
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Karppa, Matti; Kaski, Petteri
Probabilistic tensors and opportunistic boolean matrix multiplication

Published in:
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms

Published: 01/01/2019

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Karppa, M., & Kaski, P. (2019). Probabilistic tensors and opportunistic boolean matrix multiplication. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 496-515). Society for
Industrial and Applied Mathematics. https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.31?mobileUi=0&

https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.31?mobileUi=0&

Probabilistic Tensors and Opportunistic Boolean Matrix Multiplication∗

Matti Karppa† Petteri Kaski†

Abstract
We introduce probabilistic extensions of classical determin-
istic measures of algebraic complexity of a tensor, such as
the rank and the border rank. We show that these proba-
bilistic extensions satisfy various natural and algorithmically
serendipitous properties, such as submultiplicativity under
taking of Kronecker products. Furthermore, the probabilis-
tic extensions enable improvements over their deterministic
counterparts for specific tensors of interest, starting from the
tensor 〈2, 2, 2〉 that represents 2 × 2 matrix multiplication.
While it is well known that the (deterministic) tensor rank
and border rank satisfy

rk 〈2, 2, 2〉 = 7 and rk 〈2, 2, 2〉 = 7

[V. Strassen, Numer. Math. 13 (1969); J. E. Hopcroft and
L. R. Kerr, SIAM J. Appl. Math. 20 (1971); S. Winograd,
Linear Algebra Appl. 4 (1971); J. M. Landsberg, J. AMS
19 (2006)], we show that the probabilistic tensor rank and
border rank satisfy

r̃k 〈2, 2, 2〉 ≤ 6 +
6

7
and r̃k 〈2, 2, 2〉 ≤ 6 +

2

3
.

By submultiplicativity, this leads immediately to novel ran-
domized algorithm designs, such as algorithms for Boolean
matrix multiplication as well as detecting and estimating the
number of triangles in graphs.

Our algorithms are opportunistic in the sense that their
worst-case scaling is essentially governed by the probabilistic
rank, yet their result is accumulated through independent
repetitions, where the partial result can be inspected at
each repeat for possible early termination, and each repeat
scales according to the rank of the outcome-tensors. For
example, representing 〈2, 2, 2〉 probabilistically using an
ensemble of tensors of rank 6, we obtain an algorithm
that, with high probability, multiplies two 2d × 2d Boolean
matrices in Õ((6 + 6

7
)d) operations. This algorithm consists

of independent repeats that each run in O(6d) operations
and enable inspection of the partial result at each repeat.
Analogously, a probabilistic representation of 〈2, 2, 2〉 using
tensors of border rank 5 gives an algorithm that runs in
Õ((6 + 2

3
)d) operations, consisting of repeats that run in

Õ(5d) operations each.
Asymptotically, we use Adleman’s argument to show

that, over the complex field, the support rank exponent ωs

of matrix multiplication [H. Cohn and C. Umans, SODA’12]

∗The research leading to these results has received funding
from the European Research Council under the European Union’s
Seventh Framework Programme (FP/2007-2013) / ERC Grant
Agreement 338077 “Theory and Practice of Advanced Search and
Enumeration”. We gratefully acknowledge the use of computa-
tional resources provided by the Aalto Science-IT project at Aalto
University.
†Department of Computer Science, Aalto University, Helsinki,

Finland. E-mail: firstname.lastname@aalto.fi

gives the lower bound ωs ≤ inf
{
τ : r̃k 〈t, t, t〉 = O(tτ)

}
for

probabilistic tensor rank. While this enables an approach to
obtaining asymptotically faster algorithm designs for matrix
multiplication via the Cohn–Umans inequality ω ≤ 3

2
ωs− 1,

the main motivation for the present paper is to enable
an approach towards fast practical algorithms using small
probabilistic tensors.

1 Introduction.

The problem of multiplying two given n × n matrices
with entries over the Boolean algebra B = (0, 1,∨,∧)
is a fundamental combinatorial problem which enables
fastest known algorithms for a large number of combi-
natorial problems, such as transitive closure, context-
free parsing, and triangle detection [35, 37, 45, 71, 73].
Yet progress in fast algorithms for Boolean matrix mul-
tiplication has been confined to essentially two lines of
study. The first line of study embeds the Boolean entries
to a ring, and employs techniques for fast matrix mul-
tiplication over rings to recover the result. Currently
the fastest such algorithms run in time O(nω+o(1)),
where 2 ≤ ω < 2.3728639 is the exponent of ma-
trix multiplication [29, 33, 72, 56]. While such algo-
rithms are the fastest known in terms of asymptotic
efficiency, practically efficient algorithms for fast ma-
trix multiplication over rings remain limited to recur-
sive approaches using small base tensors (e.g. [7, 12, 22,
32, 38, 42, 43, 49, 51, 57, 58]) or trilinear aggregation–
cancellation techniques [60, 61] for a small number of
independent matrix multiplications (e.g. [47, 48]). This
situation withstanding, a second line of study seeks ad-
vanced combinatorial techniques without the use of ten-
sors [6, 11, 23, 73, 76]. Currently, the fastest such algo-
rithm runs in time Ô(n3/ log4 n) [76].

This paper seeks further progress in the study of
Boolean matrix multiplication. In essence, we develop
probabilistic extensions of existing tensor techniques
to enable us to characterize which tensor-based fast
matrix multiplication algorithms can be broken to yield,
through randomization, a faster algorithm for Boolean
matrix multiplication.

We start with an example that illustrates the key
algorithmic ideas by breaking and randomizing the
Strassen–Winograd algorithm.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited496

D
ow

nl
oa

de
d

02
/0

6/
20

 to
 1

30
.2

33
.1

91
.1

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1.1 Breaking and Randomizing. The Strassen–
Winograd algorithm [75] is an addition-optimal1 [19,
64] variant of Strassen’s seminal algorithm [69] for
multiplying two n×n matrices in O

(
nlog2 7

)
operations

over a ring. More precisely, the Strassen–Winograd
algorithm performs a 2× 2 matrix multiplication[

C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
using 15 additions (including subtractions) and 7 mul-
tiplications:2

T1 = A21 +A22

T2 = A12

T3 = A12 +A22

T4 = A21 + T3

T5 = A11 + T4

T6 = A21

T∗ = A11

S1 = B21 +B22

S2 = B21

S3 = B12 −B22

S4 = B21 − S3

S5 = B12

S6 = B11 − S4

S∗ = B11

Q1 = T1 · S1

Q2 = T2 · S2

Q3 = T3 · S3

Q4 = T4 · S4

Q5 = T5 · S5

Q6 = T6 · S6

Q∗ = T∗ · S∗

U1 = Q2 −Q4

U2 = U1 −Q3

U3 = Q5 − U1

C11 = Q2 +Q∗
C12 = U3 −Q1

C21 = Q6 − U2

C22 = Q1 + U2

.

(1)

Simplifying (1), we readily verify that

(2)
C11 = A11B11 +A12B21 C12 = A11B12 +A12B22

C21 = A21B11 +A22B21 C22 = A21B12 +A22B22

.

Used recursively, the Strassen–Winograd algorithm
makes exactly 5(7d − 4d) additions and 7d multiplica-
tions of scalars to multiply two 2d × 2d matrices. The
Strassen–Winograd algorithm and its variants are also
among the most efficient implementations for multiply-
ing large matrices in practice, both for shared-memory
and distributed-memory architectures [7, 12, 22, 32, 38,
42, 43, 49, 51, 57, 58].

Breaking the algorithm. Let us now break the Strassen–
Winograd algorithm. Observe the terms highlighted
with an asterisk-subscript “∗” in (1). Let us remove
these terms. This leaves us with only 14 additions
and 6 multiplications, and a clearly broken matrix

1Addition-optimal in the standard basis, the number of addi-
tions decreases to 12 when employing the recent alternative-basis
framework of Karstadt and Schwartz [49].

2Here we have taken the liberty to rephrase the Strassen–
Winograd algorithm somewhat to better highlight our instrumen-
tation of the algorithm to follow.

multiplication algorithm:

T1 = A21 +A22

T2 = A12

T3 = A12 +A22

T4 = A21 + T3

T5 = A11 + T4

T6 = A21

S1 = B21 +B22

S2 = B21

S3 = B12 −B22

S4 = B21 − S3

S5 = B12

S6 = B11 − S4

Q1 = T1 · S1

Q2 = T2 · S2

Q3 = T3 · S3

Q4 = T4 · S4

Q5 = T5 · S5

Q6 = T6 · S6

U1 = Q2 −Q4

U2 = U1 −Q3

U3 = Q5 − U1

C11 = Q2

C12 = U3 −Q1

C21 = Q6 − U2

C22 = Q1 + U2

.

(3)

Indeed, (3) simplifies to

(4)
C11 = A12B21 C12 = A11B12 +A12B22

C21 = A21B11 +A22B21 C22 = A21B12 +A22B22

.

But the only defect in (4) is the absence of the product
A11B11. That is, 7 out of the 8 products are present, at
the cost of only 6 multiplications.

Used recursively, the algorithm (3) yields a recur-
sively broken result, with exactly 7d out of the required
8d products present in the broken result, using exactly
7(6d − 4d) additions and 6d multiplications of scalars
in the process. That is, the fraction of present prod-
ucts is (7

8)d, and these products can be obtained in only
8 · 6d − 7 · 4d = O(6d) operations.

Randomization. Let us now randomize the broken
algorithm, with the objective of randomizing which 7d

products among the 8d products are present in the
broken result. Let us follow a level-wise randomization
strategy on the d-level recursion tree. In precise terms,
for each level ` = 1, 2, . . . , d of the recursion tree,
draw three independent uniform random permutations
σ`, τ`, υ` of {1, 2}. At level ` of the recursion tree,
implement the recursive step with a version of (3)
resulting from the substitutions

(5)

A11 7→ A1σ`1τ` B11 7→ B1τ`1υ` C11 7→ C1σ`1υ`

A12 7→ A1σ`2τ` B12 7→ B1τ`2υ` C12 7→ C1σ`2υ`

A21 7→ A2σ`1τ` B21 7→ B2τ`1υ` C21 7→ C2σ`1υ`

A22 7→ A2σ`2τ` B22 7→ B2τ`2υ` C22 7→ C2σ`2υ`

.

This randomization causes any fixed product among
the 8d products to be present in the broken output
uniformly at random, with probability (7

8)d.

Repetition enables Boolean matrix multiplication. By
making independent repeats of the randomized algo-

rithm, it thus takes, in expectation,
(

8
7

)d · O(6d) =

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited497

D
ow

nl
oa

de
d

02
/0

6/
20

 to
 1

30
.2

33
.1

91
.1

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

O
((

6 + 6
7

)d)
operations to witness any fixed product

among the 8d products as present in at least one re-
peat. With some further randomization of the operands

at the start of each repeat, d3d
(

8
7

)de repeats, each run-
ning in O(6d) operations, suffice to correctly multiply
two Boolean matrices, viewed as bit matrices consist-
ing of integers modulo 2 for purposes of the algorithm,
with high probability.3 In particular, we obtain a ran-
domized algorithm for n×n Boolean matrix multiplica-
tion that runs in O(nlog2(6+ 6

7) log n) operations, which
is faster than the O(nlog2 7) operations for the Strassen–
Winograd algorithm. Furthermore, each individual re-
peat runs in O(nlog2 6) operations.

Opportunistic access to output. Each repeat gives
opportunistic access to the final result: any nonzero
entry in the output of a repeat will be a 1-entry in
the final Boolean product, which gives the possibility
for an early termination in applications that seek 1-
entries in the result. One such application is detecting
whether a given graph contains at least one triangle.
In fact, a single repeat of the randomized algorithm,
executed over the ring of integers, can also be turned
into an unbiased estimator for the number of triangles
in a graph.

1.2 Tensors and Representations of Tensors.
Let us now switch to the language of tensors and place
our present work into context before stating our results.
Formal definitions can be found in §2.

It is well known [14, 21] that the study of algebraic
complexity of matrix multiplication over a field F re-
duces to study of tensors 〈s, t, u〉 that represent matrix
multiplication as a bilinear map Fs×t × Ft×u → Fs×u.
In particular, the exponent ω = ω(F) of matrix mul-
tiplication over F can be characterized asymptotically
(e.g. [21, Proposition 15.1]) via the tensor rank by

ω = inf {τ : rk 〈s, s, s〉 = O(sτ)} .

Thus, the design of asymptotically fast matrix multi-
plication algorithms reduces to study of tensor rank of
matrix multiplication tensors. Furthermore, a nontriv-
ial upper bound for the rank rk 〈s, t, u〉 of any fixed ten-
sor 〈s, t, u〉 gives both

(i) an upper bound ω ≤ log(stu)1/3 rk 〈s, t, u〉, and

(ii) an algorithm that multiplies n × n matrices in

O
(
n

log
(stu)1/3

rk 〈s,t,u〉)
operations in F.

For example, Strassen’s 2 × 2 algorithm [69] shows
that rk 〈2, 2, 2〉 ≤ 7 and thus ω ≤ log2 7. (In fact,
rk 〈2, 2, 2〉 = 7 [41, 75].)

3A detailed exposition and analysis can be found in §1.4.

One obstacle to the study of tensors is that many
computational problems that are tractable for matrix
inputs become NP-hard when the inputs are higher-
order tensors [40]. This is the case for tensor rank in
particular [39].

Since the direct study of large matrix multiplica-
tion tensors 〈s, t, u〉 appears hard (cf. §1.5), many of
the fundamental advances in the complexity of matrix
multiplication in the 50 years since Strassen’s [69] initial
breakthrough have originated from

(a) novel representations of tensors, and

(b) new constructions for converting low-rank decom-
positions in a representation into low-rank decom-
positions of matrix multiplication tensors.

The first asymptotic improvement over Strassen’s al-
gorithm was obtained by Pan [61] through a trilin-
ear aggregation–cancellation technique. Bini [13] in-
troduced the technique of representing a tensor with
arbitrary-precision approximations of the tensor, lead-
ing to the geometric [53] notion of the border rank
of a tensor. Schönhage [66] showed how to construct
low-rank decompositions of matrix multiplication ten-
sors from low-rank and low-border-rank decompositions
of partial and disjoint matrix multiplication tensors.
Strassen’s laser method [70] introduced a powerful con-
struction for low-rank decompositions that underlies
the current asymptotically fastest designs for matrix
multiplication, due to Coppersmith and Winograd [29],
Davie and Stothers [33], Vassilevska Williams [72], and
Le Gall [56]. In the process of seeking improved upper
bounds on ω via embeddings of matrix multiplication
into other algebras [26, 27, 28], Cohn and Umans [28]
introduced a new representation for a tensor using ten-
sors that have the same support of nonzero entries as
the tensor being represented. The resulting notion of
support rank and the associated support rank exponent
ωs with 2 ≤ ωs ≤ ω and ω ≤ 3

2ωs − 1 can be used
to characterize nondeterministic quantum communica-
tion complexity [20] and to establish that n×n Boolean
matrix multiplication can be performend in O(nωs+o(1))
operations [28].4 Recently, Christandl and Zuiddam [25]
develop a tensor surgery technique for proving upper
bounds on tensor ranks. Pan [62] gives a recent com-
prehensive survey of fast matrix multiplication.

In this paper our motivation is to extend this body
of work by studying a probabilistic notion of tensor

4Indeed, observe that the best known inequalities 2 ≤ ωs ≤
ω < 2.3728639 and ω ≤ 3

2
ωs − 1 due to Le Gall [56] and

Cohn and Umans [28], respectively, leave open the possibility that
ωs < ω and thus the possibility that matrix multiplication over
F has strictly higher asymptotic complexity than Boolean matrix
multiplication.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited498

D
ow

nl
oa

de
d

02
/0

6/
20

 to
 1

30
.2

33
.1

91
.1

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

rank, which enables us to gain algorithmically over
previous approaches based on deterministic notions of
tensor rank already for small tensors, such as 〈2, 2, 2〉.

1.3 Our Results—Coarse-Grained View. We
start with the key definitions and a coarse-grained view
to our algorithmic results.

Probabilistic tensors. We work over a fixed but arbitrary
field F of scalars, and our tensors are defined with
respect to arbitrary but fixed bases for the constituent
vector spaces so that the entries of a tensor and its
support and shape are well-defined notions (cf. §2 for
our detailed conventions).

Definition 1.1. (Probabilistic tensor) A proba-
bilistic tensor is a probability distribution over a space
of tensors.

What makes probabilistic tensors useful from an al-
gorithmic point of view is that they enable one to repre-
sent a target tensor probabilistically using tensors whose
rank is, in expectation, strictly less than the rank of the
target tensor. This lesser rank translates to reduced
algebraic complexity and thus faster algorithms in ap-
plications, assuming the probabilistic representation re-
tains the application-essential properties of the target
tensor with sufficient probability.5 The next definition
is motivated by the subsequent applications in Boolean
matrix multiplication and in triangle detection.

Let T be a tensor and let T̃ be a probabilistic tensor
over the same space of tensors that contains T . We say
that T̃ supports T entrywise with probability at least p
if for every entry in the tensor T̃ it holds that the entry
either is zero or is equal to the corresponding entry of T ,
and equality occurs with probability at least p.

Definition 1.2. (Probabilistic tensor rank)
The probabilistic rank of a nonzero tensor T is the
minimum of ES∈T̃ [rkS]p−1 over all probabilistic ten-

sors T̃ that support T entrywise with probability at least
p > 0. The probabilistic rank of a zero tensor is 0. We
write r̃kT for the probabilistic rank of T .

We observe that it is not immediate that the
minimum exists in Definition 1.2, but we will see
that this is the case through a characterization by
linear programming (cf. §3.2). The probabilistic border
rank is defined by replacing the tensor rank rkS in
Definition 1.2 with the border rank rkS. We write r̃kT
for the probabilistic border rank of T .

5This general situation of reduced algebraic complexity ob-
tained through randomization arises frequently in algorithm de-
sign, cf. §1.5.

Since the border rank and rank satisfy rkS ≤ rkS,
it is immediate that r̃kT ≤ r̃kT ≤ rkT . Furthermore,
we will show that the probabilistic rank and proba-
bilistic border rank retain some natural properties of a
rank function, such as submultiplicativity r̃kT ⊗ T ′ ≤
r̃kT · r̃kT ′ under Kronecker products of tensors.

Boolean matrix multiplication—the coarse-grained view.
The following theorem presents a coarse-grained view to
the algorithm designs enabled by probabilistic rank. A
similar theorem holds for probabilistic border rank, but
we omit a detailed study of border rank from the present
conference version of this paper.

Theorem 1.1. (Boolean matrix multiplication)
For all integers s, t, u ≥ 2 and any constant ε > 0, there
exists a randomized algorithm that with high probability
multiplies two given n × n matrices over the Boolean
algebra in

(6) O
(
n

(log
(stu)1/3

r̃k 〈s,t,u〉)+ε)
operations in the field of scalars for 〈s, t, u〉.

Here the upper bound (6) in general can hide an im-
practically large constant that depends on the constants
s, t, u, ε and the field of scalars F for 〈s, t, u〉. Further-
more, the upper bound can be turned into running time
by accounting for the time cost of arithmetic in F in
the assumed model of computation. Our subsequent
more fine-grained analysis will bound these constants
for specific small s, t, u and will employ the binary field
F2 (cf. §1.4).

Classical tensor-based fast matrix multiplication al-
gorithms enable a version of Theorem 1.1 with the prob-
abilistic rank replaced by a corresponding classical (de-
terministic) rank. Furthermore, the work of Cohn and
Umans [28, Theorem 3.7] on support rank essentially
contains a similar theorem with the probabilistic rank
replaced by corresponding (deterministic) support rank.

When applied to a fixed base tensor 〈s, t, u〉,
the present probabilistic tensor framework thus yields
asymptotically faster algorithms for Boolean matrix
multiplication precisely when the probabilistic rank is
strictly less than the deterministic rank.

Probabilistic rank of matrix multiplication. We proceed
to study the probabilistic rank of matrix multiplication
tensors and find that probabilistic rank gains on all the
deterministic ranks already in the smallest nontrivial
case 〈2, 2, 2〉.

Theorem 1.2. (Bounds on probabilistic rank)
Over any ring, it holds that

r̃k 〈2, 2, 2〉 ≤ 6 +
6

7
and r̃k 〈2, 2, 2〉 ≤ 6 +

2

3
.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited499

D
ow

nl
oa

de
d

02
/0

6/
20

 to
 1

30
.2

33
.1

91
.1

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

The upper bounds in Theorem 1.2 should be contrasted
with known results on tensor rank, due to Hopcroft
and Kerr [41], Winograd [75], on border rank, due to
Landsberg [52], and on border support rank, due to
Bläser, Christandl, and Zuiddam [15]:

rk 〈2, 2, 2〉 = 7 , rk 〈2, 2, 2〉 = 7 , and rks 〈2, 2, 2〉 = 7 .

In particular, none of these notions of rank is able to
witness further structure in the tensor 〈2, 2, 2〉 beyond
Strassen’s original discovery. Probabilistic tensors and
associated probabilistic notions of tensor rank thus re-
inforce these existing notions so that further algorithmi-
cally serendipitous structure and faster algorithms can
be uncovered.

Our key technical tool towards bounding the prob-
abilistic rank of matrix multiplication is the following
lemma that enables us to study tensors with support-
transitive symmetry using individual subtensors. For a
tensor T , we write wtT for the number of nonzero en-
tries in T , or the weight of T . We state the lemma for
probabilistic rank and rank, but a similar lemma holds
for probabilistic border rank and border rank.

Lemma 1.1. (Support-transitive tensors) Let T
be a tensor that admits a group of permutation auto-
morphisms that acts transitively on the support of T .
Then, for any subtensor S of T we have the inequality

(7) wtS r̃kT ≤ wtT rkS .

Moreover, equality holds for at least one subtensor.

Together with the elementary inequality

(8) rkT ≤ rkS + wtT − wtS

we thus obtain two-sided control on the probabilistic
rank and observe that the probabilistic rank can be
strictly less than the rank only if rkT < wtT .

Since matrix multiplication tensors are support-
transitive, Lemma 1.1 enables us to localize the study of
probabilistic rank of matrix multiplication to the study
of rank-weight ratios of individual subtensors S. In
particular, this enables us to prove Theorem 1.2 using
the broken Strassen–Winograd decomposition (3) and
a decomposition of Bini [13] for the rank and border
rank, respectively. Lemma 1.1 also enables numerical
study of probabilistic rank of small tensors, by reducing
to numerical study of rank of subtensors of the matrix
multiplication tensor (cf. §1.5); such a numerical study
will not be conducted in the present paper, however.

Associated with any probabilistic notion is the
question whether it can be efficiently derandomized.
We show that probabilistic rank admits at least a
partial asymptotic derandomization using a variant of
Adleman’s argument [3]:

Theorem 1.3. Over the complex field, it holds that

(9) ωs ≤ inf
{
τ : r̃k 〈t, t, t〉 = O(tτ)

}
.

Crucially, however, we have not been able to establish
similar derandomization over finite fields, and the bi-
nary field in particular.

This leaves open the possibility that probabilistic
rank may be asymptotically more powerful than de-
terministic rank, in particular for the applications of
Boolean matrix multiplication and triangle detection,
where the binary field F2 suffices. With the binary field
in mind, let us now move to a more fine-grained setting.

1.4 Our Results—Fine-Grained View. From a
practical standpoint, the coarse-grained view presented
in the previous section is in many ways unsatisfactory.
This is in particular because the elementary cubic
algorithm for Boolean matrix multiplication admits
extremely efficient implementations both in software
and in hardware. In essence, for n× n Boolean inputs,
the elementary cubic algorithm performs exactly n3 −
n2 Boolean disjunctions and n3 Boolean conjunctions,
yielding a total of 2n3 − n2 bit operations, which
in a software implementation can be executed using
word operations and vectorization up to the lengths
supported in the underlying hardware.

Our fine-grained view to probabilistic rank and as-
sociated algorithms will proceed by means of a detailed
look at the underlying tensor representations, which will
be conveniently manipulated via the following defini-
tion. Here it should be noted that such a template-based
view to the study of matrix multiplication is standard
practice, and we merely extend this view to the case
of proper subtensors of a matrix multiplication tensor;
that is, to the case w < stu in the definition below.
In fact, also the use of subtensors is standard at least
since the work of Schönhage [66]. Where our present
work differs is in the use of randomization and in the
somewhat expanded notion of a subtensor. For a more
detailed discussion of the latter, cf. §2.5.

Definition 1.3. (Template) A template with para-
meters 〈s, t, u|m,w〉 is a representation6 of a weight-
w subtensor of the matrix multiplication tensor 〈s, t, u〉
using at most m multiplications.

When w = stu, we omit the weight w from the
notation and write 〈s, t, u|m〉. Similarly, when s = t =
u, we may write simply 〈s|m,w〉.

6For what it means to represent a tensor using a given number
of multiplications, cf. §2.3 for tensor rank and §2.6 for border
rank.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited500

D
ow

nl
oa

de
d

02
/0

6/
20

 to
 1

30
.2

33
.1

91
.1

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

For example, the 2 × 2 Strassen–Winograd algo-
rithm (1) with its 7 multiplications essentially defines a
〈2|7〉-template, and the broken version (3) of the algo-
rithm essentially defines a 〈2|6, 7〉-template, where the 6
records the number of multiplications in the algorithm,
and the 7 records the number of products remaining in
(4). For the border rank, a well-known decomposition
of Bini [13] gives a 〈2|5, 6〉-template. These templates
exist for all fields. We postpone an exposition to §4.

The next theorem shows that templates give us
control over probabilistic rank. Although we state the
result as a theorem, the actual work was already done
in Lemma 1.1. Indeed, Theorem 1.4 is an immediate
corollary of the definition of tensor rank (cf. §2.3),
Lemma 1.1, and the fact that matrix multiplication
tensors are support-transitive (cf. §2.8). A similar
theorem holds for probabilistic border rank.

Theorem 1.4. Suppose that there exists a template
with parameters 〈s, t, u|m,w〉. Then,

r̃k 〈s, t, u〉 ≤ mstu

w
.

Moreover, equality holds for at least one template.

Theorem 1.2 now follows as a corollary of Theo-
rem 1.4 and the aforementioned templates for 〈2, 2, 2〉.
Indeed, the 〈2|6, 7〉-template gives

r̃k 〈2, 2, 2〉 ≤ 6 · 23

7
= 6 +

6

7
.

The 〈2|5, 6〉-template for border rank gives

r̃k 〈2, 2, 2〉 ≤ 5 · 23

6
= 6 +

2

3
.

While templates control probabilistic rank, the no-
tion of a template in itself does not yet convey precise-
enough information about arithmetic complexity to en-
able a bit-operation-level comparison of our algorithms
and the elementary cubic algorithm for Boolean matrix
multiplication.

For a yet more fine-grained view, let us move to the
level of templates describing sum–product–sum circuits
built from a template by preprocessing the input and
postprocessing the output of multiplications using fan-
in-two addition gates.7 We stress that such templates

7We adopt the convention that a fan-in-two addition gate
allows the multiplication of its two inputs by arbitrary scalar
constants. For the binary field F2, such extended addition gates
reduce to addition gates without the constant multilications. Our
convention with border rank is to view univariate polynomials
with coefficients in F as scalars, and then transform to a circuit
over F either (i) via evaluation–interpolation over the error degree
or (ii) by expanding with subcircuits for polynomial arithmetic.
Cf. §4.1.

are standard practice in the case w = stu, which reduces
to the design of fine-grained fast matrix multiplication
algorithms over F.8 Our contribution here amounts to
the observation that this design framework extends to
the case w < stu too, and thus to algorithms relying on
low probabilistic rank rather than deterministic rank.

Definition 1.4. (Circuit template) A circuit tem-

plate with parameters 〈s, t, u|m,w〉ā,b̄,c̄a,b,c is a tem-
plate for sum–product–sum circuits that implement an
〈s, t, u|m,w〉-template for two selected input shapes
among the three shapes s × t, t × u, and u × s, with
output given in the remaining third shape. A circuit in-
stantiated from the template consists of at most m fan-
in-two multiplication gates and at most ā, b̄, c̄ fan-in-two
addition gates for the s×t, t×u, or u×s inputs, respec-
tively, and at most a, b, c fan-in-two addition gates for
the remaining s× t, t×u, or u×s output, respectively.9

When ā = b̄ = c̄ and a = b = c, we write simply
〈s, t, u|m,w〉āa. Recalling the introduction, the Strassen–

Winograd algorithm essentially defines a 〈2|7〉47-circuit
template and its broken version defines a 〈2|6, 7〉46-circuit
template. For the detailed templates with the addition
gates given explicitly, please consult (33).

A key property of circuit templates is that they can
be composed, and composition gives precise analytical
control on the arithmetic complexity in terms of the
number of fan-in-two gates in the instantiated circuit.
The following lemma states a special case for repeated
composition of a circuit template with itself.

Lemma 1.2. (Powering a circuit template)
Suppose that there exists a circuit template with pa-
rameters 〈s|m,w〉āa. Then, for any positive integer
d, there exists a circuit template with parameters
〈sd|md, wd〉D·āD·a, where

(10) D =

{
ds2d if m = s2 ,
md−s2d
m−s2 if m 6= s2 .

We record an immediate corollary for the 〈2|7〉47-
circuit template and the 〈2|6, 7〉46-circuit template.

Lemma 1.3. (Two template families) Over any
field and for all positive integers d, there exist circuit
templates with parameters

〈2d|7d〉4(7d−4d)/3

7(7d−4d)/3
and 〈2d|6d, 7d〉2(6d−4d)

3(6d−4d)
.

8For example, see Karstadt and Schwartz [49] for the state
of the art, as well as an alternative-basis extension of the basic
fine-grained theory which we will, however, not pursue here.

9For example, a circuit instantiated with inputs of shape s× t
and t × u will consist of at most m multiplication gates and at
most ā + b̄ + c addition gates. The circuit will give an output of
shape u× s.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited501

D
ow

nl
oa

de
d

02
/0

6/
20

 to
 1

30
.2

33
.1

91
.1

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Let us now turn to Boolean matrix multiplication
and present our key technical result underlying Theo-
rem 1.1. In essence, we use a circuit template over F2

together with elementary randomization techniques to
arrive at a randomized sketch R of the Boolean product
of two matrices U and V . Again our contribution is that
this approach extends to the case w < stu, whereas the
case w = stu is well known.

Theorem 1.5. (Opportunistic sketching)
Suppose that there exists a circuit template with

parameters 〈s, t, u|m,w〉ā,b̄,c̄a,b,c over the binary field F2.
Then, there exists a randomized algorithm that on
input U ∈ {0, 1}s×t and V ∈ {0, 1}t×u gives an output
R ∈ {0, 1}s×u such that for all i ∈ [s] and k ∈ [u] it
holds that

(i)
∨
j∈[t] Uij ∧ Vjk = 0 implies Pr[Rik = 0] = 1, and

(ii)
∨
j∈[t] Uij ∧ Vjk = 1 implies Pr[Rik = 1] ≥ w

2stu .

Moreover, the algorithm makes at most ā+b̄+c additions
and at most m multiplications in F2.

The properties (i) and (ii) in Theorem 1.5 state
that, compared with the correct Boolean product, the
sketch R never contains an erroneous 1-entry, but
erroneous 0-entries can occur. Let us say that the lower
bound w

2stu in (ii) is the witnessing probability of the
sketch. In particular, the witnessing probability is a
lower bound on the probability to witness any fixed 1-
entry in the correct Boolean product via a single sketch.

The witnessing probability can be amplified from
the value p for a single sketch to 1− ε for any ε > 0 by
repeating the sketch with independent randomness at
least r = dp−1 ln ε−1e times and taking the disjunction
of the sketches obtained.10 Setting ε = δ/(su) and using
the union bound, we obtain that at least dp−1(ln δ−1 +
ln su)e repeated sketches recover the correct Boolean
product with probability at least 1− δ.

A key application of witnessing probability is trian-
gle detection in graphs; that is, the problem of deciding
whether a given graph contains at least one triangle.
Indeed, the vertices i, j, k in a graph with adjacency
matrix A form a triangle if and only if Aij = Aik =
Ajk = 1. This triangle can be witnessed from the value
Aik = 1 and the fact that the entry at position ik of
the Boolean product of A with itself is 1. Thus, the
witnessing probability is the probability with which the
first triangle (if any) will be discovered, in the worst
case.

We show that our present framework is practical (as
measured by the number of bit operations) for triangle

10Indeed, we have (1− p)r ≤ exp(−pr) ≤ ε.

detection, and in fact modestly outperforms both the
elementary cubic algorithm and the Strassen–Winograd
framework starting from rather small parameter values.

The table below records the number of bit opera-
tions B(2d) and the witnessing probability p(2d) for a
single sketch of 2d × 2d Boolean matrix multiplication
arising from Theorem 1.5 applied to the templates in
Lemma 1.3:

Template B(2d) p(2d)
B 2 · 8d − 4d deterministic
〈2|7〉47 6 · 7d − 5 · 4d 2−1

〈2|6, 7〉46 8 · 6d − 7 · 4d 2−1(7/8)d

Let us now write T (2d) = B(2d)dp−1(2d)e for the num-
ber of bit operations sufficient for witnessing probability
1 − 1

e ≥ 0.632. In particular, this is the probability to
detect a triangle (if any), in the worst case. The next ta-
ble shows that the broken Strassen–Winograd algorithm
gains on both the Strassen–Winograd algorithm and the
elementary cubic algorithm starting from d ≥ 14:

d BB(2d)
T〈2|7〉57

(2d)
BB(2d)

T〈2|6,7〉46
(2d)

T〈2|7〉57
(2d)

T〈2|6,7〉46
(2d)

10 0.635 0.563 0.887
11 0.725 0.664 0.916
12 0.828 0.794 0.959
13 0.946 0.881 0.931
14 1.081 1.083 1.001
15 1.235 1.250 1.012
16 1.412 1.469 1.041
17 1.613 1.664 1.032
18 1.844 1.929 1.046
19 2.107 2.275 1.080
20 2.408 2.719 1.129

Here the key finding motivating the fine-grained analy-
sis is not in the magnitude of the gain, which is modest
at best, but the overall feasibility of the probabilistic
framework to yield algorithm designs that do not hide
large constants.11 Further work and careful tailoring
of the templates is needed to arrive at actual prac-
tical implementations. For example, the alternative-
basis approach of Karstadt and Schwartz [49] can be
employed to optimize the constants while maintaining
cache-efficiency through randomization generalizing (5).
Furthermore, it is possible to optimize the specific sub-
tensor of weight w underlying the template. In par-
ticular, different tensors of the same weight and rank

11We refer to Pan’s recent survey [62] for a discussion of
practically feasible and infeasible designs in the study of matrix
multiplication.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited502

D
ow

nl
oa

de
d

02
/0

6/
20

 to
 1

30
.2

33
.1

91
.1

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

can differ in their additive characteristics. Yet further
potentially applicable techniques to speed up determin-
istic fast matrix multiplication are developed by Cenk
and Hasan [22] and Bodrato [17].

We also observe that the present framework
can be parallelized using the communication-avoiding
paradigm [7, 8, 9, 57] that enables parallelization with
strong scaling in both shared-memory and distributed-
memory architectures; however, the present paper does
not pursue this direction. Rather we are content to
observe that probabilistic rank enables one to witness
algorithmically serendipitous structure beyond existing
(deterministic) notions of tensor rank, with possible fur-
ther potential in practical applications and theoretical
work. For example, the probabilistic rank of 〈2, 2, 2〉 is
not yet known; Theorem 1.2 only gives upper bounds.
We find it exciting that yet larger gains over the de-
terministic framework are a possibility for 〈2, 2, 2〉 and
other small tensors.

1.5 Related Work. Our present setting of proba-
bilistic tensors and probabilistic tensor rank motivated
by Boolean matrix multiplication is analogous to a num-
ber of applications of randomization and algebraic tech-
niques in algorithm design and complexity, including the
probabilistic polynomials of Razborov [65] and Smolen-
sky [68] in circuit complexity together with their ap-
plications and extensions in fine-grained algorithm de-
sign (e.g. [2, 4, 74]). Algorithmic applications of matrix
rank, randomization, and derandomization are consid-
ered in a number of recent works, including Alman and
Williams [5], Bodlaender, Cygan, Kratsch, and Ned-
erlof [16], Cygan, Kratsch, and Nederlof [30], Cygan,
Nederlof, Pilipczuk, Pilipczuk, van Rooij, and Woj-
taszczyk [31], and Fomin, Lokshtanov, Panolan, and
Saurabh [36]. Approximate randomized matrix multi-
plication techniques are developed in Drineas, Kannan,
and Mahoney [34], Pan, Luan, Svadlenka, and Zhao [63],
and Pagh [59].

Although computing tensor ranks is hard [39], the
tensor rank of small matrix multiplication tensors can
be studied numerically using systems of cubic polyno-
mial equations, cf. Brent [18]. Recent work in this
direction includes Smirnov [67] and Benson and Bal-
lard [12]. Similarly, techniques from algebraic geometry
can be used to study border rank (cf. Landsberg [53]).
Recent work in this direction in the context of small
tensors includes Chiantini, Ikenmeyer, Landsberg, and
Ottaviani [24], Ballard, Ikenmeyer, Landsberg, and Ry-
der [10], Landsberg and Micha lek [54], and Landsberg
and Ryder [55].

2 Preliminaries.

This section reviews terminology and notational con-
ventions used in this paper. Throughout this paper we
work over a fixed but arbitrary field F unless indicated
otherwise, with the understanding that the relevant no-
tions studied in general tacitly depend on the field.

For a nonnegative integer k, we write [k] for the
set {1, 2, . . . , k}. For a logical proposition P , we use
Iverson’s bracket notation [[P]] to indicate a 1 if P is
true and a 0 if P is false. We write logb x = log x

log b for
the base b logarithm of x. If the base is omitted, b = 2
is assumed. We write lnx for the logarithm of x in the
natural base

∑∞
i=0

1
i! .

2.1 Tensors. Tensor admit many natural represen-
tations (e.g. [28, 50, 53]). In this paper we adopt the
convention of viewing tensors in a basis-dependent rep-
resentation either as arrays of a particular shape with
entries in F, or as multilinear forms over formal vari-
ables, where the formal variables are partitioned into
groups, one group for each mode of the tensor.12

For example, let us represent an m × n matrix
A ∈ Fm×n with entries Aij ∈ F for i ∈ [m] and
j ∈ [n] as a tensor of order two in the multilinear
representation. Introduce two groups of formal vari-
ables, x1, x2, . . . , xm and y1, y2, . . . , yn, corresponding
to the rows and columns of the matrix. Formally,
we can now represent the matrix as the multilinear
form A =

∑
i∈[m], j∈[n]Aijxiyj in the polynomial ring

F[x1, x2, . . . , xm, y1, y2, . . . , yn].
Similarly, we can represent tensors of order three

using three groups of formal variables xi, yj , zk with
i ∈ I, j ∈ J , and k ∈ K for three nonempty finite
sets I, J,K of indices. A tensor T ∈ F I×J×K of shape
|I|× |J |×|K| with entries Tijk ∈ F can now represented
by the trilinear form T =

∑
i∈I, j∈J, k∈K Tijkxiyjzk in

the polynomial ring F[x, y, z] = F[xi, yj , zk : i ∈ I, j ∈
J, k ∈ K]. Unless indicated otherwise, notationally
we adopt the convention that the symbols x, y, z are
reserved for formal variables, and the symbol x alone
without a subscript stands for the entire group of
variables xi for i ∈ I. We will also omit the index sets
I, J,K and tacitly assume that a sum over an index
ranges over the entire relevant index set. For example,
we write

∑
i,i′ to indicate

∑
i∈I,i′∈I′ for two index sets

I and I ′.

12Compared with a basis-free approach (e.g. [53]), these repre-
sentations tacitly depend on fixed but arbitrary bases chosen for
each component vector space. This representation is not the most
general possible but natural for purposes of computation where
bases must be fixed for computation in terms of scalar operations
to take place.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited503

D
ow

nl
oa

de
d

02
/0

6/
20

 to
 1

30
.2

33
.1

91
.1

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Two tensors viewed as multilinear forms are isomor-
phic if one can be obtained from the other by an invert-
ible linear change of variables in each group of variables
x, y, z. We write T ∼= T ′ to indicate that T and T ′ are
isomorphic. Two tensors are permutation isomorphic
if the change of variables in each group can be repre-
sented by a permutation matrix. In essence, permuta-
tion isomorphism is isomorphism by permutation of the
variables in each group. Such a tuple of permutations,
one permutation for each group of variables, is a permu-
tation isomorphism. A permutation isomorphism that
maps a tensor to itself is a permutation automorphism.

Let us next review standard operations on ten-
sors. Let T =

∑
i,j,k tijkxiyjzk and T ′ =∑

i′,j′,k′ t
′
i′j′k′x

′
i′y
′
j′z
′
k′ be two tensors of order three.

The Kronecker product of T and T ′ is the tensor T ′′ =
T ⊗ T ′ defined by

(11) T ′′ =
∑

i,i′,j,j′,k,k′

tijkt
′
i′j′k′x

′′
ii′y
′′
jj′z

′′
kk′ .

In particular, if T has shape `×m×n and T ′ has shape
`′ ×m′ × n′, then T ⊗ T ′ has shape ``′ ×mm′ × nn′.

2.2 Matrix Multiplication as a Tensor. For pos-
itive integers s, t, u, the map Fs×t × Ft×u → Fs×u that
multiplies a matrix of shape s×t with a matrix of shape
t× u is bilinear. We adopt the following representation
for this map using a tensor of order three.13 Let us write
〈s, t, u〉 for the tensor of shape st× tu× us defined by

(12)
∑

i1∈[s], i2∈[s],
j1∈[t], j2∈[t],
k1∈[u], k2∈[u]

[[i1 = i2]][[j1 = j2]][[k1 = k2]]xi1j2yj1k2zk1i2 .

For example, the tensor for 2× 2 multiplication is

〈2, 2, 2〉 = x11y11z11 + x12y21z11 + x11y12z21+

x12y22z21 + x11y11z12 + x12y21z12+

x21y12z22 + x22y22z22 .

(13)

The family of matrix multiplication tensors is closed
under taking of Kronecker products: for all positive
integers s, s′, t, t′, u, u′ it holds that

(14) 〈s, t, u〉 ⊗ 〈s′, t′, u′〉 ∼= 〈ss′, tt′, uu′〉 .

Furthermore, the isomorphism in (14) is a permutation
isomorphism.

13Indeed, whereas a linear map can be represented by a matrix
(a tensor of order two), a bilinear map can be represented by a
tensor of order three.

2.3 Tensor Rank. Let T =
∑
i,j,k tijkxiyjzk be

a tensor of order three. We say that T admits a
representation using m multiplications if there exist
linear forms α`(x) ∈ F[x], β`(y) ∈ F[y], and γ`(z) ∈ F[z]
for ` = 1, 2, . . . ,m such that

(15) T =
m∑
`=1

α`(x)β`(y)γ`(z) .

The rank of T is the least m such that T admits a
representation (15) using m multiplications. We write
rkT for the rank of T . Tensor rank is isomorphism
invariant.

It is immediate from (11) and (15) that tensor rank
is submultiplicative with respect to Kronecker products.
That is, for all tensors T and T ′ of the same order, we
have rkT ⊗ T ′ ≤ rkT · rkT ′.

To illustrate the connection between tensor rank
of matrix multiplication tensors and recursive matrix
multiplication algorithms, let us revisit the example
in §1.1. From the Strassen–Winograd algorithm (1)
we can recover a representation of 〈2, 2, 2〉 using 7
multiplications, as follows. First, substituting Aij 7→
xij , Bij 7→ yij , T` 7→ α`(x) and S` 7→ β`(y) in (1) yields
the linear forms

(16)

α1(x) = x21 + x22
α2(x) = x12
α3(x) = x12 + x22
α4(x) = x21 + α3(x)
α5(x) = x11 + α4(x)
α6(x) = x21
α∗(x) = x11

β1(y) = y21 + y22
β2(y) = y21
β3(y) = y12 + y22
β4(y) = y21 − β3(y)
β5(y) = y12
β6(y) = y11 − β4(y)
β∗(y) = y11

.

Second, substituting Cij 7→ zji (observe that we in-
tentionally transpose the indices ij 7→ ji here14) and
Q` 7→ γ`(z) yields, after simplification, the linear forms

(17)

z11 = γ2(z) + γ∗(z)
z21 = γ5(z)− γ2(z) + γ4(z)− γ1(z)
z12 = γ6(z)− γ2(z) + γ4(z) + γ3(z)
z22 = γ1(z) + γ2(z)− γ4(z)− γ3(z)

.

Transposing15 the forms in (17), we obtain

(18)

γ1(z) = z22 − z21
γ2(z) = z11 − z21 − z12 + z22
γ3(z) = z12 − z22
γ4(z) = z21 + z12 − z22

γ5(z) = z21
γ6(z) = z12
γ∗(z) = z11

.

We can now verify that we can realize 〈2, 2, 2〉 using 7
multiplications by substituting (16) and (18) into (15).

14This is to obtain the rotational symmetry xi1j2yj1k2zk1i2
among the indices in (12).

15Represent (17) as the matrix

[
0 1 0 0 0 0 1
−1 −1 0 1 1 0 0
0 −1 1 1 0 1 0
1 1 −1 −1 0 0 0

]
and

transpose the matrix.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited504

D
ow

nl
oa

de
d

02
/0

6/
20

 to
 1

30
.2

33
.1

91
.1

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

This procedure can also be reversed; that is, from (16)
and (18) we can mechanically obtain the algorithm (1)
by following the procedure in reverse.16

Following the same procedure, we observe that the
broken Strassen–Winograd algorithm (3) in §1.1 realizes
the tensor

x12y21z11 + x11y12z21 + x12y22z21+

x11y11z12 + x12y21z12 + x21y12z22 + x22y22z22

(19)

using the first 6 multiplications from (16) and (18).
In particular, observe that the tensor (19) agrees with
(13) except for the missing monomial x11y11z11, which
corresponds to the missing product A11B11 in (4).

2.4 Support, Weight, and Support Rank. Let
T =

∑
i,j,k tijkxiyjzk be a tensor of order three. The

support of T is the set of index-tuples of T that contain
a nonzero value. In notation, we write suppT =
{(i, j, k) ∈ I×J×K : tijk 6= 0} for the support of T . The
weight of a tensor is the size of its support. Equivalently,
viewing T as a multivariate polynomial, the weight of T
is the number of monomials with a nonzero coefficient
in T . We write wtT = | suppT | for the weight of T .
For example, from (12) we have that wt 〈s, t, u〉 = stu
with

(20) supp 〈s, t, u〉 = {(ij, jk, ki) : i ∈ [s], j ∈ [t], k ∈ [u]} .

Cohn and Umans [28] introduced the following
generalization of tensor rank. The support rank of T
is the minimum rank of a tensor Ts for which suppTs =
suppT . We write rks T for the support rank of T . It
is immediate that rks T ≤ rkT . Furthermore, support
rank is easily verified to be submultiplicative but not
isomorphism invariant since an isomorphism may alter
the support of a tensor. Support rank is invariant under
permutation isomorphism.

2.5 Subtensors. Let T be a tensor represented as a
multilinear form. We say that a tensor S is a subtensor
of T if S can be obtained from T by deleting zero or
more monomials. Or what is the same, viewing S and
T as arrays with the same shape and indexing, S is a
subtensor of T if we can obtain S from T by setting zero
or more entries in the support of T to zero.

We write subT for the set of all subtensors of T . We
have | subT | = 2wtT . The set of subtensors is clearly
basis-dependent and thus not isomorphism invariant.

The present definition of a subtensors is also some-
what more general than what is considered in works that

16Optimizing the number of additions in the resulting algo-
rithm, however, is in general a computationally nontrivial task
even over the binary field F2 (see e.g. [46, 49]). For the Strassen–
Winograd algorithm, the optimized template can be found in (33).

typically address partial tensors associated with ma-
trix multiplication. For example, Schönhage [66] studies
subtensors of 〈s, t, u〉 that are obtained by setting entire
fibers [50] of entries across the tensor to zero, whereas
our present definition allows us to set any entries to zero
independently of each other. A similar difference occurs
with the study of restrictions and degenerations [70]. In
essence, under our present definition 〈s, t, u〉 has 2stu

distinct subtensors, whereas if one works along fibers,
the number of subtensors is at most 2st+tu+us.

2.6 Border Rank. Recall that we can view tensors
of order three as trilinear forms T ∈ F[x, y, z] with the
property that every monomial of T contains exactly one
variable from each of the three groups of variables x, y,
and z. Let us introduce a new indeterminate ε and
write Fε = F[ε] for the univariate polynomial ring with
indeterminate ε and coefficients in F.

Let us now view the tensor T as an element of the
polynomial ring Fε[x, y, z]. We say that T admits a
representation using m multiplications if there exist (i)
a nonnegative integer h, (ii) linear forms α`(x) ∈ Fε[x],
β`(y) ∈ Fε[y], and γ`(z) ∈ Fε[z] for ` = 1, 2, . . . ,m, and
(iii) tensors E(1), E(2), . . . , E(e) ∈ F[x, y, z] such that

m∑
`=1

α`(x)β`(y)γ`(z) = εhT +

e∑
u=1

εh+uE(u)
(21)

We say the representation (21) has order h and that
εh+1E1 + εh+2E2 + . . .+ εh+eEe is the error associated
with the representation. The error degree of the repre-
sentation is e. By truncating the forms as appropriate,
without loss of generality we have e ≤ 2h.

The border rank of T is the least m such that T
admits a representation (21) using m multiplications.
We write rkT for the border rank of T . Border rank is
isomorphism invariant. Since representations of degree
zero reduce to tensor rank, we have rkT ≤ rkT .

For example, the following linear forms due to
Bini [13] give a representation for the weight-6 tensor

x11y11z11 + x12y21z11 + x21y11z12+

x11y12z21 + x12y22z21 + x21y12z22

(22)

using 5 multiplications:

α1(x) = εx11 + x12
α2(x) = εx11 + x21
α3(x) = −x12
α4(x) = −x21
α5(x) = x12 + x21

β1(y) = y12 + εy22
β2(y) = y11
β3(y) = y12
β4(y) = y11 + y12 + εy21
β5(y) = y12 + εy21

γ1(z) = z21
γ2(z) = z11 + εz12
γ3(z) = z11 + z21 + εz22
γ4(z) = z11
γ5(z) = z11 + εz22

.

(23)

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited505

D
ow

nl
oa

de
d

02
/0

6/
20

 to
 1

30
.2

33
.1

91
.1

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

This representation has order 1 and error degree 2. We
also observe that (22) is a subtensor of 〈2, 2, 2〉.

2.7 Groups and Group Actions. Let G be a group
and let G act on a set Φ. For φ ∈ Φ and g ∈ G, we
write φg ∈ Φ for the image of φ under the action of
g. We write φG = {φg : g ∈ G} for the orbit of φ
under the action of G. We say that G acts transitively
on Φ if there exists a φ ∈ Φ with Φ = φG. For a finite
nonempty set Φ, let us write Sym(Φ) for the group of all
permutations of Φ with composition of permutations as
mappings as the group operation. We say that Sym(Φ)
is the symmetric group on Φ.

Let I, J , and K be finite nonempty index sets and
suppose that G acts on each of I, J,K. This induces an
action on the set of all tensors in F[x, y, z] = F[xi, yj , zk :
i ∈ I, j ∈ J, k ∈ K] by extending the monomial-wise
action given by (xiyjzk)g = xigyjgzkg linearly to sums
of monomials.

2.8 Support-Transitivity of Matrix Multiplica-
tion. For positive integers s, t, u, suppose that the in-
dex sets I, J , and K have the product structure I =
[s]× [t], J = [t]× [u], and K = [u]× [s]. We let the direct
product group Gstu = Sym([s]) × Sym([t]) × Sym([u])
act on I × J ×K so that g = (σ, τ, υ) acts on a tuple of
indices (i1j2, j1k2, k1i2) ∈ I × J ×K by

(24) (i1j2, j1k2, k1i2)g = (iσ1 j
τ
2 , j

τ
1 k

υ
2 , k

υ
1 i
σ
2) .

When extended to tensors of shape st × tu × us,
this action has the property that it fixes the matrix
multiplication tensor 〈s, t, u〉. That is, for all g ∈ Gstu
we have 〈s, t, u〉g = 〈s, t, u〉. Thus, Gstu defines a group
of permutation automorphisms of 〈s, t, u〉. Comparing
(20) and (24), we also observe that Gstu acts transitively
on supp 〈s, t, u〉. That is, 〈s, t, u〉 is a support-transitive
tensor. Furthermore, the set of subtensors sub 〈s, t, u〉 is
a union of orbits of the action of Gstu on F[x, y, z]. This
will be a key property in understanding the probabilistic
rank of matrix multiplication tensors.

3 Probabilistic Rank.

This section develops our key tools for working with
the probabilitistic rank of a tensor (Definition 1.2). We
start by at least partially justifying the term “rank”
by showing that probabilistic rank is submultiplicative
under Kronecker products. We then continue to char-
acterize probabilistic rank as the optimum of a cover-
ing linear program developed over the set of subtensors.
This characterization establishes that probabilistic rank
is a well-defined notion, and enables us to localize its
analysis to the study of rank–weight ratios of individ-
ual subtensors in the important special case of tensors

that admit a support-transitive group of permutation
automorphisms, such as matrix multiplication tensors.
Our main result in this section is a proof of Lemma 1.1,
which enables our subsequent study of matrix multipli-
cation tensors via templates.

3.1 Submultiplicativity. We state the lemma for
probabilistic tensor rank, but a similar result holds for
probabilistic border rank.

Lemma 3.1. (Submultiplicativity) Let T1 and T2

be tensors of the same order. Then,

r̃kT1 ⊗ T2 ≤ r̃kT1 · r̃kT2 .

Proof. Let T̃1 and T̃2 be probabilistic tensors that sup-
port T1 and T2 elementwise with probabilities at least
p1 and p2, respectively. Furthermore, assume that
r̃kT1 = ES1∈T̃1

[rkS1]p−1
1 and r̃kT2 = ES2∈T̃2

[rkS2]p−1
2 .

Let T̃ be the probabilistic tensor defined by indepen-
dently drawing two tensors S1 ∈ T̃1 and S2 ∈ T̃2 and
then forming their Kronecker product S = S1 ⊗ S2.
Since S1 and S2 are independent, we observe that T̃
supports T = T1 ⊗ T2 elementwise with probability at
least p = p1p2. Since tensor rank is submultiplicative
and S1, S2 are independent, we observe that

r̃kT1 ⊗ T2 ≤ ES1⊗S2∈T̃ [rkS1 ⊗ S2]p−1

≤ ES1⊗S2∈T̃ [rkS1 · rkS2]p−1

= ES1∈T̃1
[rkS1]p−1

1 ES2∈T̃2
[rkS2]p−1

2

= r̃kT1 · r̃kT2 .

3.2 Characterization by Linear Programming.
Let us now characterize probabilistic rank through
linear programming and tensor ranks of subtensors.
This will in particular establish that the minimum in
Definition 1.2 always exists. The characterization for
probabilistic border rank is obtained in a similar way
by replacing rank with border rank.

Let T be a nonzero tensor and let S ∈ subT be a
subtensor. For brevity, let us abbreviate rS = rkS. Let
us associate a formal variable xS with S, and similarly
let us associate a formal variable yijk with every three-
tuple ijk ∈ suppT in the support of T . Let us write
Sijk for the entry of S at position ijk ∈ suppT .

Let us study the following linear programs. The
primal program is to

minimize
∑
S∈subT rSxS

subject to∑
S∈subT [[Sijk 6= 0]]xS ≥ 1 for all ijk ∈ suppT ,

xS ≥ 0 for all S ∈ subT .

(25)

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited506

D
ow

nl
oa

de
d

02
/0

6/
20

 to
 1

30
.2

33
.1

91
.1

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

The dual program is to

maximize
∑
ijk∈suppT yijk

subject to∑
ijk∈suppT [[Sijk 6= 0]]yijk ≤ rS for all S ∈ subT ,

yijk ≥ 0 for all ijk ∈ suppT.

(26)

Let us first observe that any feasible solution x of the
primal (25) defines a probability distribution over the
subtensors in subT , and vice versa. Indeed, we can
take the probability of S ∈ subT to be

(27) pS =
xS∑

S∈subT xS

and observe that 0 ≤ pS ≤ 1 with
∑
S∈subT pS = 1. Let

T̃ be the probabilistic tensor for which the probability
of S is pS for all S ∈ subT . From (25) and (27) it
follows that T̃ supports T elementwise with probability
at least

p =
1∑

S∈subT xS
.

Furthermore, we observe

ES∈T̃ [rkS]p−1 =
∑

S∈subT

rSpSp
−1 =

∑
S∈subT

rSxS .

Thus, we have just shown:

Lemma 3.2. (Probabilistic rank via LP) For a
nonzero tensor T , the optimum of the linear program
(25) is exactly the probabilitic rank r̃kT .

3.3 Support-Transitive Tensors. The objective of
this section is to study the linear programs (25) and (26)
when T is support-transitive and prove Lemma 1.1.

Let T be a nonzero tensor that admits a group G
of permutation automorphisms that acts transitively on
the support of T . In particular, the action of G extends
to an action on subT since for all S ∈ subT it holds
that suppS ⊆ suppT and thus suppSg = (suppS)g ⊆
(suppT)g = suppT for all g ∈ G.

Select an arbitrary nonzero S0 ∈ subT . Since G
consists of permutation automorphisms, we have wtS =
wtS0 and rkS = rkS0 for all S ∈ SG0 . For ijk ∈ suppT ,
let us write Pijk for the set of all tensors S ∈ SG0 with
the property that ijk ∈ suppS. Since G is support-
transitive, we observe that for all ijk, i′j′k′ ∈ suppT
we have |Pijk| = |Pi′j′k′ |. Indeed, since there exists a
g ∈ G with i′j′k′ = ijkg, we have that Pi′j′k′ = P gijk.
Let L = |Pijk|.

Introduce the following feasible solution x to the
primal program (25). For all S ∈ subT , set

(28) xS =

{
1
L if S ∈ SG0 ,

0 otherwise .

In particular, we observe that the solution is fea-
sible since for all ijk ∈ suppT it holds that∑
S∈subT [[Sijk 6= 0]]xS =

∑
S∈Pijk xS = L · 1

L = 1. Fur-
thermore, the value of the solution x is

(29)
|SG0 | rkS0

L
.

Counting in two different ways the pairs (ijk, S) with
ijk ∈ suppS and S ∈ SG0 , we observe that

(30) |SG0 |wtS0 = LwtT .

Thus, since the optimum of (25) is exactly the proba-
bilistic rank of T , we conclude that

(31) r̃kT ≤ |S
G
0 | rkS0

L
=

wtT rkS0

wtS0
.

The inequality (7) in Lemma 1.1 now follows since the
nonzero S0 ∈ suppT was arbitrary, and the case of the
zero tensor is immediate.

To complete Lemma 1.1, it remains to establish
that equality holds in (31) for at least one choice of
S0 ∈ suppT . Toward this end, let us study the dual
program (26). For all ijk ∈ suppT , set

(32) yijk =
rkS0

wtS0
.

Thus, the dual program (26) is feasible with respect to
(32) if and only if for all S ∈ subT we have∑

ijk∈suppT

[[Sijk 6= 0]]yijk = wtS · rkS0

wtS0
≤ rkS .

That is, the dual is feasible if and only if we have
rkS0

wtS0
≤ rkS

wtS for all S ∈ subT . That is, the dual is
feasible if and only if the subtensor S0 minimizes the
rank-weight ratio among all subtensors of T . Assuming
the dual solution (32) is feasible, we observe that its
value is wtT · rkS0

wtS0
. By (30) we observe that the dual

value agrees with the primal value (29). Indeed,

|SG0 | ·
rkS0

L
= wtT · rkS0

wtS0
.

Thus, by linear programming duality we have that the
primal solution (28) is the optimum of (25), and thus
in particular we have

r̃kT = wtT · rkS0

wtS0

for exactly those subtensors S0 ∈ subT that minimize
the rank-weight ratio rkS0

wtS0
. Again treating the zero

tensor separately establishes that equality holds in (7)

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited507

D
ow

nl
oa

de
d

02
/0

6/
20

 to
 1

30
.2

33
.1

91
.1

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

for at least one subtensor. This completes the proof of
Lemma 1.1. Furthermore, we now have a way of study-
ing the probabilistic rank of a support-transitive tensor
T by studying the ranks of its subtensors individually.
Furthermore, this study may be restricted to represen-
tatives of orbits under the action of G. Conversely, we
know that the probabilistic tensor that realizes the op-
timum probabilistic rank for a support-transitive tensor
T can be without loss of generality assumed to be uni-
form distribution on an orbit of subtensors that realizes
the optimum rank-weight ratio.

4 Templates and Circuits.

This section develops tools for working with subtensors
of matrix multiplication tensors while simultaneously
tracking the arithmetic complexity over the chosen field
F. The key observation is that the standard techniques
for the complete tensor (the case w = stu) extend to
proper subtensors (the case w < stu). We restrict
the development in the present conference version of
this paper to consider only tensor rank and associated
templates, omitting border rank and its associated
templates.

4.1 Arithmetic Circuits. A circuit is a directed
acyclic graph whose nodes have either in-degree zero
or in-degree two. The nodes of in-degree zero are called
input gates and the nodes of in-degree two are called
arithmetic gates. Each arithmetic gate is labeled either
as an addition or as a multiplication. The two in-arcs
to each addition gate further receive scalars from F as
their labels.17 Each input gate is labeled with a distinct
variable, such as an entry of a matrix, that enables one
to feed input to a circuit or to compose circuits. One or
more gates of a circuit are designated as output gates,
again labeled with variables to enable reading output or
circuit composition.

A circuit is a sum–product–sum circuit if every
directed path from an input gate to an output gate
contains exactly one multiplication gate.

4.2 An Example Circuit Template. Recall the
definition of a circuit template with parameters

〈s, t, u|m,w〉ā,b̄,c̄a,b,c (Definition 1.4).
Let us illustrate circuit templates with a concrete

〈2|7〉47-circuit template obtained from the Strassen–
Winograd algorithm. Below in (33), the leftmost

17With the semantics that an addition gate that takes input
from gates with values x and y via arcs with scalar labels α and β,
respectively, evaluates to value αx+βy. This in particular enables
individual addition gates to capture negation and subtraction as
appropriate.

column displays the matrices of the three groups of
linear forms α, β, γ that define a 〈2|7〉-template, which
can be readily verified by substitution to (15) and
witnessing that T = 〈2, 2, 2〉 results. To obtain a
〈2|7〉47-circuit template, we need to realize each of these
three groups of linear forms using a circuit with 4
addition gates; these realizations are given in the middle
column. Furthermore, we need to realize each of the
three transposed groups of linear forms using a circuit
with 7 addition gates; these realizations are given in the
rightmost column.

(33)

x11 x12 x21 x22
α1 0 0 1 1
α2 0 1 0 0
α3 0 1 0 1
α4 0 1 1 1
α5 1 1 1 1
α6 0 0 1 0
α7 1 0 0 0

α1 = x21 + x22
α2 = x12
α3 = x12 + x22
α4 = α3 + x21
α5 = α4 + x11
α6 = x21
α7 = x11

x11 = α5 + α7

t1 = α4 + α5

t2 = α3 + t1
x12 = α2 + t2
t3 = α1 + t1
x21 = α6 + t3
x22 = α1 + t2

y11 y12 y21 y22
β1 0 0 1 1
β2 0 0 1 0
β3 0 1 0−1
β4 0−1 1 1
β5 0 1 0 0
β6 1 1−1−1
β7 1 0 0 0

β1 = y21 + y22
β2 = y21
β3 = y12 − y22
β4 = y21 − β3
β5 = y12
β6 = y11 − β4
β7 = y11

y11 = β6 + β7
t1 = β4 − β6
t2 = β1 + t1
t3 = β3 + β5
y12 = t3 − t1
y21 = t2 + β2
y22 = t2 − β3

z11 z12 z21 z22
γ1 0 0−1 1
γ2 1−1−1 1
γ3 0 1 0−1
γ4 0 1 1−1
γ5 0 0 1 0
γ6 0 1 0 0
γ7 1 0 0 0

γ1 = z22 − z21
γ4 = z12 − γ1
γ2 = z11 − γ4
γ3 = z12 − z22
γ5 = z21
γ6 = z12
γ7 = z11

z11 = γ2 + γ7
t1 = γ2 − γ4
t2 = γ1 + t1
t3 = γ3 − t1
z12 = γ6 + t3
z21 = γ5 − t2
z22 = t2 − γ3

We can also immediately obtain a 〈2|6, 7〉46-circuit tem-
plate from (33) by deleting the forms α7, β7, and γ7. In
this case the three groups α, β, γ realize (19).

4.3 Coarse-Grained Realization. This section de-
velops coarse-grained parameters for realizing a
〈s, t, u|m,w〉-template as a circuit template. Accord-
ingly, let S ∈ F[x, y, z] be a subtensor of 〈s, t, u〉 of
weight w and let the linear forms α`(x) ∈ F[x], β`(y) ∈
F[y], γ`(z) ∈ F[z] for ` = 1, 2, . . . ,m represent S in the
sense of (15).

Using the procedure illustrated in §2.3 and in (33),
with the forms α and β guiding how to take sums of
the entries of the s × t and t × u left and right inputs,
respectively, to obtain the inputs to each of the m
multiplication gates, and the transposed forms γ guiding
how to sum the m products to obtain the entries of the

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited508

D
ow

nl
oa

de
d

02
/0

6/
20

 to
 1

30
.2

33
.1

91
.1

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

s×u product, we observe that a template can always be
turned into a sum–product–sum circuit that evaluates
the bilinear map Fs×t×Ft×u → Fs×u defined by S using
at most m multiplication gates and the following budget
of addition gates: (i) at most m(st−1) addition gates to
prepare the s× t matrix for multiplication, (ii) at most
m(tu − 1) addition gates to prepare the t × u matrix
for multiplication, and (iii) at most su(m− 1) addition
gates to postprocess the results of multiplication to the
s× u output. By symmetry, we have just shown that:

Lemma 4.1. (Coarse-grained realization)
Suppose that there exists a template with parameters
〈s, t, u|m,w〉. Then, there exists a circuit template with

parameters 〈s, t, u|m,w〉m(st−1),m(tu−1),m(us−1)
st(m−1), tu(m−1), us(m−1).

Or, what is even more coarse-grained, an 〈s, t, u|m,w〉-
template implies a circuit template with parameters
〈s, t, u|m,w〉mstumstu. These parameters will suffice for
asymptotic results such as Theorem 1.1.

4.4 Tools for Circuit Templates. Let us now pre-
pare a set of lemmas for working with circuit templates.
Our key tool will be template composition. The follow-
ing lemma is immediate by symmetry in the definitions.

Lemma 4.2. (Rotation) Suppose that there exits a

circuit template with parameters 〈s, t, u|m,w〉ā,b̄,c̄a,b,c.
Then, there exists a circuit template with parameters

〈t, u, s|m,w〉b̄,c̄,āb,c,a.

The next lemma gives fine-grained control over
template composition. We omit the proof from the
present conference version of this paper.

Lemma 4.3. (Composition) Suppose there exist cir-

cuit templates with parameters 〈s1, t1, u1|m1, w1〉ā1,b̄1,c̄1a1,b1,c1

and 〈s2, t2, u2|m2, w2〉ā2,b̄2,c̄2a2,b2,c2
. Then, there exists a cir-

cuit template with parameters 〈s, t, u|m,w〉ā,b̄,c̄a,b,c where

(34)

s = s1s2

t = t1t2

u = u1u2

m = m1m2

w = w1w2

ā = ā1s2t2 +m1ā2

b̄ = b̄1t2u2 +m1b̄2

c̄ = c̄1u2s2 +m1c̄2

a = a1s2t2 +m1a2

b = b1t2u2 +m1b2
c = c1u2s2 +m1c2

.

Using rotation and composition, we obtain:

Lemma 4.4. (Symmetrization) Suppose that there
exists a template with parameters 〈s, t, u|m,w〉.
Then, there exists a template with parameters
〈stu, stu, stu|m3, w3〉.

We conclude this section by recording the following
detailed description of one of the possible maps that can
be instantiated as a circuit from a circuit a template.
In particular it is immediate that we can localize a
description of the map to the set W . In what follows we
will introduce randomization to effectively randomize
this set.

Lemma 4.5. (Map given by a circuit template)

An 〈s, t, u|m,w〉ā,b̄,c̄a,b,c-circuit template in particular
defines a circuit that computes from given inputs
F ∈ Fs×t and G ∈ Ft×u the output H ∈ Fs×u using
at most ā + b̄ + c additions and at most m multipli-
cations of scalars in F. Moreover, there exists a set
W ⊆ [s] × [t] × [u] of size exactly w such that for all
i ∈ [s] and k ∈ [u] it holds that

(35) Hik =
∑
j∈[t]

(i,j,k)∈W

FijGjk .

Lemma 4.5 thus in particular gives a matrix multi-
plication algorithm over F when w = stu, and a broken
matrix multiplication algorithm when w < stu.

5 Probabilistic Rank of Matrix Multiplication.

This section studies the probabilistic rank of matrix
multiplication tensors with a focus on lower bounds.
We start by deriving an elementary lower bound on
rank of subtensors, which we can then transport using
Theorem 1.4 and template tools to a lower bound on
probabilistic rank. Our main result in this section is
a partial asymptotic derandomization of probabilistic
rank over the complex field, given in Theorem 1.3 in
the introduction. Over finite fields, we do not have
any better lower bounds for probabilistic rank other
than what is given by the general lower bound in
Theorem 5.1.

5.1 Rank of Subtensors. The following elementary
lemma holds for both rank and border rank.

Lemma 5.1. Any subtensor S of 〈s, s, s〉 satisfies
rkS ≥ wtS/s.

Proof. Recall from §2.4 that

supp 〈s, s, s〉 = {(ij, jk, ki) : i ∈ [s], j ∈ [s], k ∈ [s]} .

Partition supp 〈s, s, s〉 to s parts P1, P2, . . . , Ps with

P` = {(ij, jk, ki) : i ∈ [s], j ∈ [s], k ∈ [s], i+j ≡ ` mod s}.

Since S has weight wtS, there exists a part P` such that
| suppS ∩ P`| ≥ wtS/s. Sum the s2 × s2 × s2 tensor S
along the first mode (indexed by ij) to an s2×s2 matrix
and observe that this matrix is a partial permutation
matrix with wtS/s ones, and thus has rank wtS/s.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited509

D
ow

nl
oa

de
d

02
/0

6/
20

 to
 1

30
.2

33
.1

91
.1

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

5.2 A Lower Bound for Probabilistic Rank. The
following lower bound holds for both probabilistic rank
and probabilistic border rank.

Theorem 5.1. For all integers s, t, u, we have

r̃k 〈s, t, u〉 ≥ (stu)2/3 .

Proof. From Theorem 1.4 it follows that there exists an
〈s, t, u|m,w〉-template with r̃k 〈s, t, u〉 = mstu/w. By
symmetrization, we conclude that there exists a tem-
plate with parameters 〈stu, stu, stu|m3, w3〉. In partic-
ular, the subtensor S of 〈stu, stu, stu〉 with weight w3

and rank at most m3 guaranteed by the template must

by Lemma 5.1 satisfy w3

stu ≤ rkS ≤ m3. Rearranging

and taking cube roots, we conclude that m
w ≥ (stu)−1/3.

5.3 A Lower Bound via Support Rank. This sec-
tion proves Theorem 1.3. That is, over the complex
field, we must show that ωs ≤ inf

{
τ : r̃k 〈t, t, t〉 =

O(tτ)
}

. We proceed by a variant of Adleman’s ar-
gument [3] to construct a collection tensors that to-
gether cover the support of 〈t, t, t〉. From Theorem 1.4
it follows that there exists an 〈t, t, t|m,w〉-template with

r̃k 〈t, t, t〉 = mt3/w. Let us transform this template to
the probabilistic tensor T̃ that realizes the probabilis-
tic rank (cf. §3.3). This probabilistic tensor has the
property that T̃ supports 〈t, t, t〉 entrywise with proba-
bility p = w/t3. Let us now draw r independent tensors
S1, S2, . . . , Sr ∈ T̃ from the distribution T̃ . All these
tensors satisfy rkS` = m and wtS` = w. Each outcome
S` is a subtensor of 〈t, t, t〉. Select an arbitrary entry
ijk ∈ supp 〈t, t, t〉 and study the probability ε that none
of the r outcomes satisfies ijk ∈ suppS`. By indepen-
dence, we have ε ≤ (1 − p)r ≤ exp(−pr). We want
t3ε < 1 so that there is at least outcome for the r tensors
S1, S2, . . . , Sr where for every ijk ∈ supp 〈t, t, t〉 there
exists a tensor S` with ijk ∈ suppS`. It suffices to take
r = p−1(δ+ 3 ln t) where δ > 0 is the least positive con-
stant such that r is an integer. Over the complex field it
is possible to find coefficients κ1, κ2, . . . , κr such that the
tensor S =

∑r
`=1 κ`S` satisfies suppS = supp 〈t, t, t〉.

Indeed, observe that finding these coefficients amounts
to finding in an r-dimensional complex vector space a
point not on any hyperplane in a set of t3 hyperplanes
through the origin. Next observe that we have

rkS ≤ mr =
mt3

w
(δ + 3 ln t) = (δ + 3 ln t) r̃k 〈t, t, t〉

and thus rks 〈t, t, t〉 ≤ rkS ≤ (δ + 3 ln t) r̃k 〈t, t, t〉.
Taking logarithms on both sides, we have

logt rks 〈t, t, t〉 ≤
log(δ + 3 ln t)

log t
+ logt r̃k 〈t, t, t〉 .

The inequality (9) now follows by letting t grow with-
out bound. We observe that this proof fails over a fi-
nite field because finding the coefficients κ1, κ2, . . . , κr
is no longer straightforward. Thus, it appears that de-
randomizing probabilistic rank over a finite field is less
straightforward. In applications such as Boolean matrix
multiplication in §6.6, it is possible to rely on an analo-
gous argument over an arbitrary field by introducing a
formal indeterminate δ that keeps the outcomes distinct
from each other.

6 Boolean Matrix Multiplication.

We now prove our main theorems for Boolean matrix
multiplication, namely Theorem 1.1 and Theorem 1.5.

6.1 Randomizing a Template. We start with the
proof of Theorem 1.5. Suppose that there exists a circuit

template with parameters 〈s, t, u|m,w〉ā,b̄,c̄a,b,c. First, let us
introduce randomization to the setting of Lemma 4.5.
Suppose we are given A ∈ Fs×t and B ∈ Ft×u as
input. Draw independently and uniformly at random
three permutations, σ ∈ Sym([s]), τ ∈ Sym([t]), and υ ∈
Sym([u]). Let F = Aσ,τ be the matrix obtained from A
by permuting the rows according to σ and the columns
according to τ . In precise terms, let Fij = Aiσjτ for all
i ∈ [s] and j ∈ [t]. Introduce the matrix G = Bτ,υ in
a similar way. Use Lemma 4.5 to compute the output
matrix H. In particular, recall that there is a fixed set
W ⊆ [s] × [t] × [u] of size W such that for all i ∈ [s]
and k ∈ [u] it holds that Hik =

∑
j∈[t]:(i,j,k)∈W FijGjk.

Permute the output using the inverse permutations to
obtain the matrix C = Hσ−1,υ−1

.
The matrices A, B, and C now satisfy, for all i ∈ [s]

and k ∈ [u],

(36) Cik =
∑
j∈[t]

(i,j,k)∈Wσ,τ,υ

AijBjk ,

where Wσ,τ,υ = {(iσ, jτ , kυ) : (i, j, k) ∈ W} is a
random set with the following key property. For all
(i, j, k) ∈ [s]× [t]× [u] it holds that

(37) Pr
σ,τ,υ

[(i, j, k) ∈Wσ,τ,υ] =
w

stu
.

We remark in passing that an alternative, more
cache-friendly randomization strategy is possible when
the template is a composition of d templates. With
this strategy, at each level ` = 1, 2, . . . , d of the com-
position one applies independent random permutations
σ`, τ`, υ` to each component template in the composi-
tion to obtain the property (37); cf. (5) for an example.
In this case it should be emphasized that the aggregate

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited510

D
ow

nl
oa

de
d

02
/0

6/
20

 to
 1

30
.2

33
.1

91
.1

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

permutations σ, τ, υ are not uniform random permuta-
tions, but (37) holds for the set W . Let us now turn this
randomized map to an algorithm for sketching Boolean
products, and the proof of Theorem 1.5.

6.2 Sketching over the Binary Field. Let U ∈
{0, 1}s×t and V ∈ {0, 1}t×u be Boolean matrices. We
seek to compute the Boolean product P ∈ {0, 1}s×u
defined for all i ∈ [s] and k ∈ [u] by Pik =

∨
j∈[t] Uij ∧

Vjk. Let us use (36) over the binary field F2. Set A = U .
Construct the matrix B from the matrix V by first
setting B = V and then assigning each 1-entry of B to 0
independently with probability 1/2. Now compute the
matrix C from the matrices A and B in (36), working
over F2.

Let us first observe that for all i ∈ [s] and k ∈ [u]
we have that Pik = 0 implies Cik = 0 with probability
1. This establishes (i) of Theorem 1.5.

Next, we claim that Pik = 1 implies Cik = 1
with probability at least w

2stu . To see this, let J =
{j ∈ [t] : Uij ∧ Vjk = 1} and observe that J is
nonempty since Pik = 1. Select an arbitrary j0 ∈
J . Let us condition on the event (i, j0, k) ∈ Wσ,τ,υ,
which by (37) has probability at least w

stu . Given
(i, j0, k) ∈ Wσ,τ,υ, from our randomization of B it
follows that (36) is a nonempty sum of independent
uniformly distributed random variables in F2, and thus
Cij = 1 with probability 1/2. The claim follows. This
completes the proof of Theorem 1.5.

6.3 Sketching over Other Fields. Let us observe
in passing that a similar approach clearly works over
any field of characteristic 2. Indeed, for fields of charac-
teristic other than 2, we can change the implication in
(ii) of Theorem 1.5 from Rik = 1 to Rik 6= 0 and detect
this without decreasing the witnessing probability from
the claimed w

2stu .

6.4 Coarse-Grained Analysis. This section starts
work towards our coarse-grained theorem for Boolean
matrix multiplication (Theorem 1.1) establishing that
the probabilistic rank of 〈s, t, u〉 controls the complexity
of Boolean matrix multiplication from above. We split
the analysis into two cases, namely that of noncontrac-
tive and contractive templates. Fix integers s, t, u ≥ 2
and the constant ε > 0. From Theorem 1.4 we ob-
tain that there exists an 〈s, t, u|m,w〉-template with

r̃k 〈s, t, u〉 = mstu/w.

6.5 Noncontractive Template. Let us first assume
that the template satisfies the inequality

m ≥ (stu)2/3 .

In this case we say that the template is noncontractive.
Let us symmetrize the 〈s, t, u|m,w〉-template to a

〈q, q, q|m3, w3〉-template with q = stu. Observe in
particular that q is a constant. Take a coarse-grained
realization of the template to obtain a circuit template
with parameters 〈q, q, q|m3, w3〉CC for a constant C with
C ≤ m3q3 = m3s3t3u3.

Suppose we are given as input two Boolean matrices
of shape n × n with n ≥ 2. Let d = dlogq ne
and use Lemma 1.2 on the template with parameters
〈q, q, q|m3, w3〉CC to obtain a template with parameters
〈qd, qd, qd|m3d, w3d〉CDCD, where

(38) D =

{
dq2d if m3 = q2,
m3d−q2d
m3−q2 if m3 6= q2.

Let us write δstu = [[m = (stu)2/3]] = [[m3 = q2]]. Since
the template is noncontractive with m3 ≥ q2, we have

(39) D = O(m3d logδstu n) .

Pad the input matrices with zeros so that they have
shape qd×qd and run the sketching algorithm from The-
orem 1.5 (over the field F) for r = d3(q3d/w3d) lnne
repetitions to recover the Boolean product with high
probability. Since each run of the sketching algo-
rithm costs O(m3d logδstu n) operations in F, the total

number of operations in F is O
((
mq
w

)3d
log1+δstu n

)
=

O
(
n

log
(stu)1/3

r̃k 〈s,t,u〉
log1+δstu n

)
. This proves Theo-

rem 1.1 subject to the assumption that the template
is noncontractive.

6.6 Contractive Template. Let us now assume
that the 〈s, t, u|m,w〉-template is contractive with m <
(stu)2/3; that is, with m3 < q2 after symmetrization to
〈q, q, q|m3, w3〉 with q = stu. From Lemma 5.1 applied
to 〈q, q, q|m3, w3〉 we observe that

(40)
w3

q
≤ m3 .

In particular, our assumption m3 < q2 and w = q and
lead to a contradiction, which implies w < q.

The main technical obstacle when working with a
contractive template is that (39) no longer holds, but
rather we have D = Ω(d2d), so it is asymptotically
too expensive to use the template as in the noncon-
tractive case. To work around this obstacle, we pro-
ceed with the following strategy. First, since w < q,
we can amplify the gap between the parameters w and
q using Lemma 1.2 to boost the template to its bth

power 〈qb, qb, qb|m3b, w3b〉 for a positive integer constant
b whose value we will fix later. We will then use a col-
lection of k permuted copies of the boosted template so

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited511

D
ow

nl
oa

de
d

02
/0

6/
20

 to
 1

30
.2

33
.1

91
.1

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

that (i) the collection as a whole becomes noncontrac-
tive with km3b > q2b, and (ii) the union of the supports
of the collection has size W with

(41) W ≥ q3b
(

1−
(

1−
(
w

q

)3b)k)
.

Here k is again a positive integer constant whose value
we will fix later.

Let us now establish that such a collection of k per-
muted copies of the boosted template exists, where by
permutation we mean acting on the boosted template
with a three-tuple of independent permutations σ, τ, υ ∈
Sym([qb]) as in (24). Suppose we select k such three-
tuples of permutations independently and uniformly at
random, and act on the template 〈qb, qb, qb|m3b, w3b〉
with each three-tuple to obtain a collection of k per-
muted templates. The probability that any fixed entry
in the support of 〈qb, qb, qb〉 occurs in the support of at

least one of the k permuted templates is 1−
(
1− w3b

q3b

)k
.

Thus, the expected number of entries in the support of
〈qb, qb, qb〉 that occur in the support of at least one of
the k permuted templates is equal to the right-hand side
of (41). In particular, there exists at least one collection
of k permuted templates for which (ii) holds. Set

(42) k =

⌊
q2b

m3b

⌋
+ 1

so that (i) holds, and let 0 < κ ≤ 1 so that k =(
q2

m3

)b
+ κ. Since m3 < q2, we can make k arbitrarily

large by increasing b.
Without yet fixing the value of b, suppose the

template 〈qb, qb, qb|m3b, w3b〉 realizes via (15) a sub-
tensor S of 〈qb, qb, qb〉 of weight w3b using the forms
α1, α2, . . . , αm3b , β1, β2, . . . , βm3b , and γ1, γ2, . . . , γm3b .

For j = 1, 2, . . . , k, let us write Sj for the jth per-
muted version of S in a collection that satisfies (i)

and (ii). Similarly, let us write α
(j)
1 , α

(j)
2 , . . . , α

(j)

m3b ,

β
(j)
1 , β

(j)
2 , . . . , β

(j)

m3b , and γ
(j)
1 , γ

(j)
2 , . . . , γ

(j)

m3b for the cor-
responding forms that realize Sj .

To control the collection S1, S2, . . . , Sk over an
arbitrary field F, we will extend from F to Fδ = F[δ]
for an indeterminate δ, and eventually use truncated
polynomial arithmetic to return to F. Let

Sδ = S1δ + S2δ
2 + . . .+ Skδ

k

and, for all ` = 1, 2, . . . ,m3b,

γ̂
(1)
` = γ

(1)
` δ, γ̂

(2)
` = γ

(2)
` δ2, . . . , γ̂

(k)
` = γ

(k)
` δk .

We can thus realize Sδ as Sδ =
∑k
j=1

∑m3b

`=1 α
(j)
` β

(j)
` γ̂

(j)
` .

Let us write 〈qb, qb, qb|km3b,W‖k〉CC for a circuit tem-
plate over Fδ that gives a coarse-grained realization of

Sδ using intermediate results of δ-degree at most k via

the forms α
(j)
1 , α

(j)
2 , . . . , α

(j)

m3b , β
(j)
1 , β

(j)
2 , . . . , β

(j)

m3b , and

γ̂
(j)
1 , γ̂

(j)
2 , . . . , γ̂

(j)

m3b for j = 1, 2, . . . , k. In particular,
C is a constant that depends only on the constants
s, t, u,m,w, k, b.

Suppose we are given as input two Boolean ma-
trices of shape n × n with n ≥ 2. Let d = dlogqb ne
and use Lemma 1.2 on the template with parameters
〈qb, qb, qb|km3b,W‖k〉CC to obtain a template with pa-
rameters 〈qbd, qbd, qbd|(km3b)d,W d‖dk〉CDCD, where

D =

{
dq2bd if km3b = q2b,
(km3b)d−q2bd

km3b−q2b if km3b 6= q2b.

Since the template is noncontractive with km3b > q2b,
we thus have D = O

(
(km3b)d

)
.

Pad the input matrices with zeros so that they
have shape qbd × qbd and run the randomized sketch-
ing algorithm from §6.2 and §6.3 using the tem-
plate 〈qbd, qbd, qbd|(km3b)d,W d‖dk〉CDCD over Fδ for r =
d3(q3bd/W d) lnne repetitions. Each sketch obtained is
a qbd × qbd matrix over Fδ, where each entry is a poly-
nomial in δ of degree at most dk. Taking the union
of the supports of the sketches, we recover the Boolean
product with high probability. Indeed, the template
〈qbd, qbd, qbd|(km3b)d,W d‖dk〉CDCD realizes S⊗dδ with sup-
port size W d.

Using truncated polynomial arithmetic to imple-
ment the operations in Fδ, each run of the sketching
algorithm costs O((km3b)d(dk)2) operations in F. The
total number of operations in F is thus

(43) O

(
(km3bq3b)d

W d
log2 n

)
.

Let us now analyse the growth rate of (43) as a
polynomial in n. From (41) and (42), we have

(44)
km3bq3b

W
≤ km3bq3b

q3b(1− (1− (w
q

)3b)k)
≤ q2b + κm3b

1− (1− (w
q

)3b)k
.

Recalling that 1 + x ≤ ex =
∑∞
j=0

xj

j! for all real x, we
have

(45) 1−
(

1−
(w
q

)3b)k ≥ 1− e−k(
w
q
)3b
.

Let us next observe from (42) that

(46) k

(
w

q

)3b

=

(
w3

m3q

)b
+ κ

(
w3

q3

)b
.

Since m3 < q2 by contractivity, we have w3

m3q > w3

q3 .

Recalling from (40) that 1 ≥ w3

m3q , we split into two
cases based on whether equality holds in the inequality.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited512

D
ow

nl
oa

de
d

02
/0

6/
20

 to
 1

30
.2

33
.1

91
.1

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

First, suppose that 1 = w3

m3q . In this case we have

r̃k 〈s, t, u〉 = mq
w = q2/3. Then, from (46) we have that

k
(
w
q

)3b ≥ 1. For all large enough b we thus have from

(44) and (45) that km3bq3b/W ≤ 2q2b/(1− e−1). Thus,

(43) is bounded by O
(
n

2+ 1
b logq

2

1−e−1 log2 n
)
. That is,

for a large enough constant b, we have that (43) is

bounded by O
(
n2+ε

)
= O

(
n

(log
(stu)1/3

r̃k 〈s,t,u〉)+ε)
.

Second, suppose that 1 > w3

m3q . From (45), we have

1−
(
1−

(w
q

)3b)k ≥ ∞∑
j=1

(−1)j+1
(k(w

q
)3b)j

j!

≥ k
(w
q

)3b − (k(w
q

)3b)2

1− k(w
q

)3b
.

(47)

Thus, since 1 > w3

m3q >
w3

q3 , from (46), (47), and (44) it
follows that for all large enough b we have

km3bq3b

W
≤ 2q2b

1
2

(
w3

m3q

)b ≤ 4

(
m3q3

w3

)b
.

Thus, (43) is bounded by O
(
nlogq

m3q3

w3 + 1
b logq 4 log2 n

)
.

For a large enough constant b, (43) is thus bounded

by O
(
n

(log
q1/3

mq
w)+ε)

= O
(
n

(log
(stu)1/3

r̃k 〈s,t,u〉)+ε)
. This

proves Theorem 1.1 subject to the assumption that the
template is contractive.

Acknowledgement.

We are grateful to Andreas Björklund for useful discus-
sions and to the anonymous reviewers for their remarks
that helped to improve this paper.

References

[1] 19th Annual Symposium on Foundations of Computer
Science, Ann Arbor, Michigan, USA, 16-18 October
1978. IEEE Computer Society, 1978.

[2] A. Abboud, R. R. Williams, and H. Yu. More appli-
cations of the polynomial method to algorithm design.
In Indyk [44], pages 218–230.

[3] L. M. Adleman. Two theorems on random polynomial
time. In 19th Annual Symposium on Foundations of
Computer Science, Ann Arbor, Michigan, USA, 16-18
October 1978 [1], pages 75–83.

[4] J. Alman and R. Williams. Probabilistic polynomials
and Hamming nearest neighbors. In V. Guruswami,
editor, IEEE 56th Annual Symposium on Foundations
of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, pages 136–150. IEEE Computer
Society, 2015.

[5] J. Alman and R. R. Williams. Probabilistic rank
and matrix rigidity. In H. Hatami, P. McKenzie, and

V. King, editors, Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages
641–652. ACM, 2017.

[6] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and
I. A. Faradzhev. On economical construction of the
transitive closure of an oriented graph. Sov. Math.,
Dokl., 11:1209–1210, 1970.

[7] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and
O. Schwartz. Communication-optimal parallel algo-
rithm for Strassen’s matrix multiplication. In G. E.
Blelloch and M. Herlihy, editors, 24th ACM Sympo-
sium on Parallelism in Algorithms and Architectures,
SPAA ’12, Pittsburgh, PA, USA, June 25-27, 2012,
pages 193–204. ACM, 2012.

[8] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and
O. Schwartz. Strong scaling of matrix multiplication
algorithms and memory-independent communication
lower bounds. 2012.

[9] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Graph expansion and communication costs of fast ma-
trix multiplication. J. ACM, 59(6):32:1–32:23, 2012.

[10] G. Ballard, C. Ikenmeyer, J. M. Landsberg, and
N. Ryder. The geometry of rank decompositions
of matrix multiplication II: 3 × 3 matrices. CoRR,
abs/1801.00843, 2018.

[11] N. Bansal and R. Williams. Regularity lemmas
and combinatorial algorithms. Theory of Computing,
8(1):69–94, 2012.

[12] A. R. Benson and G. Ballard. A framework for practi-
cal parallel fast matrix multiplication. In A. Cohen and
D. Grove, editors, Proceedings of the 20th ACM SIG-
PLAN Symposium on Principles and Practice of Par-
allel Programming, PPoPP 2015, San Francisco, CA,
USA, February 7-11, 2015, pages 42–53. ACM, 2015.

[13] D. Bini. Relations between exact and approximate
bilinear algorithms. Applications. Calcolo, 17:87–97,
1980.

[14] M. Bläser. Fast matrix multiplication. Theory of
Computing, Graduate Surveys, 5:1–60, 2013.

[15] M. Bläser, M. Christandl, and J. Zuiddam. The border
support rank of two-by-two matrix multiplication is
seven. CoRR, abs/1705.09652, 2017.

[16] H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Ned-
erlof. Deterministic single exponential time algorithms
for connectivity problems parameterized by treewidth.
Inf. Comput., 243:86–111, 2015.

[17] M. Bodrato. A Strassen-like matrix multiplication
suited for squaring and higher power computation. In
W. Koepf, editor, Symbolic and Algebraic Computa-
tion, International Symposium, ISSAC 2010, Munich,
Germany, July 25-28, 2010, Proceedings, pages 273–
280. ACM, 2010.

[18] R. P. Brent. Algorithms for matrix multiplication.
Technical Report STAN-CS-70-157, Stanford Univer-
sity, 1970.

[19] N. H. Bshouty. On the additive complexity of 2 × 2
matrix multiplication. Inf. Process. Lett., 56(6):329–

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited513

D
ow

nl
oa

de
d

02
/0

6/
20

 to
 1

30
.2

33
.1

91
.1

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

335, 1995.
[20] H. Buhrman, M. Christandl, and J. Zuiddam. Nonde-

terministic quantum communication complexity: the
cyclic equality game and iterated matrix multiplica-
tion. In C. H. Papadimitriou, editor, 8th Innovations
in Theoretical Computer Science Conference, ITCS
2017, January 9-11, 2017, Berkeley, CA, USA, vol-
ume 67 of LIPIcs, pages 24:1–24:18. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2017.

[21] P. Bürgisser, M. Clausen, and M. A. Shokrollahi.
Algebraic Complexity Theory. Springer, 1997.

[22] M. Cenk and M. A. Hasan. On the arithmetic complex-
ity of Strassen-like matrix multiplications. J. Symbolic
Comput., 80(part 2):484–501, 2017.

[23] T. M. Chan. Speeding up the four Russians algorithm
by about one more logarithmic factor. In Indyk [44],
pages 212–217.

[24] L. Chiantini, C. Ikenmeyer, J. M. Landsberg, and
G. Ottaviani. The geometry of rank decompositions of
matrix multiplication I: 2 × 2 matrices. Experimental
Mathematics, 2017.

[25] M. Christandl and J. Zuiddam. Tensor surgery and
tensor rank. Comput. Complexity, 2018.

[26] H. Cohn, R. D. Kleinberg, B. Szegedy, and C. Umans.
Group-theoretic algorithms for matrix multiplication.
In 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2005), 23-25 October 2005,
Pittsburgh, PA, USA, Proceedings, pages 379–388.
IEEE Computer Society, 2005.

[27] H. Cohn and C. Umans. A group-theoretic approach
to fast matrix multiplication. In 44th Symposium on
Foundations of Computer Science (FOCS 2003), 11-
14 October 2003, Cambridge, MA, USA, Proceedings,
pages 438–449. IEEE Computer Society, 2003.

[28] H. Cohn and C. Umans. Fast matrix multiplication
using coherent configurations. In S. Khanna, editor,
Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2013, New
Orleans, Louisiana, USA, January 6-8, 2013, pages
1074–1087. SIAM, 2013.

[29] D. Coppersmith and S. Winograd. Matrix multiplica-
tion via arithmetic progressions. J. Symb. Comput.,
9(3):251–280, 1990.

[30] M. Cygan, S. Kratsch, and J. Nederlof. Fast Hamil-
tonicity checking via bases of perfect matchings. J.
ACM, 65(3):12:1–12:46, 2018.

[31] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk,
J. M. M. van Rooij, and J. O. Wojtaszczyk. Solving
connectivity problems parameterized by treewidth in
single exponential time. In R. Ostrovsky, editor, IEEE
52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October
22-25, 2011, pages 150–159. IEEE Computer Society,
2011.

[32] P. D’Alberto, M. Bodrato, and A. Nicolau. Exploit-
ing parallelism in matrix-computation kernels for sym-
metric multiprocessor systems: Matrix-multiplication
and matrix-addition algorithm optimizations by soft-

ware pipelining and threads allocation. ACM Trans.
Math. Softw., 38(1):2:1–2:30, 2011.

[33] A. M. Davie and A. J. Stothers. Improved bound
for complexity of matrix multiplication. Proc. R. Soc.
Edinb., Sect. A, Math., 143(2):351–369, 2013.

[34] P. Drineas, R. Kannan, and M. W. Mahoney. Fast
Monte Carlo algorithms for matrices I: approximating
matrix multiplication. SIAM J. Comput., 36(1):132–
157, 2006.

[35] M. J. Fischer and A. R. Meyer. Boolean matrix
multiplication and transitive closure. In 12th Annual
Symposium on Switching and Automata Theory, East
Lansing, Michigan, USA, October 13-15, 1971, pages
129–131. IEEE Computer Society, 1971.

[36] F. V. Fomin, D. Lokshtanov, F. Panolan, and
S. Saurabh. Efficient computation of representative
families with applications in parameterized and exact
algorithms. J. ACM, 63(4):29:1–29:60, 2016.

[37] M. E. Furman. Application of a method of fast
multiplication of matrices in the problem of finding
the transitive closure of a graph. Sov. Math., Dokl.,
11:1252, 1970.

[38] B. Grayson and R. A. van de Geijn. A high perfor-
mance parallel strassen implementation. Parallel Pro-
cessing Letters, 6(1):3–12, 1996.

[39] J. H̊astad. Tensor rank is NP-complete. J. Algorithms,
11(4):644–654, 1990.

[40] C. J. Hillar and L.-H. Lim. Most tensor problems are
NP-hard. J. ACM, 60(6):Art. 45, 39, 2013.

[41] J. E. Hopcroft and L. R. Kerr. On minimizing the
number of multiplications necessary for matrix multi-
plication. SIAM J. Appl. Math., 20:30–36, 1971.

[42] J. Huang, L. Rice, D. A. Matthews, and R. A. van
de Geijn. Generating families of practical fast ma-
trix multiplication algorithms. In 2017 IEEE Interna-
tional Parallel and Distributed Processing Symposium,
IPDPS 2017, Orlando, FL, USA, May 29 - June 2,
2017, pages 656–667. IEEE Computer Society, 2017.

[43] J. Huang, T. M. Smith, G. M. Henry, and R. A.
van de Geijn. Strassen’s algorithm reloaded. In
J. West and C. M. Pancake, editors, Proceedings of
the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC
2016, Salt Lake City, UT, USA, November 13-18, 2016,
pages 690–701. IEEE Computer Society, 2016.

[44] P. Indyk, editor. Proceedings of the Twenty-Sixth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, San Diego, CA, USA, January 4-6, 2015.
SIAM, 2015.

[45] A. Itai and M. Rodeh. Finding a minimum circuit in
a graph. SIAM J. Comput., 7(4):413–423, 1978.

[46] S. Jukna and I. Sergeev. Complexity of linear Boolean
operators. Foundations and Trends in Theoretical
Computer Science, 9(1):1–123, 2013.

[47] I. Kaporin. A practical algorithm for faster ma-
trix multiplication. Numer. Linear Algebra Appl.,
6(8):687–700, 1999.

[48] I. Kaporin. The aggregation and cancellation tech-

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited514

D
ow

nl
oa

de
d

02
/0

6/
20

 to
 1

30
.2

33
.1

91
.1

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

niques as a practical tool for faster matrix multiplica-
tion. Theoret. Comput. Sci., 315(2-3):469–510, 2004.

[49] E. Karstadt and O. Schwartz. Matrix multiplication,
a little faster. In C. Scheideler and M. T. Hajiaghayi,
editors, Proceedings of the 29th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA
2017, Washington DC, USA, July 24-26, 2017, pages
101–110. ACM, 2017.

[50] T. G. Kolda and B. W. Bader. Tensor decompositions
and applications. SIAM Rev., 51(3):455–500, 2009.

[51] B. Kumar, C. Huang, R. W. Johnson, and P. Sadayap-
pan. A tensor product formulation of strassen’s ma-
trix multiplication algorithm with memory reduction.
In The Seventh International Parallel Processing Sym-
posium, Proceedings, Newport Beach, California, USA,
April 13-16, 1993., pages 582–588. IEEE Computer So-
ciety, 1993.

[52] J. M. Landsberg. The border rank of the multiplication
of 2×2 matrices is seven. J. Am. Math. Soc., 19(2):447–
459, 2006.

[53] J. M. Landsberg. Tensors: Geometry and Applica-
tions, volume 128 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2012.

[54] J. M. Landsberg and M. Micha lek. On the geometry of
border rank decompositions for matrix multiplication
and other tensors with symmetry. SIAM J. Appl.
Algebra Geom., 1(1):2–19, 2017.

[55] J. M. Landsberg and N. Ryder. On the geometry
of border rank algorithms for n × 2 by 2 × 2 matrix
multiplication. Exp. Math., 26(3):275–286, 2017.

[56] F. Le Gall. Powers of tensors and fast matrix mul-
tiplication. In K. Nabeshima, K. Nagasaka, F. Win-
kler, and Á. Szántó, editors, International Symposium
on Symbolic and Algebraic Computation, ISSAC ’14,
Kobe, Japan, July 23-25, 2014, pages 296–303. ACM,
2014.

[57] B. Lipshitz, G. Ballard, J. Demmel, and O. Schwartz.
Communication-avoiding parallel Strassen: implemen-
tation and performance. In J. K. Hollingsworth, edi-
tor, SC Conference on High Performance Computing
Networking, Storage and Analysis, SC ’12, Salt Lake
City, UT, USA - November 11 - 15, 2012, page 101.
IEEE/ACM, 2012.

[58] Q. Luo and J. B. Drake. A scalable paral-
lel Strassen’s matrix multiplication algorithm for
distributed-memory computers. In J. Hightower,
E. Deaton, K. M. George, J. H. Carroll, and D. Oppen-
heim, editors, Proceedings of the 1995 ACM symposium
on applied computing, SAC’95, Nashville, TN, USA,
February 26-28, 1995, pages 221–226. ACM, 1995.

[59] R. Pagh. Compressed matrix multiplication. TOCT,
5(3):9:1–9:17, 2013.

[60] V. Pan. How can we speed up matrix multiplication?
SIAM Rev., 26(3):393–415, 1984.

[61] V. Y. Pan. Strassen’s algorithm is not optimal: Trililn-
ear technique of aggregating, uniting and canceling for
constructing fast algorithms for matrix operations. In
19th Annual Symposium on Foundations of Computer

Science, Ann Arbor, Michigan, USA, 16-18 October
1978 [1], pages 166–176.

[62] V. Y. Pan. Fast feasible and unfeasible matrix multi-
plication. CoRR, abs/1804.04102, 2018.

[63] V. Y. Pan, Q. Luan, J. Svadlenka, and L. Zhao.
Superfast accurate low rank approximation. CoRR,
abs/1710.07946, 2017.

[64] R. L. Probert. On the additive complexity of matrix
multiplication. SIAM J. Comput., 5(2):187–203, 1976.

[65] A. A. Razborov. Lower bounds on the dimension
of schemes of bounded depth in a complete basis
containing the logical addition function. Mat. Zametki,
41(4):598–607, 623, 1987.

[66] A. Schönhage. Partial and total matrix multiplication.
SIAM J. Comput., 10(3):434–455, 1981.

[67] A. V. Smirnov. The bilinear complexity and practical
algorithms for matrix multiplication. Zh. Vychisl. Mat.
Mat. Fiz., 53(12):1970–1984, 2013.

[68] R. Smolensky. Algebraic methods in the theory of
lower bounds for Boolean circuit complexity. In A. V.
Aho, editor, Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, 1987, New York,
New York, USA, pages 77–82. ACM, 1987.

[69] V. Strassen. Gaussian elimination is not optimal.
Numer. Math., 13:354–356, 1969.

[70] V. Strassen. Relative bilinear complexity and matrix
multiplication. J. Reine Angew. Math., 375/376:406–
443, 1987.

[71] L. G. Valiant. General context-free recognition in less
than cubic time. J. Comput. Syst. Sci., 10(2):308–315,
1975.

[72] V. Vassilevska Williams. Multiplying matrices faster
than Coppersmith-Winograd. In H. J. Karloff and
T. Pitassi, editors, Proceedings of the 44th Symposium
on Theory of Computing Conference, STOC 2012, New
York, NY, USA, May 19 - 22, 2012, pages 887–898.
ACM, 2012.

[73] V. Vassilevska Williams and R. Williams. Subcubic
equivalences between path, matrix and triangle prob-
lems. In 51th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS 2010, October 23-26,
2010, Las Vegas, Nevada, USA, pages 645–654. IEEE
Computer Society, 2010.

[74] R. Williams. Faster all-pairs shortest paths via circuit
complexity. In D. B. Shmoys, editor, Symposium on
Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 2014, pages 664–673. ACM,
2014.

[75] S. Winograd. On multiplication of 2 × 2 matrices.
Linear Algebra Appl., 4:381–388, 1971.

[76] H. Yu. An improved combinatorial algorithm for
Boolean matrix multiplication. Inf. Comput., 261:240–
247, 2018.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited515

D
ow

nl
oa

de
d

02
/0

6/
20

 to
 1

30
.2

33
.1

91
.1

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

