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Abstract: Itti and Koch’s Saliency Model has been used extensively to simulate fixation selection
in a variety of tasks from visual search to simple reaction times. Although the Saliency Model
has been tested for its spatial prediction of fixations in visual salience, it has not been well tested
for their temporal accuracy. Visual tasks, like search, invariably result in a positively skewed
distribution of saccadic reaction times over large numbers of samples, yet we show that the leaky
integrate and fire (LIF) neuronal model included in the classic implementation of the model tends to
produce a distribution shifted to shorter fixations (in comparison with human data). Further, while
parameter optimization using a genetic algorithm and Nelder–Mead method does improve the fit
of the resulting distribution, it is still unable to match temporal distributions of human responses
in a visual task. Analysis of times for individual images reveal that the LIF algorithm produces
initial fixation durations that are fixed instead of a sample from a distribution (as in the human case).
Only by aggregating responses over many input images do they result in a distribution, although
the form of this distribution still depends on the input images used to create it and not on internal
model variability.

Keywords: saccade generation; salience model; visual search; leaky integrate and fire model

1. Introduction

Despite limits to the processing capacity of the human visual system, we are quick to make
sensible interpretations of incoming visual information. This ability to select information from our
complex environment is commonly ascribed to attention, the focus of which could be likened to a
spotlight moving across the visual field that highlights its most relevant areas [1]. Shifts of attention
can be endogenous, i.e., top-down and goal-directed, or exogenous, as in bottom-up and driven by
external factors such as perceptual properties of visual stimuli [1,2].

Dominant models of bottom-up attention in tasks like inspection and visual search rely on the idea
that visual saliency influences where we attend; in other words, they assume that properties of a visual
stimulus stand out against properties of other environmental stimuli and capture our attention [3–6].
This concept is based on the feature integration theory (FIT) of attention [7], which states that, at an
early ‘pre-attentive’ processing stage, features are registered in parallel across the whole visual field
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and encoded along a number of perceptual dimensions (orientation, color, spatial frequency, brightness,
etc.), and, at a later ‘attentive’ stage, they are combined to a perceived object with help of attention [4,7].

This concept could be implemented on a level of computational model. In Itti and Koch’s model,
low-level features (for the classical implementation, they are orientation, colors, and intensity) are
extracted from the input image and represented as separate feature maps. At the next step, which
reflects an ‘attentive’ stage, these feature maps are normalized and integrated across spatial coordinates
into a higher representation, i.e., a saliency map, and the location of the most salient stimulus ‘wins’ a
competition between neurons and is therefore attended [6,8]. The final layer of these models of fixation
selection are typically implemented with a winner-take-all (WTA) network of neurons using a leaky
integrate and fire (LIF) model, which is a neuronal activation model able to predict neuronal spikes [8].
To prevent refixations at the most salient locations, the model implements inhibition of return (IOR),
i.e., a mechanism that is commonly believed to impede returning to the recently attended locations
and promotes novelty in visual search [9,10] (see also [11] for an alternative point of view on IOR).

The Saliency Model is thought to be biologically accurate with center–surround receptive field
interactions in visual pathways implemented with a pyramidal architecture of the model; feature-specific
sensitivity of neurons in early visual cortex of the brain, and neuronal activation as spiking patterns
simulated in the LIF component of the WTA layer [6,12]. Also, this family of models has been shown
to produce a reasonable fit to human data in terms of spatial localization of salient stimuli [4,6,13].
Overt attention, in accordance with the definition by Posner [2], is operationalized as the distribution of
gaze fixations across an image (see also the MIT saliency benchmark [14] for accuracy characteristics of
spatial predictions produced by different implementations of the Saliency Model against human data).

The early parallel feature maps of the model combine to produce a saliency map that provides
location and intensity information, and this is the first step in generating the spatial predictions
of fixation locations. The LIF is a two-dimensional neural network model that simulates neuronal
spikes, with each pixel of the saliency map being treated as single neuron representing a neuronal
population with very strong synaptic connections [4]. Artificial neurons in the Saliency Model are
implemented by using a differential equation to simulate the build-up of charge potential at a location
and to fire a pulse once a threshold has been reached. The model for artificial neurons is called leaky
integrate-and-fire, and, despite its relative simplicity, it was shown to predict single cell firing patterns
with high accuracy [15,16]. The predictions for temporal distribution of these fixations are generated
by the LIF neurons in the WTA layer based on the one-time input of the salience map.

After nearly 20 years, the standard salience model [4,5] is still used as a solid implementation of
our theoretical understanding. It has inspired many further modifications of the model, including
various attempts to add different implementations of a top-down attentional component [6,8] (for
review, see [17]). However, other algorithms have surpassed the Saliency Model in fixation prediction
and classification. Models based on deep convolutional networks, in particular, have shown better
performance than other models in terms of spatial prediction accuracy. Indeed, according to the MIT
Saliency Benchmark [14], the original Saliency Model, proposed by Itti and Koch [4,18], has moderate
accuracy: the AUC-Judd metric, a version of the Area Under ROC curve [19], is equal to 0.6, while the
best result in the Benchmark is reached by a model with a deep network whose accuracy is 0.88 (or
0.84 for the same model without including center bias in the model). Nonetheless, the model has its
advantage as interpretable and theoretically grounded.

The original salience model is one of a very few models that can not only predict spatial distribution
of attention, but also its temporal dynamics. Moreover, other models that include a temporal component
only predict the scan path (order of the fixations) and not the time course of fixations latency. One key
advantage of the classic model over deep-learning spatial models has been its ability to generate
humanlike fixation times, as well as spatial predictions. This ability of the Itti and Koch’s Saliency
Model [4] to provide temporal predictions of overt attention is the focus of the current research.
The latency of saccades in a viewing or a search tasks is typically measured as the time duration of
the intervening fixation and the temporal profile of these fixations in search tends to have a distinct
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positively skewed distribution [20–22]. While the LIF model has been tested for its neural spiking
accuracy, however, there is little research on how well the classic model itself reproduces temporal
dynamics of overt attention. The past few decades have brought a number of other approaches
addressing temporal accuracy of responses [23–25] that simulate a typical profile of the temporal data
well. However, these approaches address the temporal aspect only, with the location of attentional
shift in abstract space. The Saliency Model remains one of the few that, in principle, has the capability
to simulate both aspects with relation to the underlying biological mechanisms. In the present study,
we test the temporal accuracy of the classic LIF + WTA combination and determine which parameter
space of the Saliency Model accurately fits temporal aspects of human data, if any.

Proposal: Specifically, given the Itti and Koch model’s [4] longevity and its ability to generate
saccades using LIF, we wanted to test the model’s accuracy in reproducing latency distributions
against human data from a visual search task. Multiple attempts of optimal parameter choice were
used to match human data, with the initial attempt being the default parameter settings found in
Walther and Koch’s [5,26] implementation. Following this step, we trained the LIF by adjusting its
default parameters with a genetic algorithm (GA) [27] and the MATLAB built-in optimizer fminsearch,
which uses the Nelder–Mead (NM) method [28,29] to find the optimal parameter space for temporal
predictions. While these LIF parameters are also involved in spatial prediction (via the WTA layer),
our optimization only considered the temporal accuracy for this initial stage. Therefore, if the LIF is
able to simulate an accurate temporal distribution, it would be reasonable to search for a parameter
space where spatial and temporal accuracy would both be high.

2. Materials and Methods

2.1. Data Collection

The model’s predictions were tested against human data collected from 91 test images presented
on a 21” LCD monitor as a part of visual search experiment. Human data were collected as a part of a
previous study [30]. Participants (N = 18) performed a visual search task on the images of natural
indoor scenes taken from the LabelMe open database [31] (see the examples in Figure 1). The total
amount of obtained data contained 35 blocks of trials for a visual task (18 participants × 2 blocks, one
block was excluded as incomplete).
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The experiment consisted of two blocks (of 45 and 46 trials), with the goal of searching for
“cups” or “paintings”, respectively. The target remained the same within an experimental block,
but the order of the blocks and of the images presented within blocks were randomized for each
participant. The number of target objects varied for each image, and no participant saw the same
image twice. Each trial began with the instruction to search for a particular target shown on the screen
until a joystick-button press initiated the trial. A fixation cross was then displayed for one second,
until the appearance of the search image. The search image was presented for eight seconds, and
participants were asked to search through the image and specify the number of target objects shown
after its removal by pressing the joystick up and down buttons. Figure 2 shows the trial sequence.
Eye movements were monitored with the Eyelink 1000 eye-tracking system (SR Research Ltd., Ottawa,
ON, Canada), sampling at 1000 Hz. Written informed consent was obtained before the experiment
from each participant. The experiment and consent form were approved by HSE ethics committee.
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Figure 2. The trial sequence based on the description in [30].

The current study used two datasets from the experiment described above. The first dataset
contained a subset of the data collected on 44 pictures. Information includes 782 first fixations (29,528
fixations in total). This dataset was used in Experiments 1–3. The second, larger dataset contained data
collected on 91 pictures, with 1593 first fixations (60,186 fixations in total), and was used in Experiments
3 and 4. We are providing the total numbers of the observations in the eventual datasets used in the
study after all preprocessing and the exclusion of outliers (see below). For our purposes, we extracted
the information about the latency of the first fixation made by participants after the onset of the image
(i.e., the first fixation where both onset and offset occur while the image is on the screen). Since the
WTA layer implements IOR as a separate mechanism from the LIF, we wanted to ensure that we were
comparing distributions generated by the LIF layer alone. For this reason, fixations influenced by IOR
in both our model, and human data were not tested. In principle, however, latency distributions with
and without IOR both have the typical skewed distributions observed in most human responses [32,33].
Eye movement events (such as saccades, fixations, and blinks) were automatically detected by Eyelink
algorithms, with saccade detection set at 35 degrees per second [34,35]. Fixations longer than 1500 ms
were considered to be outliers and were excluded from further analysis (1% and 3% of data, respectively,
to the datasets). The materials are available upon request.
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2.2. Saliency Model Implementation

We modified the algorithm developed by Walther and Koch [5], which is an extended version
of the Itti et al. [12] implementation of the Koch and Ullman [3] Saliency Model that accounted for
attending to proto-object regions [36] and incorporated feedback connections. The source toolbox code
was modified by separating the first-stage saliency map production from the LIF and WTA components
of the model’s implementation. Although the method of the model’s prediction was not changed,
this allowed testing temporal accuracy and modifying the LIF parameters separately from the spatial
saliency map. The final structure of the model is shown in the Figure 3.
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Figure 3. The figure shows the structure of the model used in the study. The spatial component
produces a saliency map, which is used as an input for the temporal component, represented by a WTA
network. The final outcome of the model is a predicted fixation, with its latency and spatial location.

In this implementation, salience maps were produced once per image, and fixations in the model
were generated by the LIF neurons in the WTA layer based on that salience map. The input current of
LIF neurons in the model was initialized to the value of the saliency map for each region, multiplied by
a constant for scaling out range, and with some additional added noise. The voltage of each neuron
was updated, iteratively, according to the following formula and included all parameters listed in
Table 1:

Vnew = Vold + dt · C ((I − Gleak (V − Eleak) − Gexc (V − Eexc) − Ginh (V − Einh)) (1)

The neuron fires if the membrane potential V is higher than the threshold potential Vthresh.
The input conductivity parameter, Ginput, is used to convert the saliency map from the previous layer
of the model to the input current, I.
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Table 1. LIF parameters of the Saliency Model [5]. For more details about the specific implementation,
see [18] and the Matlab SaliencyToolbox [26].

Parameter Meaning

dt time step for integration (1 × 10−3 ms)
Eleak leak potential
Eexc potential for excitatory inputs
Einh potential for inhibitory inputs

Gleak leak conductivity
Gexc conductivity of excitatory channels
Ginh conductivity of inhibitory channels

GinhDecay time constant for decay of inhibitory conductivity
Ginput input conductivity
Vthresh threshold potential for firing

C membrane capacitance
V current membrane potential
I current input current

2.3. Optimization Procedure

The optimization methods are described here, with details that are common to all experiments.
Where the procedures differ, the details will be provided later for each experiment.

The Saliency Model, as provided by the authors, was set with initial parameter values, so we used
this as a baseline parameter set whenever initialization was required, as defined in [5].

In order to optimize the parameters in our test versions, we chose to use GA and NM methods.
The optimized parameters included the parameters of the LIF component (the potential for excitatory
and inhibitory channels, the leak conductivity, the input conductivity, the threshold potential for
firing, and capacity) and the WTA component (capacity, the leak conductivity, and the conductivity of
inhibitory channels), as well as three noise parameters (the amplitude of random noise, the amplitude
of constant noise, and the range of the saliency map output) for all the optimization experiments.

For both optimization algorithms, the fitness function used statistical tests comparing the
distribution of human fixation durations to the distribution generated by the model. Specifically, we
minimized the statistic values from a combination of statistics from Kolmogorov–Smirnov (KS) test
and z-tests of the ground truth (the observed human data) and simulated distributions. Information
about particular fitness functions that were used in different runs is provided in Table 2.

The optimization procedure always started with the default parameters suggested in Walther and
Koch’s [5] implementation, if not otherwise specified. The search space for the new parameters was
not limited. The GA had 40 contenders in each generation, and the mutation range was set up to 10%,
with the direction and percentage value randomized on a given instance. The lowest 10 contenders
were reset to the initial parameters.

The NM method was used with default stop criteria of the Matlab fminsearch function [28,29]. GA
was run for 50 generations or until the optimization procedure had found parameters able to produce a
distribution statistically indistinguishable from the ground truth by Kolmogorov–Smirnov and Z-test.
According to machine-learning practice, larger training datasets lead to better model performance.
Based on this fact, we repeated the optimization on the training dataset by using additional data.
We increased the human dataset by adding data collected on the other 47 images. There was no
separated testing dataset in the study. The final set of parameters for each experiment could be found
in Appendix A.



Brain Sci. 2020, 10, 16 7 of 19

Table 2. Summary of the optimization procedure parameters used in the study.

Optimization Procedure Generated Data Sample Size Ground Truth Data

Experiment 1

No optimization (the default parameters were
used) 44 data points

44 images
first (initial) fixations duration only
sample size N = 782

Experiment 2

Optimization functions that were used in
different runs

- for GA

(1) Kolmogorov–Smirnov statistic +
Z-test statistic

(2) First the contenders that didn’t pass
Z-test were sorted to the end of the
list; than the rest were compared by
Kolmogorov–Smirnov statistic

- for NM method

(1) Kolmogorov–Smirnov statistic +
Z-test statistic

44 data points

The same as in Experiment 1
(44 images
first fixations duration only
sample size N = 782)

Experiment 3

Optimization functions were the same as in
Experiment 2

(1) 440 data points
(2) 910 data points

(1) The same as in Experiment 1
(44 images
first fixations duration only
sample size N = 782)
(2) 91 images
the first fixations duration only
sample size N = 782

Experiment 4

- for GA:

sum of Kolmogorov–Smirnov statistic
obtained on each image.

- for MN-method:

sum of Kolmogorov–Smirnov statistic
obtained on each image

910 (10 per image)

91 images
mean sample size per image n = 661,
total N = 60,186 (all fixations, not only
the first ones)

Statistics were obtained by Matlab ks.test and ztest functions (software version R2014b) during an
optimization run and for evaluation of the obtained results. The plots were created in R (version 3.5.2)
via ggplot2 package (v 3.2.1); the descriptive statistics were also calculated in R.

3. Experiment 1: Testing the Default Parameters

3.1. Methods of Experiment 1

First, we tested the temporal predictions of the model with the default parameter space, as defined
in [5], against the first saccades taken from the human data in the first dataset.

3.2. Results of Experiment 1

The obtained distribution of predicted reaction times (RT) did not match the observed human
data. The histograms of model results and the human data, with the corresponding density functions
superimposed, are shown in the Figure 4.
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< 2.2 × 10−16.

Although the model did produce a skewed distribution, the default model produced shorter
fixation durations in comparison to the human data and showed a narrower standard deviation
interval (z = 16.38, p < 2.2 × 10−16) (model statistics: mean = 150 ms, SD = 146 ms; human data:
mean = 190.8 ms, SD = 77.7 ms). We compared the generated distribution of times to those produced
by human participants, using the Kolmogorov–Smirnov test, and we were able to dismiss the null
hypothesis that the two were sampled from the same distribution (KS-test: D = 0.58067, p < 2.2 × 10−16,
see Figure 4).

The default parameter space, therefore, cannot be considered as acceptable for modeling temporal
aspects of saccadic movements.

4. Experiment 2: Parameter Optimization

4.1. Methods of Experiment 2

In order to obtain better temporal accuracy, we optimized the default parameters of the Saliency
Model with GA and NM methods. The optimized parameters included all parameters of the LIF
component, as well as the three additional noise parameters.

4.2. Results of Experiment 2

The best result was obtained with the NM method. A z-test showed that the mean and standard
deviation of two distributions were not statistically different (z = 0.00075273, p = 0.9994), however,
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based on a two-sample Kolmogorov–Smirnov test, we were able to dismiss the hypothesis that model
and human data were from the same distribution (D = 0.22506, p = 0.02939). A visual inspection of the
results (Figure 5) also revealed multimodality in the generated data that was not typically observed in
human data and likewise did not show typical positive skewness. The Saliency Model showed poor fit
to the ground truth.
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Figure 5. The predictions of the Saliency Model with the optimized set of LIF parameters from
Experiment 2 pictured against the human data. The model generated one initial saccade per image (for
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5. Experiment 3: Increased Number of Fixations

5.1. Methods of Experiment 3

We next looked into the parameter space to see where possible sources of variability in fixation
durations might arise. Considering that the Saliency Model has random components (constant and
random noise: parameters noiseAmpl and noiseConst of the Saliency Model) in the LIF layer, there
was the possibility that these could improve the fixation-duration distributions. To give this parameter
the best chance to influence the resulting distribution, we increased the number of fixations that were
generated by the model for each image. Fixations per image were increased to 10, although each of
these fixations was generated independently as a ‘first’ fixation (i.e., without IOR).

The experiment consisted of two runs. In the first one, the generated distribution consisting
of 440 saccades (10 saccades for 44 images) was compared with the human data. The optimization
procedure was the same as in Experiment 2, except for the number of predictions produced by the
model. The optimization procedure started with the default parameters in each optimization run.

The larger training datasets could lead to better model performance, so we repeated the
optimization on the training dataset by using additional data. We increased the human dataset



Brain Sci. 2020, 10, 16 10 of 19

by adding data collected on the other 47 images; the new dataset had 91 images in total, collected from
the same 18 participants. The new dataset contained information about 1593 initial fixations (60,186
fixations totally) (see Section 2.1, “Data Collection”, for more details).

5.2. Results of Experiment 3

The distribution of latencies produced by the best parameters was closer to the ground truth of the
human data (Figure 6). The 10 generated saccades per image were compared to the original 44 image
dataset, and they matched in means and standard deviations (z = –0.013418, p = 0.9893), but the KS-test
again rejected the null hypothesis that both samples came from the same distribution (D = 0.19182,
p = 2.007 × 10−9).
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For the second optimization run, we used the increased dataset with 91 pictures, resulting in a
worse fit with human data (Figure 7) and did not match with the mean of the distribution (z = 3.1117,
p = 0.00186), the KS-test also showed unsatisfying of the results (D = 0.15857, p = 1.305 × 10−9).
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Figure 7. The Saliency Model’s predictions with the fourth parameters space, learned on the 91 pictures’
dataset. The model generated ten initial saccades per image.

The analysis revealed that noise, which was supposed to increase similarity to the real human
data, did not produce enough randomness in the model predictions. The default amplitude of random
noise was 10−17, and the amplitude of constant noise was 10−14. This was apparently too small, and
the model seemed to learn to produce a distribution of the fixation durations based only on differences
in saliency of different images. This, of course, differed from the ground truth of human reactions.

6. Experiment 4: Learning New Parameters on Data Separated by Pictures

6.1. Methods of Experiment 4

Our human dataset contained 16–19 initial fixations per image (pooled from all participants), and,
as expected, there was natural variability in duration of initial fixations for the same image across
participants (see Figure 8). The shape of the fixation duration distribution again has typical positive
skewness of RT distribution, even for the data obtained on one image (Figure 8). Since the model did
not learn to use noise to produce various outputs, we restricted it to determine whether it could predict
the duration of initial fixations given a particular picture.

The next version of the training algorithm was used to prevent our model from relying on different
levels of input saliency to produce the distribution. The human data were divided into images, and an
optimization function was set up as a sum of KS-statistics calculated for model predictions against
the ground truth for each image separately. Since we only had a limited number of first human
fixations per image, we used data from all fixations as the ground truth, to train the parameters for the
image distributions.
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image, nonetheless tend to produce a right-skewed distribution, typical for any RT distribution.

6.2. Results of Experiment 4

The best parameters of the trained model confirmed our concerns showing that the algorithm
was not able to find an accurate set of parameters when forced to incorporate variance from its own
parameters rather than from the images. The distribution produced by the resulting parameter space
was not close to the ground truth of human data (D = 0.19327, p < 2.2 × 10−16; see Figure 9).
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dataset. The model generated ten initial saccades per image. Z-test statistics: z = 6.5611, p = 5.341 ×
10−11; KS-statistics: D = 0.19327, p < 2.2 × 10−16.

The best noise constants were 10−14 and 10−11 for random and constant noise, respectively, and
were able to produce a maximum of two different fixation duration values per image. An attempt
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to increase the parameters manually resulted in a model that failed to generate a saccade within a
two-second interval. On the other hand, the version with manually decreased parameter values was
able to produce only one fixation response per image. These results are due to the fact that these
parameters add the noise directly to the saliency map, which typically has features of the order 10−9, as
shown on Figure 10. The noise does not change the fact that the most salient location triggers the spike
and that particular neuronal spike is deterministic and defines the time of a gaze shift: therefore, the
noise in this model does not impact the dynamics of the model as such but changes its initial values,
which explains low variability between different runs on the same image.
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Figure 10. Examples of an effect of different noise parameters on the saliency map. Adding more noise
only changes the saliency map, which is used as initial data, but does not modify the integration and
firing process itself.

7. Discussion

We tested the temporal accuracy of the classic LIF + WTA salience model architecture in order
to determine whether any parameter space of the model could provide accurate temporal fitting of
observed human data.

The default parameters did not reproduce the temporal dynamics of human visual attention, nor
did the model with multiple attempts to find optimized parameters. Further investigation showed
that the result was highly dependent on variability in the input images, with additional images
even making the final distribution worse. The noise parameters in LIF do not bring much change
to the fixation durations, and they turn them into constant values rather than into samples from a
continuous distribution.

The classic LIF approach is a biologically plausible model of neural-level accumulation that
theoretically could predict both spatial and temporal aspects of fixations and saccadic eye movements.
The great advantage of the LIF neuron is that this model could be considered a connecting link between
low-level modeling of neural activity and modeling of high-level cognitive processes. LIF was shown
to be an accurate model of a single-neuron spiking behavior (and the modified version, generalized
leaky integrate-and-fire, GLIF, can accommodate different types of neurons [37]). Moreover, LIF units
combining in a spiking network were shown to successfully perform demanding cognitive tasks
(such as image processing, solving arithmetic problems, etc. [38]), with a similar performance level to
classical deep artificial neural networks (see [39] for the review).

However, taken with its default parameters, LIF has been shown to be limited in simulating
temporal behavior accurately. Our best results did find a parameter fit that was not different from
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human data in terms of mean and standard deviation and, to a lesser degree, the overall distributions.
The latter, however, was only achieved by using the variance between images, to generate a realistic
distribution, and is a crucial test if we want to evaluate the validity of the assumptions taken by
different models [21]. Other demonstrations [32,33] have shown that the difference between a bias
shift and true improvement in an attentional task cannot be seen in mean RTs, but only in the change
in distribution shape.

This result will probably hold true for any implementation of a biological neuron model that does
not include an intrinsic source of noise during the integration part. As neuron models more complex
than LIF still usually do not provide a source of intrinsic noise, those models should not perform well
at approximating the RT distribution as well.

Other models have been shown to simulate visual search with a high degree of accuracy.
For example, guided search uses an early race component to model competition between early features,
but this is a small component in a larger model. Drift diffusion models perform extremely well on
response distributions [24,32]; however, they restrict the problem by allowing only two signals to
‘race’ toward a single threshold. Finally, there are combinations of classic diffusion algorithms and
LIF, the so-called ‘leaky competing accumulator’ models [23], which include biologically important
features, e.g., an accumulation drop during signal loss (leaky) and lateral inhibition. However, with
this implementation, signals are spatially abstracted and inhibit all other signals, whereas, in the classic
LIF model, a neuron inhibits only its adjacent neurons.

Despite showing high levels of temporal accuracy, leaky competing accumulator models are
similar to other accumulation models in that they lack a true spatial component. The LIF algorithm
represents a true 2D map of visual space, whereas accumulator models abstract space into a number
of key locations, without consideration of their actual proximity. The saliency map may be used to
influence the parameter choice in these accumulator models [40,41], but the accumulator is not a model
of the retinal salience map per se. Accumulators are good at modeling experimental results obtained
under laboratory conditions [25] but they are not applicable to natural scene processing without first
abstracting key locations.

A possible way to overcome current limitation and improve accuracy and comprehensiveness of
the model would be the combination of saliency (as a foundation for spatial predictions) and a race
model, such us drift diffusion model or leaky competing accumulator model, (for temporal prediction)
for better results.

Another possible future direction of the research could be an investigation of temporal dynamics
of the Target Acquisition Model (TAM), proposed by Zelinsky [42,43]. This model provides an alternate
account of human perception, and, like the Itti and Koch’s model, it is well-grounded in cognitive and
neurobiological theory. TAM is able to model gaze-shift latency, but the noise component is also added
to the target map generation stage. Zelinsky and co-authors have considered the problem of temporal
dynamics and reported that their model could suffer from the same problem; however, the model’s
ability to predict eye movement latencies has not been fully tested [44].

To sum up, no current model of visual search generates an accurate model of the full response-time
distributions and spatial locations of saccades. The classic Saliency + LIF model produces both spatial
and temporal data, but it does not output an accurate temporal distribution of RTs, as it does not have
a source of randomness needed to output a distribution.
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Appendix A

The final parameters in each optimization experiment are provided below.

Appendix A.1 Experiment 2.

wta.sm

Eleak: 0,
Eexc: 0.1065906219,
Einh: −0.02107685958,
Gleak: 9.894609018e-09,
Gexc: 0,
Ginput: 5.337295999e-08,
Vthresh: 0.0008468968888,
C: 1.102496522e-09,

wta.exc

Eleak: 0,
Eexc: 0.1041268439,
Einh: −0.02068941848,
Gleak: 9.356995909e-09,
Gexc: 0,
Ginh: 0,
Ginput: 2.656232694e-08,
Vthresh: 0.001210968391,
C: 1.03337653e-09,

wta.inhib

Eleak: 0,
Eexc: 0.1030162526,
Einh: −0.02116698772,
Gleak: 9.596446818e-09,
Gexc: 0,
Ginh: 0,
Ginput: 5.105792852e-08,
Vthresh: 0.001018027772,
C: 1.020098518e-09,

timeStep: 0.001,
smOutputRange: 1.108206351e-09,
noiseAmpl: 9.942605797e-16,
noiseConst: 8.879142166e-13.

Appendix A.2 Experiment 3

(1) The first run
wta.sm

Eleak: 0,
Eexc: 0.1009250677,
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Einh: −0.02007224066,
Gleak: 1.02699624e-08,
Gexc: 0,
Ginput: 4.983690833e-08,
Vthresh: 0.0005360834937,
C: 1.076267842e-09,

wta.exc

Eleak: 0,
Eexc: 0.09885402437,
Einh: −0.01942183543,
Gleak: 1.03233152e-08,
Gexc: 0,
Ginh: 0,
GinhDecay: 1,
Ginput: 4.405453667e-08,
Vthresh: 0.001140167888,
C: 1.109382579e-09,

wta.inhib

Eleak: 0,
Eexc: 0.09633707116,
Einh: −0.02326386049,
Gleak: 1.008793641e-08,
Gexc: 0,
Ginh: 0,
Ginput: 5.04747311e-08,
Vthresh: 0.001018984672,
C: 1.026927422e-09,

timeStep: 0.001,
smOutputRange: 1.062391456e-09,
noiseAmpl: 1.018242784e-15,
noiseConst: 9.88642386e-13.
(2) The second run
wta. sm

timeStep: 0.001,
Eleak: 0,
Eexc: 0.1052790164,
Einh: −0.02132743015,
Gleak: 9.792812288e-09,
Gexc: 0,
Ginput: 5.278942991e-08,
Vthresh: 0.0005497130693,
C: 8.94918705e-10,

wta.exc
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timeStep: 0.001,
Eleak: 0,
Eexc: 0.1045285492,
Einh: −0.02129696363,
Gleak: 1.127142927e-08,
Gexc: 0,
Ginh: 0,
Ginput: 4.216897711e-08,
Vthresh: 0.001043880035,
C: 1.158786096e-09,

wta.inhib

timeStep: 0.001,
Eleak: 0,
Eexc: 0.1042935178,
Einh: −0.02066701205,
Gleak: 1.05123827e-08,
Gexc: 0,
Ginh: 0,
Ginput: 4.704205093e-08,
Vthresh: 0.001004900021,
C: 1.049336853e-09,

timeStep: 0.001,
smOutputRange: 9.210187215e-10,
noiseAmpl: 1.016741992e-15,
noiseConst: 1.010360845e-12.

Appendix A.3 Experiment 4

wta.sm

Eleak: 0,
Eexc: 0.1053274615,
Einh: −0.01834220167,
Gleak: 1.118348755e-08,
Gexc: 0,
Ginput: 4.831627415e-08,
Vthresh: 0.001091101504,
C: 1.048042556e-09,

wta.exc

Eleak: 0,
Eexc: 0.1013037294,
Einh: −0.02034546987,
Gleak: 1.136629615e-08,
Gexc: 0,
Ginh: 0,
Ginput: 1.820687988e-08,
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Vthresh: 0.001192885343,
C: 8.696685367e-10,

wta.inhib

Eleak: 0,
Eexc: 0.1005701907,
Einh: −0.02148144476,
Gleak: 9.585624857e-09,
Gexc: 0,
Ginh: 0,
Ginput: 5.459659917e-08,
Vthresh: 0.001027481599,
C: 9.502088856e-10,

timeStep: 0.001,
smOutputRange: 1.163724762e-09,
noiseAmpl: 9.696348623e-15,
noiseConst: 8.965883592e-12
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