (x)

1− Fγi (x)

= lim
x→∞

∑nr
m=1 B

nr−1
m−1 (σ

2
g )Um(x)

Unr (x)

= lim
x→∞

nr∑
m=1

Bnr−1m−1 (σ
2
g )

Um(x)
Unr (x)

≤ lim
x→∞

nr∑
m=1

Bnr−1m−1 (σ
2
g )

≤ (σ 2
g )
nr−1

This shows that there exists some 0 < ζ ≤ (σ 2
g )
nr−1.

Hence, according to Definition 1, Fγ̂i (x) and Fγi (x) are tail
equivalent. Consequently, Proposition 2 holds.

APPENDIX C
DERIVATION OF PROPOSITION 3
As SP → ∞ or SP � SQ, the c.d.f. is given in (14). Thus,
it is easy to verify that

lim
t→ω(Fγi )

[
1− Fγi (tx)
1− Fγi (t)

]
= lim

t→∞

1−
(

tx
tx+µgSQ

)nr
1−

(
t

t+µgSQ

)nr


=
nrµgSQ/ (tx)+O

(
1/t2

)
nrµgSQ/t +O

(
1/t2

)
= x−1,
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Uk+1(x) =
1

0(k + 1)

[
0

(
k + 1,

x
µgSP

)
−

(
x

µgSQ + x

)k+1
0

(
k + 1,

x
µgSP

+
SQ
SP

)]

=
1

0(k + 1)

[
k0
(
k,

x
µgSP

)
+

(
x

µgSP

)k
e
−

x
µgSP −

(
x

µgSQ + x

)k+1 ( x
µgSP

+
SQ
SP

)k
e
−

x
µgSP
−

SQ
SP

− k
(

x
µgSQ + x

)k+1
0

(
k,

x
µgSP

+
SQ
SP

)]

=
1

0(k + 1)

[
k0 (k)Uk (x)+ k

(
x

µgSQ + x

)k
0

(
k,

x
µgSP

+
SQ
SP

)
+

(
x

µgSP

)k
e
−

x
µgSP

−

(
x

µgSQ + x

)(
x

µgSP

)k
e
−

x
µgSP
−

SQ
SP − k

(
x

µgSQ + x

)k+1
0

(
k,

x
µgSP

+
SQ
SP

)]
.

1U = Uk+1(x)− Uk (x)

=
1

0(k + 1)

[
k
(

x
µgSQ + x

)k
0

(
k,

x
µgSP

+
SQ
SP

)
− k

(
x

µgSQ + x

)k+1
0

(
k,

x
µgSP

+
SQ
SP

)

+

(
x

µgSP

)k
e
−

x
µgSP −

(
x

µgSQ + x

)(
x

µgSP

)k
e
−

x
µgSP
−

SQ
SP

]
≥ 0. (52)

where O(tn) represents a term of order tn. Therefore,
according to Lemma 2 the distribution Fγi (x) lies on the
MDA of Fréchet distribution. Since that Fγ̂i (x) and Fγi (x)
are tail equivalent as shown in Proposition 2, the distri-
bution Fγ̂i lies on the MDA of the Fréchet distribution.
This suggests that we can work on an easy tail equiva-
lent distribution and compute the normalizing coefficients
for it.

NORMALIZING COEFFICIENTS FOR FRÉCHET
Given the c.d.f. in (14), the corresponding inverse c.d.f. reads

F−1γi (y) =
µgSQ

y−1/nr − 1
. (53)

As x → ω(F), Fγ̂i (x) and Fγi (x) are tail equivalent,
i.e., nt (1− Fγ̂i (bnx + an)) ∼ nt (1− Fγi (bnx + an))ζ

−1 such

that Fnt
γ̂i
(bnx + an) →

[
Fntγi (bnx + an)

]ζ−1
=

(
x

x+µgSQ

)nr/ζ
[44, Proposition 1.19]. Hence, given the c.d.f. in (13), the cor-
responding inverse c.d.f. can be approximately as

F−1
γ̂i

(y) =
µgSQ

y−ζ/nr − 1
. (54)

Then, using Proposition 3 and (24), the normalizing coef-
ficients (17) for the Fréchet distribution is obtained as

an = 0, bn =
µgSQ

[nt/(nt − 1)]ζ/nr − 1
.

Using series expansion to (26) in terms of nt , we can directly
see that bn ∝ nt as nt → ∞ given other parameters in (26).
This suggests that bn is unbounded in IPLR.

APPENDIX D
DERIVATION OF PROPOSITION 4
We first show that the distribution Fγi (x) lies on the MDA
of the Gumbel distribution, and then apply the property that
Fγ̂i (x) and Fγi (x) are tail equivalent.
The p.d.f. of γi is obtained as the derivative of Fγi (·):

fγi (x) =
e
−

xσ2
Pmµg xnr−1

0(nr )
A(x).

where

A(x) =
(

σ 2

Pmµg

)nr
−

(
σ 2

Pmµg

)
xe−

Q
Pmµh

x + Qµg
µhσ 2

+
nrQµg/(µhσ 2)(
x + Qµg

µhσ 2

)nr+10
(
nr ,

xσ 2

Pmµg
+

Q
Pmµh

)
. (55)

Then we have

f ′γi (x)

fγi (x)
= −

σ 2

Pmµg
+
nr − 1
x
+
A′(x)
A(x)

, (56)

and

lim
x→∞

A′(x)
A(x)

= 0. (57)

Thus,

lim
x→∞

fγi (x)
f ′γi (x)

= −
Pmµg
σ 2 . (58)

It is obvious that limx→∞ fγi (x) = 0 and limx→∞[
−f ′γi (x)

]
= 0. We need to show, after taking the derivative
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according to (19), that

lim
x→∞

[
(1− Fγi (x))f

′
γi
(x)

f 2γi (x)

]
= −1. (59)

Since Fγi (x) is the c.d.f. of γi, thus we have

lim
x→∞

[
Fγi (x)− 1

]
= 0. (60)

Therefore we obtain, according to L’Hospital’s rule,

lim
x→∞

[
1− Fγi (x)
fγi (x)

]
= lim

x→∞

[(
1− Fγi (x)

)′
f ′γi (x)

]

= lim
x→∞

[
fγi (x)
−f ′γi (x)

]
=
Pmµg
σ 2 . (61)

First, we assume Pm < ∞. Both of the limits
limx→∞

[
1−Fγi (x)
fγi (x)

]
and limx→∞

[
fγi (x)
−f ′γi (x)

]
are finite. There-

fore, we have

lim
x→∞

[
(1− Fγi (x))f

′
γi
(x)

f 2γi (x)

]

= lim
x→∞

(
1− Fγi (x)
fγi (x)

)
lim
x→∞

(
f ′γi (x)

fγi (x)

)
= −1, (62)

which indicates that in NDR Fγi (x) is a von Mises function
such that it belongs to the MDA of the Gumbel distribu-
tion [49]. As a consequence, the distribution Fγ̂i also lies on
the MDA of the Gumbel distribution since the two distribu-
tions are tail equivalent.

NORMALIZING COEFFICIENTS FOR GUMBEL
In NDR, we apply tail equivalence of distribution function to
obtain the normalizing coefficients, which provide insights
into the scaling laws.
Lemma 4: [53, Proposition 1]. Let F be a common distri-

bution function of i.i.d. random variables Xi, i = 1, · · · ,N ,
which lies on the MDA of Gumbel distribution. Suppose that
there exist α > 0, β ∈ R, c > 0, and d > 0 such that

lim
x→∞

1− F(x)

αxβe−cxd
= 1.

Then, the normalizing coefficients in (17) can be chosen as

an = (log(N )/c)
1
d

+
(β/d)

[
log(log(N ))− log(c)

]
+ log(α)

(log(N )/c)1−
1
d d c

,

bn =
(log(N )/c)

1
d−1

d c
. (63)

Proposition 9: In NDR, the asymptotic normalizing coef-
ficients, using the tail equivalence with the common distribu-
tion given in (11), can be chosen as

an = µgSP
[
log(nt )+ (nr − 1) log(log(nt ))

− log0(nr )+ log(ζ )+ log
(
1− e−SQ/SP

)]
,

bn = µgSP,

where, as defined in previous section, SP = Pm/σ 2, and
SQ = Q/µhσ 2.

Proof:

lim
x→∞

1− Fγ̂i (x)

αxβe−cxd

= lim
x→∞

1− Fγ̂i (x)

1− Fγi (x)
1− Fγi (x)

αxβe−cxd

= ζ

1
0(nr )

(
1− e−

SQ
SP

) (
µgSP

)1−nr xnr−1e− x
µgSP

αxβe−cxd
.

Applying tail equivalence, we obtain

α =
ζ

0(nr )

(
1− e−

SQ
SP

) (
µgSP

)1−nr , β = nr − 1,

c =
(
µgSP

)−1
, d = 1, (64)

Then by substituting (64) into (63) and replacing N by nt ,
we obtain (28).

Remark: As SQ →∞, the considered model is equivalent
to the point-to-point TAS/MRC model investigated in [27],
and (28) is identical to the results in [27, Lemma 2].

APPENDIX E
DERIVATION OF PROPOSITION 8
We introduce a lemma on the MDA of the Weibull distribu-
tion.
Lemma 5: [49, Theorem 1.1.13] Let x∗ denote the right

end of the random variable X , and FX (t) be its distribution
function. Suppose that x∗ is finite, and the first derivative of
the distribution F ′X (t) exists for X < x∗ < ∞. We say that
FX (t) belongs to the MDA of the Weibull distribution, if

lim
t→x∗

(x∗ − t)F ′X (t)
1− FX (t)

= −ξ−1, ξ < 0,

where ξ is given in (18).
Let Yi = erf

(√
βγ̂i

)
, ∀i = 1, · · · , nt which are random

variables with common distribution function FY (y). The c.d.f.
FY (y), 0 < y < 1, can be obtained as

FY (y) = Pr {Y ≤ y} = Pr
{
γ̂i ≤

1
β

[
erf−1(y)

]2}
= Fγ̂i

(
1
β

[
erf−1(y)

]2)
,

and then

F−1Y (z) = erf
(√

βFγ̂i
−1(z)

)
. (65)

Let H (y) denote
[
erf−1(y)

]2
/β for simplicity, and hence

H (y)→∞ as y→ 1. Then we have

H ′(y) =
dH (y)
d y

=

√
πH (y)
β

eβH (y).
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Next we evaluate limy→y∗ (y∗ − y) fY (y)/(1 − FY (y)), where
y∗ denotes the upper end, i.e., y∗ = 1.

lim
y→1

(1− y) fY (y)
1− FY (y)

= lim
y→1

(1− y) fγ̂i (H (y))H ′(y)

1− Fγ̂i (H (y))

= lim
y→1

[
1− erf(

√
βH (y))

]
fγ̂i (H (y))

1− Fγ̂i (H (y))

√
πH (y)
β

eβH (y)

= lim
t→∞

fγ̂i (t)

1− Fγ̂i (t)︸ ︷︷ ︸
C1

√
π t
β
eβt

[
1− erf(

√
βt)
]

︸ ︷︷ ︸
C2

,

where we replace H (y) by t in the last step, and

lim
t→∞

C1 = lim
t→∞

fγ̂i (t)

fγi (t)
fγi (t)

1− Fγi (t)
1− Fγi (t)
1− Fγ̂i (t)

= lim
t→∞

fγi (t)
1− Fγi (t)

= 1/µgSP.

The last step, we have applied (61) and that Fγ̂i (x) and
Fγi (x) are tail equivalent. Hence, C1 has finite limit, i.e.
limt→∞ C1 = 1/µgSP.
Using the identity [52, 7.1.23]

1− erf(x) =
e−x

2

x
√
π

(
1−

1
2x2
− · · ·

)
(66)

for C2 yields

C2 =
1
β

(
1−

1
2βt
− · · ·

)
.

It follows that

lim
t→∞

C2 =
1
β
<∞.

Consequently, we obtain

lim
y→1

(1− y) fY (y)
1− FY (y)

=

(
lim
t→∞

C1

) (
lim
t→∞

C2

)
=

1
βµgSP

.

Following Lemma 5, we have that FY (y) lies in the MDA
of the Weibull distribution. In consequence, according to the
Fisher-Tippet-Gnedenko theorem given in (18), the limiting
distribution of Znt = max(Yi, · · · ,Ynt ) can be written as

FZnt (z) = exp

[
−

(
an − z
bn

)1/βµgSP
]

(67)

with the possible normalizing coefficients chosen as

an = 1 and bn = an − F
−1
Y

(
1−

1
nt

)
.

Note that error function erf(x),∀x ≥ 0, is invertible and non-
decreasing, and hence from (65) bn reads

bn = 1− F−1Y

(
1−

1
nt

)
= 1− erf

(√
βFγ̂i

−1
(
1−

1
nt

))
.

Recall that SERmin =
[
1− erf

(√
βγmax

)]
α/2 defined in

Section VI. It follows that SERmin =
(
1− Znt

)
α/2. The

distribution of SERmin can be deduced as follows:

FSERmin (x) = 1− FZnt (1− 2x/α)

= 1− exp

[
−

(
2x
αbn

)1/βµgSP
]

(68)

for 0 ≤ x ≤ α/2, and FSERmin (x) = 1 for x > α/2.
Substituting (67) into (46) yields the ASER as follows

ASER =
∫ α/2

0

[
1− FSERmin(x)

]
d x

=

∫ α/2

0
exp

[
−

(
2x
αbn

)1/βµgSP
]
d x

=
1
2
bn β α µgSP γ

(
β µgSP, b

−1/β µgSP
n

)
,

where in the last step we apply [50, eq. 3.381-8].
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