
https://doi.org/10.1103/PhysRevB.91.224303
https://doi.org/10.1103/PhysRevB.91.224303


PHYSICAL REVIEW B 91, 224303 (2015)

Work and heat for two-level systems in dissipative environments: Strong driving and
non-Markovian dynamics

R. Schmidt,1,* M. F. Carusela,2,3 J. P. Pekola,4 S. Suomela,5 and J. Ankerhold6

1School of Mathematical Sciences, University of Nottingham, University Park NG7 2RD, United Kingdom
2Instituto de Ciencias, Universidad Nacional de General Sarmiento, J. M. Gutierrez 1150 (C.P.1613), Los Polvorines, Buenos Aires, Argentina

3CONICET (National Scientific and Technical Research Council), Av. Rivadavia 1917, CABA, Argentina
4Low Temperature Laboratory, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland

5Department of Applied Physics and COMP Center of Excellence, Aalto University School of Science, P.O. Box 11100, 00076 Aalto, Finland
6Institute for Complex Quantum Systems and Center for Integrated Quantum Science and Technology, Ulm University,

Albert Einstein-Allee 11, 89069 Ulm, Germany
(Received 19 December 2014; revised manuscript received 27 April 2015; published 15 June 2015)
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immersed in a bosonic heat bath in domains of parameter space where perturbative treatments fail. This includes
in particular the interplay between non-Markovian dynamics and moderate to strong external driving. Exact data
are compared with predictions from weak-coupling approaches. Further, the role of system-bath correlations in
the initial thermal state and their impact on the heat flux are addressed. The relevance of these results for current
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I. INTRODUCTION

The past few years have seen a rapidly growing interest
in the thermodynamic properties of small systems, in which
fluctuations are essential and provide deeper insight into
the changeover from microscopic to macroscopic behavior.
Accordingly, concepts well-established in classical systems,
such as work and heat, require a careful analysis for quantum
mechanical aggregates [1–4]. The same is true for fluctuation
relations such as the Jarzynski [5] or the Crooks [6] relation,
which on the macro level provide powerful tools to analyze
situations far from equilibrium, e.g., in biological and soft
matter structures [7]. Thus, on the micro level, a number
of possible realizations, including atomic systems [8,9] and
mesoscopic solid-state devices [10], have been put forward
to access signatures of quantum thermodynamics [11,12],
and specific experiments are currently in preparation. Theory
is now challenged to provide tools and methodologies to
understand actual realizations.

The problems encountered by theory are related basically to
two issues, namely the quantum measurement problem [13,14]
and the problem of describing dissipative quantum systems
at very low temperature and in the presence also of strong
external time-dependent fields. This is a regime where one
expects, particularly for pulsed fields, a subtle interplay of
non-Markovian dynamics and driving. With respect to the
first topic, the two-measurement protocol has been shown to
provide, at least formally, a consistent basis for the detection
of work and its moments [13]. Since work is not a decent
quantum-mechanical observable [15], it can only be defined
“operationally” as the difference of eigenenergies before
and after an external drive weighted by the thermal initial
distribution and driving-dependent transition probabilities.
While this recipe can, at least in principle, be implemented
in an actual experiment for isolated systems, the situation for
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open (dissipative) systems is more intricate. Energy projective
measurements of the full compound, including the environ-
mental degrees of freedom, are not feasible, particularly
when system degrees of freedom are strongly correlated or
even entangled with those of thermal reservoirs. A prominent
example that received much attention recently are reservoirs
with sub-Ohmic mode distribution [16–18].

For the second topic, conventional approaches to capture the
reduced dynamics of dissipative quantum systems comprise
powerful methods such as master or Lindblad equations.
However, these treatments are restricted to the domains of
sufficiently weak system-bath interaction, sufficiently elevated
temperatures (Markovian dynamics), and sufficiently weak
driving (see, e.g., [19]). Beyond those domains, corresponding
predictions become unreliable and nonperturbative formu-
lations must be applied [20], for example path integral
Monte Carlo techniques, density-matrix renormalization, or
stochastic Liouville–von Neumann equations. Interestingly,
at least to our knowledge, detailed studies for work, its
moments, and heat flux between a system of interest and
thermal reservoirs in the presence of moderate to strong driving
(with respect to amplitude and driving frequency) and for low
temperatures have not been performed yet. Here, we present
results to close this gap by providing benchmark data for the
generic case of a dissipative two-level system (cf. Fig. 1). Exact
numerical simulations within the recently developed stochastic
Liouville–von Neumann scheme (SLN) [21,22] are compared
to perturbative ones obtained within a simple Lindblad type of
master equation and a quantum jump treatment [2]. Analytical
calculations allow for a qualitative and in certain cases also
quantitative understanding of the driven quantum dynamics.
In addition, the SLN gives access to the impact of correlations
between system and bath in thermal equilibrium. Namely,
when one starts from an initially factorized state between
system and reservoir, which is the typical assumption in
weak-coupling treatments, a heat flux associated with these
correlations is induced [18]. We will apply two different
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FIG. 1. (Color online) A two-level system is immersed in a
bosonic heat bath and subject to an external time-dependent field
over a finite period of time. The work exerted onto the compound
leads partially to a change of internal energy and partially to heat flux
into the bath. Intricate correlations between non-Markovian dynamics
and stronger driving necessitate a nonperturbative treatment at very
low temperatures.

protocols to extract the work, both of which are based on the
two-measurement scheme but on different experimental real-
izations: One monitors the dynamics of a system observable
(power operator), while the other monitors the energy transfer
with the reservoir (photon emission/absorption processes).

The paper is organized as follows. After a discussion of the
model, we give a brief account of the three methods to treat
open-system dynamics employed here (Sec. II). The first and
the second moment of work are the subject of Sec. III, where
we also present analytical findings. In Sec. IV, the heat flux is
obtained within the exact SLN scheme, including the role of
initial correlations. The latter are further addressed in Sec. V,
and we conclude and give prospects for future developments
in Sec. VI.

II. QUANTUM DYNAMICS

We consider a two-level system (TLS) subject to a time-
dependent driving force, i.e.,

HS(t) = H0 + HD(t) = Š
� �
2

�x + �(t) �z, (1)

where

�(t) = �0 sin[�(t Š ti)] �if (t) (2)

has a finite range with �if (t) = 1 for t � [ti ,tf ] and zero
elsewhere.

The TLS is immersed in a bosonic bath (spin-boson
model [20]) with Hamiltonian HR =

�
k � �kb

•
kbk , cf. Fig. 1,

so that the Hamiltonian of the full compound has the standard
form H (t) = HS(t) + HI + HR with HI = �zE, where E =�

k ck(b
•
k + bk) is the bath force. In the continuum limit, the

effective impact of the bath onto the system is then fully
described by the spectral density of its modes J (�) and its
thermal energy kBT � 1/�. In the remainder of this work,
we focus on an Ohmic reservoir with large cutoff frequency

�c, i.e.,

J (�) = � 	� fc(�/�c), (3)

where 	 is a dimensionless coupling constant and fc(x) is a
cutoff function with f (x = 0) = 1,fc(x � 1) � 0. Here, we
choose fc(x) = 1/(1 + x2)2, but the results shown below are
not very sensitive to the specific form of the cutoff function
due to �c � �,�.

Now, given an initial density operator W (0) of the full
compound, the reduced dynamics is determined by


(t) = TrR{U (t,0)W (0)U (t,0)• }, (4)

with the time evolution operator U (t,0) =
T exp[Š i

�

� t
0 ds H (s)] and the trace performed over the

environmental degrees of freedom only. At low temperatures,
the dynamics of driven open quantum systems is a challenging
task since bath-induced memory effects (non-Markovian
dynamics) are intermingled with driving-induced transitions.
Memory effects appear on the time scale max{� �,1/�c},
which in the regime �c� � � 1, as considered here, grows
with decreasing temperature. In the case of periodic driving,
the reduced system will approach a nonequilibrium steady
state for longer times and displays transient behavior initially.
In the context of work, one often addresses only this latter
time domain as external fields appear in the form of pulses
that are relatively short compared to time scales where the
dynamics becomes stationary. Nonperturbative treatments
are thus of paramount importance to arrive at quantitatively
reliable predictions. Here, we compare a numerically exact
formulation, the Stochastic Liouville–Von Neumann equation
(SLN), with two approximate approaches, namely the
Lindblad master equation (LME) and the quantum jump
method (QJ).

A. Stochastic Liouville–von Neumann equation

The SLN can be directly derived from the exact Feynman-
Vernon path integral formulation [20] for the reduced density
operator (4). An unraveling procedure then leads to the
SLN [21,23], which for the driven spin-boson model acquires
the form


̇Z (t) = Š
i
�

[HS(t),
Z ] +
i
�
� (t)[�z,
Z ] +

i
2
�(t){�z,
Z }.

(5)
This equation holds for a single noise realization Z � { �,�},
whereas the physical reduced density 
(t) is gained by
averaging over a sufficiently large number of noise real-
izations, i.e., 
(t) = E[
Z (t)]. While (5) is local in time,
the full non-Markovian dynamics is nevertheless captured in

(t). The correlation functions of the two complex-valued
noise forces � (t) and �(t) reproduce the complex-valued and
nonlocal in time force autocorrelation function of the bath.
Since effectively the noise forces appear as driving forces, an
additional external driving is easily taken into account in (5)
for arbitrary driving strengths and driving frequencies.

The initial state upon which this SLN is based is a
factorizing state W (0) = 
(0) � exp(Š�HR)/ZR with the
initial density 
(0) of the TLS and the partition function ZR
of the reservoir. This allows for a direct comparison with the
approximate formulations for which this initial state is always
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taken for granted. However, the impact of correlated initial
states can be explored as well within the SLN, as will be
discussed below.

B. Lindblad master equation

A very powerful instrument to simulate the dynamics of
open quantum systems are LMEs. While originally formulated
within the mathematical theory of semigroups, LMEs can be
derived from system+reservoir models by employing Born-
Markov perturbation theory together with a coarse-graining
procedure in time; see, e.g., [19,24]. For driven systems, one
has to impose weak driving (small amplitude and/or slow
driving).

For the system under consideration (1), one has


̇ = Š
i
�

[HS(t),
] +
1�

k= 0

�
Lk
L•

k Š
1
2

{L•
kLk,
}

�
, (6)

with Lindblad operators L0 =
� 0,1|0�	 1| and L1 =� 1,0|1�	 0|, where |0� ,|1� are the eigenstates of H0 with values


 � �/2, respectively.
The transition rates nk take the usual form

0,1 =
	
2
�[1 + coth(�� �/2)], 1,0 = 0,1eŠ�� � (7)

with coupling constant 	 as in (3). This, and extended schemes
working, e.g., in a Floquet representation, have been recently
applied in the context of work and its distribution for open
quantum systems [25–28].

C. Quantum jump method

The QJ has been pioneered in quantum optics to describe
emission and absorption processes of single photons by few-
level systems (atoms) [29]. In more general terms, the method
exploits the probabilistic nature of the quantum-mechanical
time evolution by constructing the dynamics |�(t)� � | �(t +
�t)� over a time interval �t according to sequences of jumps
between energy levels with transition probabilities determined
by the corresponding Hamiltonian [24,30]. Practically, one
uses a Monte Carlo procedure to sample individual jump
trajectories, and expectation values are obtained by averaging
over a sufficiently large number of realizations.

This method has recently been formulated to obtain the
work of a driven TLS interacting with bosonic baths [2]. In
this context, one works with a system-bath coupling in the
rotating-wave approximation, i.e.,

HRWA
I =

�

k

(ck bk�+ + c�
k b•

k�Š ), (8)

with spin raising/lowering operators �± = �x ± i�y . Accord-
ingly, the system-bath interaction captures the exchange of
on-shell photons, which can be easily recorded numerically
to obtain the heat transfer from/into the bath during the time
evolution. The corresponding absorption/emission rates of the
TLS are obtained from a Born-Markov treatment, cf. (7). The
change in system energy is monitored by recording the last
photon exchange before and the first after the drive, which
implies two times projective measurements, as shown in [2].
This then allows us to extract very effectively the work and

its distribution for an open few-level quantum system [2]. As
an approximate method, this QJ applies for weak system-bath
couplings and weak driving similar to the LME. In fact, one
can prove that formally the QJ approach leads to the LME.

Below, we will use the LME and the QJ to obtain the
work according to two different schemes that correspond to
two different experimental situations: The LME describes the
dynamics of a system observable, the power operator, while
the QJ monitors the energy exchange with the reservoir, i.e.,
photon emission/absorption processes. Thus, both methods
provide identical results in the regime, where these schemes
are expected to be reliable, but they may differ beyond that.

III. MOMENTS OF WORK

Since work itself is not a proper quantum observable,
the calculation of its moments must be performed with
care [13]. A consistent formulation has been provided by the
two-measurement protocol (TMP) [15], which even allows us
to retrieve the full distribution of work [12,13]. According to
this scheme, the probability to measure energy Ei at time t = ti
and Ef at time tf is given by

P [Ef ,Ei] = Tr
�
�Ef U (t,0) �Ei W (0) �Ei U

• (t,0) �Ef

�
,
(9)

where �Ei/f = | Ei/f �	 Ei/f | are projection operators on energy
eigenstates at t = ti and t = tf , respectively. The work
distribution then follows from p(W ) =

�
Ei,Ef

�[W Š (Ef Š
Ei)]P [Ef ,Ei]. One can easily show [3,31] that the first
two moments of work derived from this distribution can be
expressed in terms of the power operator [3],

PW =
�HS

�t
�

�HS

��
�̇(t), (10)

as

	W � t =
	 t

0
ds



P H

W (s)
�
,

	W 2� t =
	 t

0
ds

	 t

0
du



P H

W (s)P H
W (u)

�

= 2
	 t

0
ds

	 s

0
du Re

�

P H

W (s)P H
W (u)

��
(11)

if expectation values are taken with respect to�
Ei

�Ei W (0) �Ei . Here, P H
W (t) denotes the Heisenberg

operator to PW . These expressions are particularly convenient
for quantum open systems for which a diagonalization of the
full Hamiltonian is out of reach. Instead, one has to calculate
time-dependent moments of system observables, which can
be achieved based on the methods described above for the
reduced density operator with properly chosen initial states.
In principle, higher moments can be calculated as well,
however the corresponding results are not consistent with
those obtained within the two-measurement protocol; see,
e.g., [31].

In the context of work, the initial state is typically a
thermal state. According to weak-coupling approaches such
as LME and QJ, one writes W (0) = 
(0) � eŠ�HR/ZR with

(0) = eŠ�HS (0)/Z0 and where ZR/0 are the partition functions
of the bare system and bath, respectively. This initial density is
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diagonal in the basis of factorized energy eigenstates of system
and bath. In the case of a TLS, one has


(0) =
1
Z0

�
e

� ��
2 |0�	 0| + eŠ � ��

2 |1�	 1|


(12)

with Z0 = 2 cosh( � ��
2 ), and |0� ,|1� are eigenstates of H0 with

eigenvalues 
 � �/2, respectively.
However, for any finite coupling, the true thermal state is a

correlated state of the TLS and the bath, i.e., W� = eŠ�H (0)/Z,
and the corresponding reduced distribution 
� = TrR{W�} is
not of Gibbs form [18,32]. Accordingly, in actual experiments
the true initial state may be only of the form (12) for extremely
weak coupling, an issue that will be addressed in more detail
below.

For the simulations performed in the sequel, we use natural
units, i.e., � = 1, � = 1, and m = 1, we restrict ourselves
to the resonant situation � = �, and we consider �0 � 0.
The bath cutoff is taken as �c = 10 for the SLN simulations.
Further, for the drive we set ti = 0 and tf = 3� if not indicated
otherwise.

A. First moment

According to (1) and (11), we start with

	W (t)� =
	 t

0
ds �̇(s)	�z(s)� (13)

and analyze its dependence on driving strength and tempera-
ture. Apart from numerical data, transparent analytical expres-
sions are available for negligible system-bath interaction.

1. Numerical results

Figure 2 displays data for all three approaches with data
points of the QJ only included for multiples of � for clarity.
For comparison, data of the bare TLS (i.e., without a bath)
with a thermal initial state (12) are shown as well. In this latter
case, all approaches, i.e., SLN, LME, and QJ, provide identical
results, of course.

For finite but weak system-bath coupling and in the regime
of weak driving (�0 = 0.1, upper panel), the work is an
increasing function of time, and the approximate methods
LME and QJ reproduce the exact SLN data quite accurately
even at low temperatures, � = 5. As expected, LME and QJ
produce identical data within statistical errors. Apparently,
	W (t)� is smaller for higher temperatures since then initially
the population difference between the two eigenstates is
smaller compared to the low-temperature situation. Further, a
finite system-bath coupling reduces the work compared to the
bare dynamics since heat is transferred to the reservoir as well.

The situation is substantially different for stronger driving.
For �0 = 1, the work for finite system-bath coupling is, after
an initial transient, always positive and always exceeds that of
the bare system. The approximate approaches provide these
features qualitatively; however, quantitatively they differ quite
substantially from the exact results. We note that an extended
scheme for time-dependent driving with the LME [25–28]
and slow driving with the QJ [33] have been developed
recently, which account for the influence of the driving onto
the dissipator in a more elaborate way, e.g., using the Floquet
formalism. Instead, the SLN applies to arbitrary pulse forms
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FIG. 2. (Color online) Work according to the SLN (blue), the QJ
(markers), and the LME (red) approach for various driving amplitudes
�0 and inverse thermal energies � in natural units. All data are for
the same coupling strength 	 = 0.05, and the driving force acts in
the time interval [0,3� ]. Shown also are data in the absence of a
dissipative bath (green) with an initial thermal state at � = 1 (solid)
as well as � = 5 (dashed).

and driving strengths, particularly to those obtained from
optimal control schemes [22]. For even stronger driving,
�0 = 4, the dynamics tends to be dominated by the system
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dynamics with the impact of the bath playing only a minor
role. Accordingly, the agreement between the three numerical
methods improves again. We note that due to the different
quantities on which their work calculation is based, LME and
QJ predictions differ mostly in the regime where the driving
amplitude, driving frequency, and system energies are of the
same order of magnitude. This domain is beyond their range
of validity, and they thus produce uncontrolled errors.

2. Analytic results

For weak driving and at or close to resonance � = �, one
more conveniently starts from the rotated TLS in a rotating-
wave approximation so that

H �
S(t)  H �

RWA(t) =
� �
2

�z + i
�0

2
(eŠ i�t�+ + ei�t�Š ). (14)

Then, assuming negligible system-bath interaction, a simple
calculation provides an explicit expression for 	�z(t)� . The
result for the work according to (13) becomes particularly
transparent at times t = N�, N = 1,2,3, . . .,

	W �N

� �
 (2Pg Š 1) sin2

�
N��̄0

2

��
1 Š

�̄2
0

4 Š �̄2
0

�
, (15)

with �̄0 = �0/� �, and Pg is the initial population of the ground
state |0� according to (12). This result describes the numerical
data for the bare dynamics quite accurately. One observes that
the work exerted onto the TLS is for weak driving only limited
by the initial ground-state population and depends sinusoidally
on driving period and strength.

In the opposite regime of very strong driving, a perturbative
treatment starts from (1) with ti = 0 for convenience, i.e.,
HS(t) = Š (� �/2)�x + �0 sin(�t)�z. For �0 � � �, transi-
tions between diabatic states (eigenstates of �z) only occur
close to �t = k�, k = 1,2,3, . . ., and the drive sweeps very
fast (with velocity �0�) through the Landau-Zener region.
Hence, a dressed tunneling picture applies with a polaron-
transformed Hamiltonian

H̃S(t) =
� �
2

[ei�(t)�+ + eŠ i�(t)�Š ], (16)

where �(t) = Š �̄0 cos(�t). The exponential eŠ i�(t) =�
n(Š i)nJn(�̄0)eŠ in�t is dominated by the time-independent

part for n = 0 so that we arrive at H̃RWA = � �0
2 �x with a

dressed tunneling amplitude �0 = �J0(�̄). This then implies
for t = N�, N = 1,2,3, . . .,

	W �N

� �
= (2Pg Š 1)

�̄0J0(�̄0)
1 Š J0(�̄0)2 cos(2�N ) sin[2�NJ0(�̄0)].

(17)
While due to missing higher harmonics this prediction for
the work cannot be used for a quantitative comparison
with the numerical data, it provides at least a qualitatively
correct description with the correct order of magnitude of
the oscillatory features. In the limit of very strong driving,
the maximal work becomes for fixed N �

�
�̄0, and with

J0(|x|) 
�

2/� |x| cos(|x| Š �
4 ) for |x| � 1, independent of

the driving amplitude, such that

|	W �N |
� �

�
�
�
�
�̄0� 1

� (2Pg Š 1)4N. (18)

This feature directly reflects the energy saturation in a TLS.
For long driving times N �

�
�̄0 � 1, the work oscillates with

an amplitude of order (2Pg Š 1)
�

�̄0, as also seen in the lower
panel of Fig. 2.

B. Second moment

Along the lines of (11), we have for the second moment

	W 2(t)� = 2
	 t

0
ds

	 s

0
du �̇(s)�̇(u)Re{	 �z(s)�z(u)�} , (19)

which includes the time-ordered two-time correlator

	�z(s)�z(u)� = Tr{�zU (s,u)�zW (u)U • (s,u)}. (20)

1. Numerical results

The �z correlator is an interesting dynamical quantity in
itself, as illustrated in Fig. 3. For increasing driving strength,
pronounced patterns with increasing fine structure reveal the
underlying Floquet modes of the dynamics also at finite
dissipation. For the strongest driving, �0 = 4, the real part
of the two-time correlator, Re{	 �z(s)�z(u)�} , which enters the
expression (19), is always positive.

Data for the corresponding 	W 2(t)� are depicted in Fig. 4.
For weak driving, �0 = 0.1, one observes a nearly monotonic
behavior with superposed weak oscillations. Exact results are
accurately reproduced by both LME and QJ. For stronger driv-
ing, deviations from the SLN results become more prominent,
as do deviations between LME and QJ data. The tendency
that dissipation reduces work fluctuations changes for stronger
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FIG. 3. (Color online) Contour plots of the real part of the two-
time correlator 	�z(t)�z(t �)� for different driving amplitudes. Due
to symmetry, only the domain t � t � is shown. Upper left, �0 = 0;
upper right, �0 = 0.1; lower left, �0 = 1; and lower right, �0 = 4.
Other parameters are as in Fig. 2. Color scale goes from red (+ 1) to
blue (Š1), with green indicating zero.

224303-5



SCHMIDT, CARUSELA, PEKOLA, SUOMELA, AND ANKERHOLD PHYSICAL REVIEW B 91, 224303 (2015)

0
0

0.05

0.1

0.15

0.2

t

�W
2 �

�
0
 = 0.1

� 2� 3�

SLN � =1
SLN � =5
LME � =1
LME � =5
no bath(� =1)
QJ� =1
QJ� =5
QJ, no bath(� =1)

0
0

0.5

1

1.5

2

t

�W
2 �

�
0
 = 1

� 2� 3�

0

5

10

15

20

25

�W
2 �

� 2� 3�

�
0
 = 4

FIG. 4. (Color online) 	W 2(t)� according to the SLN (blue), the
QJ (markers), and the LME (red) approach for various driving
amplitudes �0 and inverse thermal energies � in natural units. Data
in the absence of a dissipative medium with an initial thermal state at
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driving (�0 = 1), where fluctuations for finite dissipation are
bounded from below from those in the absence of a heat bath.
As the driving becomes again the dominant feature, work
fluctuations display oscillatory behavior. Further, at least for

weak to moderate driving, one has 	W 2(t)� � �2
0, a dependence

verified by analytical results presented in the next section.

2. Analytic results

In the weak driving case, one proceeds as described in
Sec. III A 2 and obtains

	W 2�N

(� �)2 = sin2(N��̄0/2). (21)

The fluctuations around the mean value are thus independent
of the initial population and limited by the level splitting of the
TLS. This result is in accurate agreement with the numerical
data with a quadratic dependence on the driving amplitude as
long as N�̄0 � 1.

Likewise, for strong driving, we arrive with 	�z(s)�z(u)� 
cos[�0(s Š u)] at

	W 2�N

(� �)2 = 2�̄2
0

J0(�̄0)2

[1 Š J0(�̄0)2]2 {1 Š (Š1)N cos[N�J0(�̄0)]},

(22)
which follows a quadratic dependence on the driving amplitude
as long as it is not extremely large. In this latter case, for fixed
N �

�
�̄0 and in leading order, we have

	W 2�N

(� �)2

�
�
�
�
�̄0� 1



�
N2 cos4(�̄0 Š �

4 ), N even,
8�̄0
� cos2(�̄0 Š �

4 ), N odd.
(23)

Hence, at odd multiples of half a Rabi cycle, fluctuations grow
with the driving amplitude, while at multiples of full cycles
they grow with the total driving time. Numerical data at a
moderate driving amplitude, �̄0 = 4, depicted in Fig. 4, are
well described by the full time-dependent 	W 2� t for t � 3�/2,
and they are thus in agreement with (23) for N < 2. For larger
times, exact fluctuations further increase with superposed
oscillations of order �̄0.

IV. HEAT FLUX

The heat flux between system and reservoir is an important
measure that, together with the change in system energy, allows
us to determine the work. In fact, current experimental activ-
ities in solid-state devices exploiting fast thermometry aim at
exactly this [34,35]. Within the system+reservoir model, one
derives an explicit expression based on d

dt 	H
H
S (t) + HH

I (t) +
HH

R (t)� = � 	HH
D (t)�/�t , with the superscript H denoting the

corresponding Heisenberg operators. Treating then the terms
on the left-hand side separately, one obtains the first law of
thermodynamics, i.e.,

	W � t =
	 t

0
du

�
�HH

D (u)
�u

�

= �E(t) +
i
�

	 t

0
du


�
HH

0 (u),HH
I (u)

��
(24)

with �E(t) = 	 HH
S (t)� Š 	 H0(0)� . Here, we took into account

that HD(0) = 0 and [HD,HI ] = 0 [cf. (1)]. The integrand in
the last part is the heat flux jQ(t), and its time integral is the
total heat Q(t) exchanged during the time interval t .

Now, the SLN dynamics respect the first law as well, of
course. Accordingly, one easily derives from (5) an equation
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