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Neurally Controlled Graphic Equalizer
Vesa Välimäki , Fellow, IEEE, and Jussi Rämö

Abstract—This paper describes a neural network based method
to simplify the design of a graphic equalizer without sacrificing
the accuracy of approximation. The key idea is to train a neural
network to predict the mapping from target gains to the optimized
band filter gains at specified center frequencies. The prediction is
implemented with a feedforward neural network having a hidden
layer with 20 neurons in the case of the ten-octave graphic equalizer.
The band filter coefficients can then be quickly and easily computed
using closed-form formulas. This work turns, for the first time, the
accurate graphic equalization design into a feedforward calcula-
tion without matrix inversion or iterations. The filter gain control
using the neural network reduces the computing time by 99.6%
in comparison to the least-squares design method it is imitating
and contributes an approximation error of less than 0.1 dB. The
resulting neurally controlled graphic equalizer will be highly useful
in various audio and music processing applications, which require
time-varying equalization.

Index Terms—Audio systems, equalizers, feedforward neural
networks, IIR filters, supervised learning.

I. INTRODUCTION

GRAPHIC equalization is a common technique in audio
and acoustics [1]. Accurate design of a graphic equalizer

is more challenging than most users realize [2], [3]. The name
of the method suggests that a filter simply produces a magnitude
response identical to that controlled by the user, who adjusts the
target gains, also called the command gains, at prescribed center
frequencies. However, a sufficiently accurate approximation
using a single biquadratic IIR (infinite impulse response) filter
per command band was only introduced in 2017 [4], [5].

In the analog era, graphic equalizers were constructed using
the parallel structure in which all subfilters receive the same
input signal [6]. The subfilters were low-order bandpass or
resonator filters, but they could not independently adjust the
gain at their own band due to interaction between the filters. First
digital graphic equalizers were a straightforward discrete-time
realization of this basic idea [7]. While the early equalizers
remain as powerful tools for modifying and enhancing music
and speech signals interactively, in a strict sense their accuracy
of approximation is insufficient for high-quality audio.

A second-order parametric equalizer is often used as the band
filter in a cascade graphic equalizer [8]–[11]. The parametric
equalizing filter is not a bandpass filter, but rather produces a
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notch or a peak at its pole frequency and approximately unity
gain at other frequencies, and is thus well suited to the design of a
cascade graphic equalizer in which the total magnitude response
is a product of the band-filter responses. However, the interaction
problem still remains, and a simplistic implementation in which
the gain of each parametric equalizer controlling its own band
is set equal to the target gain at that band, is doomed to be
very inaccurate [1], [3]. Rämö et al. show design examples
in which the interaction between neighboring filters causes
approximation errors as large as 10 dB in selected cases [2].

A key idea to increase the accuracy in graphic equalizer design
is to allow the filter gains to be different from the target gains
[1], [3], [4], [12]. The band filter gains must be optimized so that
the overall magnitude response of the cascade system matches
the target gains at the center frequencies sufficiently accurately,
often to within±1 dB [5]. In some cases, other frequency points,
such as the mid points between each command frequency, are
also included in the error calculation [4], [5]. Many approaches
for optimizing the subfilters of a cascade [4], [13]–[15] or a
parallel graphic equalizer [2], [16]–[18] have been presented. In
general, the optimization of a graphic equalizer requires matrix
inversion operations or an iteration to be executed every time
one of the target gains is varied. This limits the use of accurate
graphic equalizers, as the computing power required to run the
optimization and filtering simultaneously can be too large for
time-varying applications, such as filtering based on approx-
imating human head-related transfer functions (HRTF), which
Abel and Berners tackled in [12], or unmasking of music signals,
when audio is listened to in a noisy environment [19], [20].

This paper proposes a novel approach to simplify the design
of a graphic equalizer. We train a multilayer perceptron [21] to
predict the band filter gains from target gains, which are set by
the user. The design method proposed recently by Välimäki and
Liski [4] opened the door to this approach, as the coefficients
of the second-order band filters can be computed in closed-
form once the filter gains have been obtained. A least-squares
optimization method with one iteration step proposed in [4]
is used for creating the necessary training data, i.e., a large
number of target gain to filter gain vector pairs. Finally, after
the training, the optimization method can be replaced with the
multilayer perceptron working in its prediction mode, which
leads to a neurally controlled graphic equalizer (NGEQ). The
main contribution of this work is to show that the perceptron
can learn to be sufficiently accurate for use in high-quality audio
graphic equalizers, when predicting filter gains in decibel units.
This approach avoids the frequency response evaluation in the
training.

The rest of this paper is organized as follows. Section II
explains the graphic equalizer design method used in this work

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. (a) The cascade graphic equalizer structure with the filter gain controls,
Gm, and (b) the biquad IIR filter structure of each band filter Hm(z).

to create the training data for the neural network. Section III
discusses how supervised learning can be used to imitate the
design. Section IV shows experimental results to validate the
proposed design method by comparing them with the original
design. Section V concludes the paper.

II. ACCURATE GRAPHIC EQUALIZER DESIGN

The filter structure used in the accurate cascade graphic
equalizer (ACGE) [4] is shown in Fig. 1(a). Each band filter
Hm(z), where m = 1, 2, . . . ,M is the filter index, receives as
its input the output of the previous band filter, and finally, the
last band filter HM (z) produces the equalized output signal.
The band filters are biquad filters similar to those presented in
Fig. 1(b). The next subsection explains how the filter parameters
are determined, and Section II-B tackles the optimization of the
filter gains Gm.

A. Parametric Equalizer Filter Design

The band filter in the ACGE design by Välimäki and Liski
[4] is based on the modified Orfanidis parametric biquadratic
equalizing filter [22]. One such filter is used per band, so that
M = 10 such filters are needed for a standard 10-octave graphic
equalizer. Each modified Orfanidis band filter has its own linear
gain Gm and center frequency fc,m. First, it is necessary to
select the center frequencies fc,m, which are here set to the rec-
ommended octave center frequencies [23]: 31.25 Hz, 62.50 Hz,
125.0 Hz, 250.0 Hz, 500.0 Hz, 1000 Hz, 2000 Hz, 4000 Hz,
8000 Hz, and 16 000 Hz.

A special feature of the modified Orfanidis filter is that, instead
of using a standard definition of half-power (−3 dB) bandwidth,
it has both a user-defined resonance bandwidth B and a user-
defined gain at the bandwidth edges [4], [22]. Välimäki and Liski
chose to define the dB gain at the bandwidth edges as

gB,m = c gm, (2)

where gB,m = 20 log(GB,m), gm = 20 log(Gm), and0 < c < 1
is a free parameter defining the proportion of gain at bandwidth
edges [4].

The transfer function of this IIR filter can be written as:

Hm(z) = b0,m
1 + b1,mz−1 + b2,mz−2

1 + a1,mz−1 + a2,mz−2
, (3)

where the scaling coefficient is defined as

b0,m =
1 +Gmβm

1 + βm
, (4)

where βm is defined as

βm =

√
|G2

B,m − 1|
|G2

m −G2
B,m| tan

(
Bm

2

)
, when Gm �= 1, (5)

or as

βm = tan

(
Bm

2

)
, when Gm = 1, (6)

the numerator coefficients are

b1,m = −2
cos (ωc,m)

1 +Gmβm
, b2,m =

1−Gmβm

1 +Gmβm
, (7)

B0 =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0 0.30 0.081 0.021 0.0052 0.0013 3.2× 10−4 7.8× 10−5 1.7× 10−5 1.9× 10−6

0.30 1.0 0.30 0.081 0.021 0.0052 0.0013 3.1× 10−4 6.8× 10−5 7.5× 10−6

0.081 0.30 1.0 0.30 0.081 0.021 0.0052 0.0013 2.7× 10−4 3.0× 10−5

0.021 0.081 0.30 1.0 0.30 0.081 0.021 0.0050 0.0011 1.2× 10−4

0.0053 0.021 0.081 0.30 1.0 0.30 0.080 0.020 0.0043 4.8× 10−4

0.0013 0.0053 0.021 0.081 0.30 1.0 0.30 0.078 0.017 0.0019

3.4× 10−4 0.0014 0.0054 0.022 0.083 0.31 1.0 0.30 0.071 0.0081

8.2× 10−5 3.3× 10−4 0.0013 0.0052 0.021 0.08 0.30 1.0 0.27 0.033

2.0× 10−5 7.9× 10−5 3.2× 10−4 0.0013 0.0050 0.020 0.078 0.29 1.0 0.16

4.6× 10−6 1.9× 10−5 7.4× 10−5 3.0× 10−4 0.0012 0.0047 0.019 0.072 0.26 1.0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)
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and the denominator coefficients are

a1,m = −2
cos (ωc,m)

1 + βm
, a2,m =

1− βm

1 + βm
, (8)

where ωc,m = 2πfc,m/fs is the normalized center frequency in
radians. The sampling rate is fs = 44100 Hz.

The gain factorG0 in front of the graphic equalizer in Fig. 1(a)
is the product of the scaling coefficients of the band filters:

G0 =

M∏
m=1

b0,m. (9)

This way the multiplier related to the scaling factor b0,m can be
removed from each band filter section, as can be seen in Fig. 1(b),
which saves M − 1 multiplications in total [24].

The filter bandwidth Bm is defined for each filter as the
frequency difference between the neighboring bands, because
this allows accurate control of the interaction between the nearest
bands. In practice, then, the bandwidth of each band filter is
defined as

Bm = 1.5ωc,m. (10)

Furthermore, the free design parameter in (2) has been set to c =
0.30. These choices have been found to lead to an accurate design
[4]. In practice, this means that 30% of the dB-gain of each
parametric equalizer leaks to its neighboring center frequencies,
as they are defined as the band edges in (10).

However, at high frequencies the magnitude responses of the
band filters are asymmetric. This is caused by frequency warping
close to the Nyquist limit, and has been reported in previous
papers on graphic equalizer design [4], [5]. For this reason, the
bandwidth of the final three filters has been set manually to
match the center frequency of their lower neighboring filter only.
This has led to the following corrections:B8 = 1.395ωc,8,B9 =
1.170ωc,9, and B10 = 0.760ωc,10.

B. Filter Gain Optimization

The filter gains of the cascade graphic equalizer are optimized
with the help of an interaction matrix [4]. The idea is to eval-
uate the magnitude leakage of each equalizer filter at desired
frequency points throughout the frequency range, e.g., at the
center frequencies of the graphic equalizer. An initial interaction
matrix B0 can be determined using a predefined prototype gain
vector, which has been selected to have all commands set at a
fairly large value of 17 dB [4]. In the case of the octave-equalizer
design, each row of the interaction matrix will then be set equal
to the normalized magnitude response of themth band filter at the
10 prescribed center frequencies. The normalization is achieved
by converting the magnitude response values to decibels and
dividing by the prototype gain.

Equation (1) shown at the bottom of the previous page, shows
the initial interaction matrix, analyzed at the center frequencies
fc,m of the octave equalizer described in Section II-A, with all
target gains set to 17 dB. As can be seen, the diagonal values
are all 1.0 because of the normalization, which divides each
magnitude-response value at the peak by the filter gain, which
is the same value. In Section II-A, the parametric equalizing
filters were designed so that the gains at neighbouring center

Fig. 2. Two extreme examples of target gains vs. filter gains, where the round
markers (◦) show the user-set target gains and the square markers (�) are
the corresponding optimized filter gains: (upper) all-up at 12 dB and (lower)
an extreme zigzag setting. The thin black lines correspond to the individual
equalizing filters designed with the optimized filter gains. The thick black line
is the magnitude response of the graphic equalizer with these filter gains.

frequencies are 0.3 times the peak gain in dB, which can also
be seen in (1): the two neighboring values on each side of the
diagonal values are 0.30, except on the last three rows, which are
different because of asymmetry. Moreover, it is evident that the
leakage effect gets smaller and smaller, when the distance from
the center frequency of the filter increases to the left or right in
(1), as can be expected.

The final filter optimization method in ACGE uses an interac-
tion matrix B of size (2M − 1)×M , where M is the number
of band filters and 2M − 1 is the number of design frequencies
at which the magnitude response is evaluated, which includes
the center frequencies plus their midpoints [4]. The intermediate
frequency points are obtained as a geometric mean of each pair
of octave frequencies: 44.19 Hz, 88.39 Hz, 176.8 Hz, 353.6 Hz,
707.1 Hz, 1414 Hz, 2828 Hz, 5657 Hz, and 11 314 Hz. In the
end, matrix B has nine additional columns added in between the
center-frequency columns shown in (1). This makes the design
more accurate, especially between the center frequencies [4].

Furthermore, there is one round of iteration, which uses the
initial optimized filter gains to calculate another interaction ma-
trix that is then used for further optimization [4]. This iteration
round helps to restrict the approximation error in the magnitude
response to be less than ±1 dB, which was set to be the goal
during the design of ACGE [4].

Fig. 2 shows two example cases of the optimized filter gains,
where the round markers (◦) depict the user-set target gains, i.e.,
the sliders of a graphic equalizer, and the square markers (�)
show the ACGE optimized filter gains. Furthermore, the thin
lines show the magnitude responses of the individual equalizer
filters, whose peak gains are the optimized filter gain values,
while the thick black line shows the magnitude response of the
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Fig. 3. Structure of individual neurons: (left) a hidden layer unit, which
contains a nonlinear sigmoid activation function, and (right) a linear output
layer unit, which produces the predicted filter gains.

whole ACGE, which ideally should go through the user-set gain
values (◦).

The two cases in Fig. 2 illustrate two different target gain con-
figurations, which are known to be hard for graphic equalizers
[5]. As can be seen, the optimized values (�) clearly differ from
the user-set target gains (◦), which highlights the importance
of the filter gain optimization. In the top figure all target gains
are set to 12 dB. This would create a large overshoot in the total
magnitude response without the filter gain optimization that sets
all filter gains to be significantly lower than 12 dB, so that their
joint effect is correct. An example of such gain buildup, which
is at most about 5 dB without filter gain optimization, can be
seen in a recent review article (see Fig. 8 in [1]).

The bottom subfigure in Fig. 2 shows a zigzag gain setting in
which the target gains are alternating between ±12 dB, which in
turn would not reach the ±12 dB command points without the
filter optimization. It can be seen that the optimized filter gains
are much larger than the user-set target gains, while the total
magnitude response of the equalizer (thick line) is accurate.

III. TRAINING A FEEDFORWARD NEURAL NETWORK TO

CONTROL THE FILTER GAINS

This work trains a neural network to calculate the filter gains of
a graphic equalizer within the cascaded filter structure described
in Section II-A, without the need of the heavy, iterative opti-
mization algorithm described in Section II-B. This is achieved
by creating a large set of training data using the ACGE design
(Section II) to calculate input-output gain pairs in decibels, see
round (◦) and square (�) markers in Fig. 2. Training a neural
network to predict a small number of filter gain parameters with
high accuracy is much easier than building a learning system to
optimize five times as many IIR filter coefficients to minimize the
magnitude-response error using the backpropagation algorithm!
In fact, when only the filter gains are learned, the concept of
frequency response (and, thus, the Fourier transform) does not
have to be included in the neural network or its training algorithm
at all.

A. Network Structure

The structure of the network is 10–K–10, i.e., an input layer
consisting of 10 input gains, one hidden layer consisting of K
neurons, and an output layer with 10 neurons giving the estimates
for the 10 optimized filter gains. Fig. 3 illustrates the individual

TABLE I
INPUT GAINS FOR THE SEVEN SPECIAL/EXTREME CASES IN THE TRAINING

DATA. THE +12-DB GAINS HAVE BEEN HIGHLIGHTED FOR CLARITY

neurons of the hidden layer and output layer in detail. The
leftmost neuron depicts the kth neuron of the hidden layer, where
g1, g2, . . . , g10 are the input gains, w1,1,k, w1,2,k, . . . , w1,10,k

are the weights of layer 1, θ1,k is the bias value for the kth

neuron in layer 1, σ is the sigmoid activation function, and ok is
the output of the neuron. The output of a hidden layer neuron is
calculated as

ok = σ

(
10∑

m=1

w1,m,kgm + θ1,k

)
, (11)

where the sigmoid activation function σ is implemented with
Matlab’s tansig function, which is equivalent to the hyper-
bolic tangent function tanh(x) = 2/(1 + e−2x)− 1.

The neuron on the right-hand side in Fig. 3 details the mth

neuron of the output layer. It takes the outputs o1, o2, . . . , oK
from each of the hidden layer nodes as its inputs, weights them
withw2,1,m, w2,2,m, . . . , w2,K,m, and adds them to the bias term
θ2,m. The output go,m of the neural network is calculated as

go,m =

K∑
k=1

w2,k,mok + θ2,m, (12)

which is the optimized filter gain corresponding to the mth band
filter.

B. Training Data

The training data consists of input-output gain pairs, generated
using the accurate graphic equalizer design. The input-output
gain pairs were generated randomly. In addition to the random
data, seven special cases, which are known to be difficult for
graphic equalization (listed in Table I), were included in the
training data.

The input gains of extreme cases 1 and 3 from Table I are
visualized in Fig. 2, where the round markers represent the input
gains and the square markers represent the optimized output
gains. These examples show that the ACGE method can achieve
a good compromise between flatness and selectivity, as it can
approximate both a constant high gain setting as well as an
extremely fluctuating one, as shown in the upper and lower plots
of Fig. 2, respectively. It is also remarkable that in the constant
gain case, the filter gains are generally smaller than the target
gains while in the zigzag case, the filter gains are generally larger
than the targets.

In Matlab, the inputs and outputs of the neural network
are scaled in the training phase to have values between −1
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and 1. Matlab does this automatically by using a function called
mapminmax, which scales the data as

g′m = (ymax − ymin)
gm − xmin,m

xmax,m − xmin,m
+ ymin, (13)

go,m = (tmax,m − tmin,m)
g′o,m − ymin

ymax − ymin
+ tmin,m, (14)

where ymax = 1, ymin = −1, xmin,m, and xmax,m are the mini-
mum and maximum value of the training data set for the mth

input gain, tmin,m and tmax,m are the minimum and maximum
value of the training data set for the mth output gain, and g′m and
g′o,m are the scaled input and output gains.

C. Network Training

Before training the neural network, it was decided that the
predition error of the network, when compared to ACGE at the
command point frequencies, should be less than ±0.1 dB. This
is due to the fact that the reported maximum error of ACGE is
approximately ±0.9 dB [4], [5], and the goal was to create a
neural graphic equalizer that has an accuracy within ±1.0 dB to
the user-set target gains.

The network was trained using Matlab’s fitnet function.
The selected training algorithm was the Bayesian regularization
backpropagation [25] (trainbr), which uses the Levenberg-
Marquardt (LM) optimization [26, Ch. 12] to update the weight
and bias values. The Bayesian regularization ensures that the re-
sulting network has good generalization capabilities by limiting
the sum of squares of the network weights [25], while the LM
algorithm provides a desirable compromise between speed and
guaranteed convergence of steepest descent [26].

The size of the hidden layer K, as well as the amount of
training data needed to successfully train the network was de-
termined by varying the amounts of data and neurons and by
training many neural networks with these different parameter
settings. The training data set was divided into a training set
(70% of the data) and a test set (30%). The training set was
used for updating the network weights and biases, while the
test set was not used during training. Furthermore, there was no
need for a validation data set, which Matlab typically uses with
other training algorithms to monitor overfitting of the data during
training, since the Bayesian regularization avoids overfitting and
improves the model’s generalization by constraining the sum of
squares of the network weights [25].

Fig. 4 shows the network training performance results with
different sizes of training data set for two example network sizes
having K = 19 (top) and K = 20 (bottom) nodes in the hidden
layer. The X axis shows the size of the training data set while
the Y axis shows the mean squared error (MSE) for the training
data and the test data. Both cases, K = 19 and K = 20, show
good results with small error, when training data set size is 600
or larger.

When using Bayesian regularization, it is desired that the
training is continued until the neural network converges. To
avoid early stopping of the training, which is a known technique
to avoid overfitting when not using regularisation, the stopping
conditions for the training were set so that the training would
stop when the maximum Levenberg-Marquardt μ parameter

Fig. 4. Remaining MSE as a function of training data set size as a result of
training neural networks of two example sizes having (upper) 19 and (lower) 20
hidden layer units. The MSE is generally smaller using the training data set, so
the actual validation must be based on the test data.

would reach its default maximum value of 1010, as this is
considered to be a good indication that the training algorithm
has converged [27]. The adaptive parameter μ is what makes
the LM training algorithm so useful. When μ is increased it
approaches the steepest descent algorithm with a small step
size, and when μ = 0 the algorithm becomes the Gauss-Newton
method [26]. The Gauss-Newton method is more accurate and
faster near an error minimum, so the goal is to move towards
the Gauss-Newton as fast as possible. Thus, the LM algorithm
starts with a small value of μ = 0.005. Then, μ is decreased
after each successful step by dividing it by ν = 10, so that the
training algorithm would move closer to the Gauss-Newton. Fur-
thermore, when the performance function is increased after an
unsuccessful step,μ is multiplied by ν. This way the LM training
method provides a desirable compromise between the speed of
the Gauss-Newton method and the guaranteed convergence of
steepest descent. Moreover, after each iteration, the performance
function is always decreased.

The maximum number of epochs was set to 10 000 and the
MSE performance goal was set to 10−5, which were sufficiently
large and small enough, respectively, to allow the training al-
gorithm to converge properly. During the training of different
prototype NGEQ neural networks, the training never stopped
due to reaching the maximum number of epochs, nor did the
networks achieve to have as small MSE as 10−5.

The maximum of the absolute magnitude-response errors
between the ACGE and NGEQ methods at the octave center
frequencies was calculated. This was found to be a sufficient
way for testing, since both equalizers are implemented in the
same way, which means that if the error is small at the target
gain positions, it is small throughout the whole frequency range.
This time, 10 000 random input–output gain pairs were used as
validation data. Fig. 5 shows the maximum error as a function
of training data set size. The square markers show the errors
when K = 15, triangular markers when K = 19, the crosses
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Fig. 5. Maximum error in the EQ magnitude response as a function of the
amount of training data, calculated after the training by using a separate, large
validation data set of 10 000 random gain settings. The target of 0.1 dB cannot
be reached using K = 19 hidden units (or less), but with K = 20 it is achieved
when at least 600 data sets are used.

when K = 20, and, finally, the round markers show the errors
when K = 25. The target error of ±0.1 dB, set in the beginning
of Section III-C, is not met when K = 19, as demonstrated in
Fig. 5, since the maximum error remains larger at all tested data
sizes. However, when K = 20, the error falls below 0.1 dB,
when the training data set size is larger than 500 input-output
pairs. Many other hidden layer sizes K were also tested, but
the target error was not reached with a network having less than
K = 20 hidden layer units, at least, not with moderate training
data set sizes. For example, when K = 15 (square markers), the
error remains above 0.5 dB. Furthermore, whenK = 25, see the
gray line with round markers in Fig. 5, the error does not get any
smaller than that of the K = 20 case.

D. Resulting Network

Based on the training of the neural network, described in the
previous section, the smallest network structure fulfilling the
requirements was chosen: It has 10 input nodes, 20 neurons
in a single hidden layer, and 10 output nodes. The selected
neural network structure is illustrated in Fig. 6, including all
the connections of the system. All in all, the neural net has
430 parameters, 200 weights per layer plus 20 bias terms in
the hidden layer and 10 in the output layer.

To summarize, the inputs to the net are the user-set target
gains in decibels g1, g2, . . . , g10, and the outputs are the opti-
mized filter gains in decibels go,1, go,2, . . . , go,10. In between
the input and output layers, there is one hidden layer with 20
neurons, which implements a nonlinear multi-input multi-output
mapping, as illustrated in Figs. 3 and 6.

E. Prediction Mode: Filter Gain Control

The NGEQ filter gain control can be calculated in matrix form
for a set of input gains g as follows:

g′ = 2
g − xmin

xmax − xmin
− 1, (15)

o = tanh(W1g
′ + θ1), (16)

g′
o = W2o+ θ2, (17)

go = (tmax − tmin)
g′
o + 1

2
+ tmin, (18)

Fig. 6. Neural network structure used in this work, with one hidden layer. The
10 input nodes correspond to the user-defined target gains, and the 10 output
nodes correspond the optimized filter gains, both in decibels.

where W1 is a 20× 10 matrix containing the weights w1,m,k,
W2 is a 10× 20 matrix containing the weights w2,k,m, and

xmin = (xmin,1, xmin,2, xmin,3, . . . , xmin,10)
�, in dB,

xmax = (xmax,1, xmax,2, xmax,3, . . . , xmax,10)
�, in dB,

g = (g1, g2, g3 . . . , g10)
�, in dB,

g′ = (g′1, g
′
2, g

′
3 . . . , g

′
10)

�, ∈ [−1, 1],

θ1 = (θ1,1, θ1,2, θ1,3, . . . , θ1,20)
�,

o = (o1, o2, o3, . . . , o20)
�,

θ2 = (θ2,1, θ2,2, θ2,3, . . . , θ2,10)
�,

g′
o = (g′o,1, g

′
o,2, g

′
o,3, . . . , g

′
o,10)

�, ∈ [−1, 1]

go = (go,1, go,2, go,3, . . . , go,10)
�, in dB,

tmin = (tmin,1, tmin,2, tmin,3, . . . , tmin,10)
�, in dB,

tmax = (tmax,1, tmax,2, tmax,3, . . . , tmax,10)
�, in dB.

Equations (15) and (18) have been derived from (13) and (14),
respectively. The minimum and maximum values of the training
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TABLE II
MINIMUM AND MAXIMUM VALUES OF THE TRAINING DATA, ALL IN DB, FOR

SCALING THE INPUTS AND OUTPUTS OF THE NEURAL

NETWORK IN (15) AND (18)

data stored in arrays tmin, xmin and tmax, xmax, respectively,
are given in Table II.

Finally, the optimized dB-gains go,m are converted to the
linear scale:

Gm = 10go,m/20, for m = 1, 2, . . . , 10. (19)

The resulting gain factors Gm can be used to compute the filter
coefficients with (4)–(9).

IV. COMPARISON

In this section, the results of comparing both the accuracy
and the computational cost of the proposed NGEQ method with
those of the ACGE method are presented. The final validation
data set consists of 10 000 randomized sets of input gain values
between −12 dB and +12 dB, in order to cover a vast range of
possible gain combinations that users may define.

A. Accuracy

Fig. 7 presents validation plots for the two example cases
shown in Fig. 2, where the user-set target gains and the ACGE
optimized gains are shown with round and square markers, as
previously. The optimized filter gains obtained using the neural
network are plotted with crossed markers (×), and ideally, they
should lie inside the square markers (�), as is the case in Fig. 7.
Both difficult cases were included in the training data, so the
output of the NGEQ algorithm can be expected to be accurate.

The solid line in Fig. 7 is the magnitude response of the
NGEQ, which is practically the same as that of the ACGE (not
shown), since the approximation error is so small. The subfigure
titles report the maximum error with that gain configuration.
The error was calculated as the dB-error between the NGEQ
and ACGE magnitude responses at the center frequencies. The
largest error between the two graphic equalizer designs was
0.006 dB at the 250-Hz command point, when all the command
sliders were set to 12 dB, and 0.022 dB at 1 kHz, with the±12-dB
zigzag gain configuration.

Fig. 8 shows a plot similar to Fig. 7, but with random target
gains (top) and with the gain setting that produced the largest
error (bottom), both taken from the final validation set. These
examples were not included in the training data. As can be seen,

Fig. 7. Validation plots with the examples from Fig. 2, where the crossed
markers plot the NGEQ optimized filter gains and the black line shows the
magnitude response of the NGEQ. Ideally, the crossed markers should be inside
the square markers, illustrating the ACGE optimized filter gains.

Fig. 8. (Top) Random example from the final validation data set that was not
part of the training data, and (bottom) the worst case error of the validation data
set, when NGEQ is compared to ACGE.

the NGEQ is highly accurate even with the random gain setting,
since all of the NGEQ optimized filter gains (×) overlay on top
of the ACGE filter gains (�), with maximum error of 0.029 dB at
2 kHz. Furthermore, even with the worst case error—0.084 dB
at 4 kHz—the error is indistinguishable and the final NGEQ
response goes through the user-set target gain at 4 kHz.
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TABLE III
VALIDATION RESULTS AT COMMAND POINTS FOR THE DATA SET OF 10 000

RANDOM TARGET GAIN SETTINGS

Fig. 9. (Top) Largest overall positive and (bottom) negative error of the final
validation set, when the equalizer response was compared to the user-set target
gains. The rightmost figures zoom in to the area marked with the dashed-line
rectangle to focus on the point of highest error.

Table III shows the minimum and maximum errors for the
final validation data set of 10 000 randomized target gain com-
binations. Furthermore, the last column of Table III shows the
average maximum error across all of the 10 000 maximum
errors occurring in validation data set. The NGEQ errors cal-
culated against the ACGE at command points are shown in
the first row. Furthermore, the errors calculated for the whole
frequency range, when compared to ACGE, have similar values
as the first row in Table III, meaning the accuracy is good
throughout the whole frequency range. The second row in
Table III shows the errors when compared against the actual
user-set command points. The absolute error from the user-set
gain values should be within ±1 dB, according to the pre-
training goal set in Section III-C. This validation test verifies
that this is indeed the case, as the magnitude-response error
is restricted between ±0.7 dB, and thus the proposed NGEQ
method with K = 20 hidden-layer units satisfies the goal of this
work.

Fig. 9 reveals where the largest errors occurred in the valida-
tion data set, when the magnitude response of the equalizer was
compared to the user-set target gains, see Table III bottom row.

TABLE IV
COMPARISON OF COMPUTING TIMES OF THE ACGE AND PROPOSED NGEQ

METHODS, AVERAGE OF 10 000 TRIALS. THE FASTEST CASE IN

EACH COLUMN IS HIGHLIGHTED

The subfigures on the left-hand side in Fig. 9 show the overall
magnitude response, while the subfigures on the right zoom into
the position of the largest error (the dashed-lined rectangles).

As can be seen in Fig. 9, both largest errors happen to be
similar in nature, where the gains at the adjacent bands have
high absolute values, which are very close to each other, while
the gain, where the largest error occurs, has a value near zero. In
all cases, the filter gains given by the NGEQ are close to those of
the ACGE, meaning that the neural network works well and the
error mainly comes from the inaccuracy of the original ACGE
method used to train the model. The difference between the
NGEQ and ACGE filter gains at 2 kHz and 8 kHz was 0.014 dB
(top) and 0.006 dB (bottom), respectively.

B. Computational Cost

The computing time for optimizing the filter gains were cal-
culated as an average of the 10 000 validation cases. The results
are summarized in Table IV. The NGEQ has the average gain
calculation time of about 6.8μs whereas the ACGE optimization
takes 1700 μs on average. This implies that the proposed filter
gain control in the NGEQ can calculate 250 gain configurations
in the same amount of time it takes for the ACGE to calculate
just one.

After the filter gains have been computed, both methods use
the same filter design method to calculate the filter coefficients,
as described in Section II-A. The calculation of the filter coef-
ficients for 10 parametric equalizing filters takes approximately
24μs, as indicated in the second column of numbers in Table IV.
It is an insignificant amount of the total computing time of the
original ACGE design. However, it is remarkable that in the
proposed NGEQ method the computing of the filter gains now
takes only less than a third of the time it takes to compute the
filter coefficients, which is supposed to be an easier problem. The
total time consumed in the coefficient update using the proposed
method is now 31 μs. It is only slightly more than a sample
interval, which is 22.7 μs at the 44.1-kHz sample rate. A small
increase in processing speed, which can be obtained by using a
faster software implementation and/or a faster computer, such
as a graphics-processing unit, would allow coefficient update
in real time. This shows that the supervised learning approach
is very well suited to the gain calculation in this filter design
problem.

The ACGE optimization described in Section II-B requires
the calculation and inversion of the interaction matrix and
several matrix multiplications. The building of the interaction
matrix involves the use of the discrete-time Fourier transform to
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evaluate the magnitude response of the parametric equalizing
filters at 19 frequency points, which include the ten octave
center frequencies and their midpoints. The matrix inversion
requires the computing of the Penrose-Moore pseudoinverse
for the resulting 19-by-10 interaction matrix, which involves a
matrix inversion and three matrix multiplications [4]. It is clear
that the proposed neural network based design is much faster
and conceptually simpler than the original ACGE optimization
method. The neural network based gain control requires two
matrix multiplications, 20 evaluations of a nonlinear function,
and scaling operations. The matrices are precomputed during
the training phase, so they do not contribute to the workload
during run time.

V. CONCLUSION

This paper proposes to use a neural network to speed up
the gain control of a graphic equalizer used commonly in
audio processing. This was made possible by the recent ac-
curate graphic equalizer design method, which requires the
filter gains to be optimized, whereas the filter parameters can
be computed in closed form. This work uses the target gain
to filter gain vector pairs obtained with the accurate design
method as training data for a multilayer perceptron. Testing
with different numbers of hidden layer neurons led to the result
that 20 neurons are needed for a sufficiently precise prediction
of the filter gains in the octave graphic equalizer. The pre-
dicted filter gains are then within ±0.1 dB from those given
by the original optimization algorithm. The overall magnitude-
response error remains below 1 dB, as is required in high-fidelity
audio.

The proposed calculation of the filter gains with a neural
network is roughly 250 times faster than the original design
method, which requires several matrix operations. It is also the
first method to accurately compute the filter coefficients of a
graphic equalizer without iterations or matrix inversions. As
a result of this work, the design of a graphic equalizer now
becomes an easy task, which can be implemented with a few
lines of program code and with the help of two weight matrices
and bias vectors as well as input and output scaling factors.
These will be published online at http://research.spa.aalto.fi/
publications/papers/ieee-taslp-ngeq/.

Future work includes further investigations on alternative
biquad filter structures and gain optimization schemes, which
could be used to create even more accurate training data for
the neural network. In the future, the computationally efficient
graphic equalizer design method introduced in this paper can
be used in various real-time audio applications, which require
time-varying high-order equalization, such as HRTF filtering
controlled by the user’s orientation (head tracking) in a vir-
tual/augmented reality scenario, or unmasking of music signals
when listening takes place in heavy ambient noise.

ACKNOWLEDGMENT

The authors would like to thank B. Bank, J. Liski, J. O. Smith,
and A. Wright for helpful discussions.

REFERENCES

[1] V. Välimäki and J. D. Reiss, “All about audio equalization: Solutions and
frontiers,” Appl. Sci., vol. 6, no. 129, pp. 1–46, May 2016.

[2] J. Rämö, V. Välimäki, and B. Bank, “High-precision parallel graphic
equalizer,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 22,
no. 12, pp. 1894–1904, Dec. 2014.

[3] R. J. Oliver and J.-M. Jot, “Efficient multi-band digital audio graphic
equalizer with accurate frequency response control,” in Proc. Audio Eng.
Soc. 139th Conv., New York, NY, USA, Oct. 2015, Paper 9406.

[4] V. Välimäki and J. Liski, “Accurate cascade graphic equalizer,” IEEE
Signal Process. Lett., vol. 24, no. 2, pp. 176–180, Feb. 2017.

[5] J. Liski and V. Välimäki, “The quest for the best graphic equalizer,” in Proc.
Int. Conf. Digit. Audio Effects, Edinburgh, U.K., Sep. 2017, pp. 95–102.

[6] R. A. Greiner and M. Schoessow, “Design aspects of graphic equalizers,”
J. Audio Eng. Soc., vol. 31, no. 6, pp. 394–407, Jun. 1983.

[7] Motorola, Inc., “Digital stereo 10-band graphic equalizer using the
DSP56001,” Chicago, IL, USA, Appl. Note APR2/D, 1988.

[8] S. A. White, “Design of a digital biquadratic peaking or notch filter for
digital audio equalization,” J. Audio Eng. Soc., vol. 34, no. 6, pp. 479–483,
Jun. 1986.

[9] P. A. Regalia and S. K. Mitra, “Tunable digital frequency response equal-
ization filters,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-
35, no. 1, pp. 118–120, Jan. 1987.

[10] T. van Waterschoot and M. Moonen, “A pole-zero placement technique
for designing second-order IIR parametric equalizer filters,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 15, no. 8, pp. 2561–2565, Nov. 2007.

[11] J. D. Reiss, “Design of audio parametric equalizer filters directly in the
digital domain,” IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 6,
pp. 1843–1848, Aug. 2011.

[12] J. S. Abel and D. P. Berners, “Filter design using second-order peaking and
shelving sections,” in Proc. Int. Comput. Music Conf., Miami, FL, USA,
Nov. 2004, pp. 1–4.

[13] M. Holters and U. Zölzer, “Graphic equalizer design using higher-order
recursive filters,” in Proc. Int. Conf. Digit. Audio Effects, Montreal, QC,
Canada, Sep. 2006, pp. 37–40.

[14] J. Rämö and V. Välimäki, “Optimizing a high-order graphic equalizer for
audio processing,” IEEE Signal Process. Lett., vol. 21, no. 3, pp. 301–305,
Mar. 2014.

[15] S. Prince and K. R. S. Kumar, “A novel Nth-order IIR filter-based graphic
equalizer optimized through genetic algorithm for computing filter order,”
Soft Comput., vol. 23, no. 8, pp. 2683–2691, Apr. 2019.

[16] S. Tassart, “Graphical equalization using interpolated filter banks,” J.
Audio Eng. Soc., vol. 61, no. 5, pp. 263–279, May 2013.

[17] Z. Chen, G. S. Geng, F. L. Yin, and J. Hao, “A pre-distortion based design
method for digital audio graphic equalizer,” Digit. Signal Process., vol. 25,
pp. 296–302, Feb. 2014.

[18] B. Bank, J. A. Belloch, and V. Välimäki, “Efficient design of a parallel
graphic equalizer,” J. Audio Eng. Soc., vol. 65, no. 10, pp. 817–825,
Oct. 2017.

[19] J. Rämö, V. Välimäki, and M. Tikander, “Perceptual headphone equal-
ization for mitigation of ambient noise,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., Vancouver, BC, Canada, May 2013, pp. 724–728.

[20] V. Välimäki, A. Franck, J. Rämö, H. Gamper, and L. Savioja, “Assisted
listening using a headset: Enhancing audio perception in real, augmented,
and virtual environments,” IEEE Signal Process. Mag., vol. 32, no. 2,
pp. 92–99, Mar. 2015.

[21] C. M. Bishop, Pattern Recognition and Machine Learning. New York, NY,
USA: Springer, 2006.

[22] S. J. Orfanidis, Introduction to Signal Processing. Upper Saddle River, NJ,
USA: Prentice-Hall, 1996.

[23] Acoustics—Preferred Frequencies, ISO 266:1997, International Organi-
zation for Standardization, 1997.

[24] J. Liski, B. Bank, J. O. Smith, and V. Välimäki, “Converting series biquad
filters into delayed parallel form: Application to graphic equalizers,” IEEE
Trans. Signal Process., vol. 67, no. 14, pp. 3785–3795, Jul. 2019.

[25] F. D. Foresee and M. T. Hagan, “Gauss-Newton approximation to Bayesian
learning,” in Proc. IEEE Int. Conf. Neural Netw., Houston, TX, USA,
Jun. 1997, pp. 1930–1935.

[26] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. D. Jesús, Neu-
ral Network Design, 2nd ed. E-Book, 2014. [Online]. Available:
http://hagan.okstate.edu/nnd.html

[27] The MathWorks, Inc., Improve shallow neural network generalization
and avoid overfitting, 2019. [Online]. Available: https://se.mathworks.
com/help/deeplearning/ug/improve-neural-network-generalization-and-
avoid-overfitting.html

http://research.spa.aalto.fi/publications/papers/ieee-taslp-ngeq/
https://se.mathworks.com/help/deeplearning/ug/improve-neural-network-generalization-and-avoid-overfitting.html


VÄLIMÄKI AND RÄMÖ: NEURALLY CONTROLLED GRAPHIC EQUALIZER 2149

Vesa Välimäki (S’90–M’92–SM’99–F’15) received
the M.Sc. degree in technology and the Doctor of
Science degree in technology, both in electrical en-
gineering, from the Helsinki University of Tech-
nology (TKK), Espoo, Finland, in 1992 and 1995,
respectively.

He was a Postdoctoral Research Fellow with the
University of Westminster, London, U.K., in 1996.
In 1997–2001, he was a Senior Assistant (cf., Assis-
tant Professor) with TKK. In 2001–2002, he was a
Professor of Signal Processing with the Pori unit of

the Tampere University of Technology, Pori, Finland. In 2006–2007, he was
the Head of the TKK Laboratory of Acoustics and Audio Signal Processing. In
2008–2009, he was a Visiting Scholar at Stanford University. He is currently a
Full Professor of Audio Signal Processing and the Vice Dean for Research in
electrical engineering with Aalto University, Espoo, Finland. His research inter-
ests include digital filter design, audio effects processing, artificial reverberation,
sound synthesis, and signal processing for headphones and loudspeakers.

Prof. Välimäki is a Fellow of the Audio Engineering Society and a Life
Member of the Acoustical Society of Finland. In 2007–2013 he was a Member
of the Audio and Acoustic Signal Processing Technical Committee of the
IEEE Signal Processing Society and is currently an Associate Member. He is
a Founding Member of the EURASIP Special Area Team in acoustic, sound,
and music signal processing. He served as an Associate Editor for the IEEE
SIGNAL PROCESSING LETTERS in 2005–2009 and for the IEEE TRANSACTIONS

ON AUDIO, SPEECH, AND LANGUAGE PROCESSING in 2007–2011. He was in the
Editorial Board of the Research Letters in Signal Processing and of the Journal
of Electrical and Computer Engineering. He was the Lead Guest Editor of a
special issue of the IEEE SIGNAL PROCESSING MAGAZINE in 2007 and of a
special issue of the IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE

PROCESSING in 2010. He was a Guest Editor of the special issues of the IEEE
SIGNAL PROCESSING MAGAZINE on signal processing techniques for assisted
listening in 2015 and on music signal processing in 2018–2019. He has been a
Guest Editor of two special issues published in Applied Sciences, one in 2016
and another in 2017–2018. Since 2015, he has been a Senior Area Editor of the
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING.
In 2008, he was the Chair of the International Conference on Digital Audio
Effects (DAFX). In 2017, he was the Chair of the International Conference on
Sound and Music Computing.

Jussi Rämö received the M.Sc. degree in commu-
nication engineering from the Helsinki University
of Technology, Espoo, Finland, in 2009, majoring
in acoustics and audio signal processing, and the
Doctor of Science degree in technology from Aalto
University, Espoo, Finland, in 2014.

His doctoral dissertation dealt with equalization
techniques for headphone listening. He was an Indus-
trial Postdoctoral Researcher with Aalborg Univer-
sity, Aalborg, Denmark, in 2015–2017, responsible
for a project for Bang & Olufsen concentrating on

developing psychoacoustical models for sound-zone environments in domestic
rooms. The project was partly funded by the Innovation Fund Denmark. He
is currently a Postdoctoral Researcher with Aalto University, Espoo, Finland.
His research interests include psychoacoustics, equalizers, headphone signal
processing, and perceptually motivated signal processing, especially for mobile
applications.

Dr. Rämö was a member of the organizing committee of the Audio Engineer-
ing Society 51st International Conference on Loudspeakers and Headphones,
Helsinki, Finland, August 2013.


