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A Simple and Efficient Quasi-3D Magnetic
Equivalent Circuit for Surface Axial Flux

Permanent Magnet Synchronous Machines
Ahmed Hemeida, Antti Lehikoinen, Paavo Rasilo, Hendrik Vansompel, Anouar Belahcen, Antero Arkkio,

and Peter Sergeant

Abstract—This paper presents a simple and efficient
magnetic equivalent circuit (MEC) model for surface axial
flux permanent magnet synchronous machines. The MEC
model is used to solve all the electromagnetic properties
of the machine including the no load, full load voltages,
cogging torque, torque ripple and stator iron core losses.
Moreover, this approach can be extended for all surface
permanent magnet synchronous machines. The main nov-
elty of this approach is the development of a static sys-
tem, which accounts for the rotation. The model takes into
account the rotor rotation via time dependent permanent
magnet magnetization sources. The static system matrix
facilitates a very fast solving. In addition, to take into
account the 3D effect, a multi-slicing of the machine in the
radial direction is done. This boosts the simulation time to
only 60 seconds for 6 slices and 50 time steps including
the non-linear behaviour of the stator elements with a great
accuracy. Additionally, the number of elements in the MEC
can be adjusted to reduce the computational time. This
model is verified by means of 3D and 2D multi slice finite
element (FE) models. In addition, experimental validations
are also provided at the end.

Index Terms—Analytical modeling, Axial flux perma-
nent magnet synchronous machines (AFPMSM), Cogging
torque, Magnetic equivalent circuit (MEC), Surface perma-
nent magnet synchronous machines (SPMSM), Torque rip-
ple.

I. INTRODUCTION

AXIAL flux permanent magnet synchronous machines
(AFPMSM) have been the subject of significant, world-

wide research efforts for the past 20 years and can now
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Fig. 1. Schematic representation of different configurations of the
AFPMSM [1].

be considered as a mature technology. Different AFPMSM
concepts with different topologies are described in Figs. 1
(a), (b), (c) and (d) [1]. These machines are (a) the yokeless
and segmented armature (YASA) machine, (b) the axial flux
machine with internal rotor (AFIR), (c) and (d) the toroidally
wound machine with internal stator, in two variants.

Accurate and fast modeling techniques are indispensable for
a complete design of electric machines. A multi-physical de-
sign is mandatoryi.e. for involving thermal, electromagnetic,
and mechanical modeling. This paper focuses on the electro-
magnetic modeling of the surface permanent magnet (PM)
machines. The yokeless and segmented armature (YASA)
machine is selected as an application for this study.

Several numerical and analytical techniques were developed
and used over last decades [2]–[4]. Although numerical tech-
niques, such as 3D and 2D finite element (FE) analysis [5]–[7],
are the most accurate techniques to model electric machines,
they are not preferable in early design stages due to their
expensive computational burden.

Therefore, in the predesign, analytical tools are used to
predict the electromagnetic parameters. Generally speaking,
analytical tools can be classified into three main categories



[8], [9] for surface PMSMs. The authors in [8], [9] compared 
mainly between (1- the magnetic equivalent circuit (MEC) 
model), (2- the Fourier based models), and (3- a combined 
solution of MEC and Fourier based models.) The criteria 
of the selection are based on the simulation time, capability 
to calculate mean torque, induced voltage, torque ripple and 
cogging torque.

The MEC model is based on representing the electric 
machine with a magnetic reluctance network that depends 
on machine geometrical parameters and non-linear magnetic 
material properties. In such a technique, the modeling accuracy 
highly depends on the used discretization level. Additionally, 
it is important to model the air gap by reasonable reluctance 
paths, that change continuously with the rotation of the electric 
machines. This means that at each rotor position, all rotor and 
stator nodes need to be aligned with the air gap nodes [10],
[11], which increases the complexity of the MEC.

In [12], the MEC was developed for an interior radial 
flux fractional slot permanent magnet synchronous machine. 
Although a huge reluctance network size was utilized, cogging 
torque and torque ripple results were not validated.

In order to simplify the air gap reluctance representation, 
the alignment between the rotor and stator is divided into 
three states in [10]; a state when a little part of the magnet 
contributes to the MMF in the stator, a state when a higher part 
contributes and a state when it totally contributes. However, a 
very large matrix is obtained and the problem becomes more 
complex. Additionally, this method does not ensure accurate 
computation of the cogging torque and torque ripple.

Other attempts have been made to simplify the air gap 
reluctance representation, such as the refined mesh approach, 
that was proposed in [11]. In the refined mesh approach, each 
magnet is subdivided into a high number of elements, i.e. 
15, which allows the demagnetization effect investigation. The 
reluctances connecting a stator tooth and a rotor element are 
obtained by integrating the product of their window functions 
and the inverse of the air gap length function. Although the 
MEC accuracy is highly improved using this refined mesh 
approach, the complexity dramatically increases. This model 
is capable to predict all electromagnetic parameters. However, 
with respect to complexity and computational time, the model 
is not efficient.

When AFPMSM are being modeled using the MEC model, 
the machine is divided into a number of radial slices, where 
the magnetic equivalent model is applied in each slice [13].In
[13], the developed MEC model of the AFPMSM was nicely 

validated with FE model, but only for the mean value of the 
torque and the terminal voltage. The cogging torque and torque 
ripple were not computed.

It is clear that there are some difficulties in the existing 
MEC model regarding the connection between stator and 
rotor reluctances. Each time the rotor rotates, the reluctances 
need to be aligned again. Additionally, one needs very high 
discretization to obtain the cogging torque and torque ripple 
and hence the complexity increases.

A second approach is to use the Fourier based models. 
These models can nicely predict the air gap flux density 
and therefore predict the cogging torque and torque ripple

efficiently. A comparative study between different concepts of
Fourier based subdomain (SD) models and conformal mapping
techniques for AFPMSM and radial flux permanent magnet
synchronous machines (RFPMSMs) has been presented in [7],
[14] respectively. For the calculation of the no load voltages,
the result is satisfactory for all models. However, for torque
ripple and cogging torque calculation, the SD model is the
most accurate technique to predict them. These SD models
assume infinite permeability for the stator and rotor iron cores.

New pure Fourier based models that include saturation in
the iron core were presented in [15]. In addition, a hybrid
Fourier based model and a MEC model was presented in [16].
This model is based on solving the Poisson equations firstly
assuming infinite permeability and imposing the solution to
the MEC model afterwards. In [17], the authors compared
between a hybrid Fourier based model and a conventional
reluctance network. The hybrid model is based on modeling
the rotor, the permanent magnets (PMs) and the air gap region
by a Fourier based model and the stator by a reluctance
network. The strong coupling between both models is done
by equalizing the magnetic scalar potential on the interface
region between the stator and air gap area. They concluded
that the hybrid method gives better performance in terms of
CPU time.

In all the aforementioned analytical models, the 2D multi-
slicing modeling technique is used. The authors in [16]
compared between the 2D multi-slicing modeling technique
and the 3D FE model. Additionally, they obtained the optimum
number of slices for different permanent magnet PM shapes.

Moreover, the authors in [2], [18] carried out a parametric
study to analyze the end effects on the accuracy of the multi-
slicing modeling technique compared to the 3D FE model.
It is demonstrated that the multi-slicing technique can be
advantageously used for design purposes.

To obtain the benefits from the ability to model the non-
linear behaviour of the material in the traditional MEC model
and the ability to compute the cogging torque and torque ripple
from the Fourier based models, a simple and an efficient model
is developed to tackle this.

In this article, instead of rotating the reluctance between
the rotor and the stator, the magnetization sources are rotated.
Therefore, the system matrix has to be created only once. For
all consecutive time steps, only a multiplication is required of
the inverted matrix with the time dependent source vector.
Therefore, the MEC model can be used to predict all the
electromagnetic parameters of the machine including voltages,
mean torque, torque ripple and cogging torque.

II. MODELING PRINCIPLE

In the 3D and 2D multi-slice FE models, described in Figs.
2 (a) and (c) respectively, only half of the machine is modeled
and a symmetry boundary condition is imposed at half of the
tooth.

The idea of the multi-slice 2D FE model is to stretch the
machine over the radial length of the machine tons slices [16].
Each slice has an average radius ofRi

av and a radial length
tcp. The 3D to 2D transformation is shown in Fig. 2 (b). In



all the 2D FE models, the radial component of the magnetic 
flux density is neglected. Each slice represents a 2D FE model 
shown in Fig. 2 (c). The axis definition in Fig. 2 (b) is R for 
the radial direction, and θm for circumferential direction. The 
x, y-axes in Fig. 2 (c) present the circumferential and axial 
direction.

The 3D and 2D multi-slice FE models are used as the 
reference solution to evaluate the accuracy of MEC model. 
Comsol software is used to conduct the FE simulations. The 
novelty of the MEC model is illustrated in next subsection.

A. Operation Principle

The MEC is based on the representation of the major flux
sources and lumped reluctance elements. The flux sources are
the magneto-motive force (MMF) sources, which represent the
injected electric currents in the windings. On the other hand,
the PM is usually modeled by a magneto-motive force in series
to a self reluctance. The lumped reluctance elements consist of
linear and non-linear reluctances of the stator and rotor cores.
They are dependent on the relative permeability of the used
material. The stator core relative permeability is a function of
the flux passing through the element itself. The PM and air
gap permeability in this case are constant.

The MEC model is solved in a similar way to the 2D FE
model described in Fig. 2 (c). The machine is stretched at
different slicesi in the radial directionR described in Fig. 2
(b). Each slicei has an average radiusRi

av and radial length
tcp.

It is possible to obtain any quantity like torque, induce
voltage,etc. by summation of all slices values.

As previously outlined, a novel approach is proposed to
avoid the alignment between the rotor and stator reluctances.
In this technique, regardless of the rotating rotor, the PMs are
assumed to have varying flux sources that are rotating in space

(a) 3D FE Model (b) 3D to 2D transformation
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Fig. 2. 3D and 2D FE models. (1) Neumann boundary condition. (2)
Dirichlet boundary condition. (3) Periodic boundary condition [19].
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Fig. 3. MEC model at a radial slice number i with the PM magnetization.
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according to the angle of rotation. Accordingly, the reluctances
of these PMs are constant.

Therefore, the PMs are modeled by equivalent Fourier based
sources that are shown in Fig. 3 (a) and (b). Fig. 3 (a) shows
the i stretched slice with all geometrical quantities of tooth
axial length (Yc, Yc1, Yc2, Yc3), slot width bs, slot opening
bso, air gap lengthg, PM axial lengthYm, PM pole pitchτp,
and the PM pole arc ratioαp. The currents are described by
I1 in different slot regions.

Assuming one PM with a remanent magnetic flux density
of (Bm) is operating with a negative field intensity of (-Hm

and a total magnetic flux density of (Bm). The constitutive
relation in one PM can be described as:

Bm = Brem − µoµrHm. (1)

The relationship described in (1) is extended to the entire
PM region. Therefore, it becomes function of the timet and
the circumferential distancex = Ri

avθm. It converts to:

Bm(x, t) = µoµrMy(x, t)− µoµrHm(x, t). (2)

whereMy(x, t) is the Fourier-series expansion of the magne-
tization vector shown in Fig. 3 (b) at any time instantt as a
function of the circumferential distancex = Ri

avθm and can
be obtained as [16]:

My(x, t) =

∞
∑

n=1,3,5,....

Mni
cos

(

nπ
(

x−Ri
av

∫

Ωm (t) dt
)

τpi

)

,

(3)
wheren is the harmonic order,Ωm is the mechanical speed
in rad/s,τpi

is the pole pitch at a slice numberi. The number
of harmonic orders taken in the simulations are 50. The
amplitudes of the fourier series expansion are described as:



Mni
=

4Brem

nπµoµr
sin
(nπαpi

2

)

, (4)

whereαpi
is the PM angle ratio of PM width to the pole

pitch, Brem is the remanent PM flux density,µo is the free
air permeability, andµr is the relative permeability of the PM
which equals 1.05.

In the developed MEC, the tooth is discretized to many
nodes. In each node, it is required to input a value for the
magnetomotive forceFpm in the PM region. Therefore, the
average value of the MMF can be used.

Let us assume two pointsx1 andx2, shown in Fig. 3 (b),
in the space in the PM region.x1 exists in the north PM as
shown in Fig. 3 (b).x2 exists in the south PM region. If larger
portion between the two points exists in one of the PMs, the
average MMF is not zero. Therefore, integration between the
two points is done to obtain the average MMF.

The MMF at any pointx1 in the space in the PM region
can be obtained by multiplying the magnetization vector (3)
at a pointx1 and a certain time instantt by the axial length
of the PMsYm:

Fpm1
= YmMy(x1, t). (5)

To obtain the average MMF between the two pointsx1 and
x2, shown in Fig. 3 (b), integration of (5) between the two
pointsx1 andx2 is done. The output is divided by the length
between the two points (x2 − x1). This is given by:

For each time step, the result of the integration in (6) is
used as sources for the MEC. In next subsection, the principle
of MEC operation is illustrated.

Fpm2,1
=

Ym

x2 − x1

∫ x2

x1

My(x, t)dx

=
Ym

x2 − x1

∞
∑

n=1,3,5,....

τpi

nπ
Mni

[

sin

(

nπ (x2 + xs)

τpi

)

− sin

(

nπ (x1 + xs)

τpi

)]

.

(6)

However, it is possible to present the PMs as rectangular
shape as presented in Fig. 3 (b). Afterwards, it is possible to
rotate the PMs in space for each rotor position according to
the time instant. A numerical integration could be done at the
end to obtain the average MMF between the two pointsx1

andx2 for this rectangular function.

B. Sub-Division Principle

The MEC is programmed so as to allow the choice of
the number of divisions. Fig. 4 shows one tooth with the
corresponding area of the PMs and the rotor.

Each tooth in the machine is divided in the circumferential
direction to2nx1+2nx2+nx3 elements. In the axial direction,
the number of elements areny1+ny2+ny3+ny4+ny5+ny6.
Fig. 4 shows the case with minimal refinementi.e. nx1 =
nx2 = nx3 = · · · = 1.

There are two different sources in the circuit as described in
Fig. 4. The currents imposed in the winding can be represented

by a magnetomotive forceFc. The PMs can be modeled by
(6). The value of (6) should be divided by the number of
divisions in the PMs regionny5. As described before, the
solution is obtained for different slices and the total solution
is then obtained.

C. Matrices Assembly

In this part, the matrix assembly is demonstrated. The mesh
based MEC configuration is used in this article. It is proved
that this type of solution gives faster result than the nodal
based configuration [20].

In this article, the number of loops and branches arenl and
nb respectively [21]. The vectorΦ depicts the flux in each
loop. The size ofΦ is [nl × 1]. It can be determined by [21]:

r = L
T (Rair +Riron • νr)LΦ− (Fc + Fpm), (7)

wherer is the residual function.L is a loop matrix determining
the relation between each branch and the loops associated with
it. The size ofL is [nb×nl]. Rair, Riron are the diagonal air
and iron reluctance matrices describing the reluctance values
at each branch without considering the relative permeability
part. The sizes ofRair, Riron are [nb×nb]. νr is the relative
reluctivity matrix associated with each reluctance in the iron
reluctance matrixRiron. It has the same dimension asRiron.
Riron • νr is an element-wise product of the iron reluctance
and reluctivity matrices.Fc, andFpm are the magnetomotive
force (MMF) vectors for the currents and the PMs respectively
existing in each loop. All matrices are handled as sparse
matrices. This saves lots of memory and calculation times.

The loop matrixL entries are based on the direction of
the loop flux corresponding to the branch flux. This can be
illustrated as follows:

Li,j =











1 loop j goes forward in branch i

−1 loop j goes backward in branch i

0 otherwise

. (8)

nx1 nx1nx2 nx2nx3

ny1

ny2

ny3

ny4

ny5

ny6

Tooth
Region

Air Gap

PMs

Rotor

Fpm

Fpm

Fc
Fc

Fig. 4. MEC sub-division principle.



The non-linear solution can be solved using Newton-

Raphson technique. The loop flux Φ in (7) at iteration k + 1 
can be obtained as:

Φ
k+1 = Φ

k − J(Φk)−1
r(Φk), (9)

whereΦk is the loop flux at iterationk. J(Φk
) is the Jacobian

matrix at iterationk. r(Φk
) is the residual function at iteration

k.
The Jacobian matrix is divided into two parts. One part

is the reluctance matrix termR = L
T (Rair +Riron • νr)L.

The second one describes the change of the reluctance term
with respect to the loop flux. The Jacobian matrix can be
described as follows:

J =R+L
T (Riron •Aarea • νrder)

(

(LΦdU) • L
)

, (10)

whereAarea is a diagonal matrix of [nb×nb] elements. Each
entry in theAarea is the inverse of the area of each branch
in the reluctance element of the iron part. Similarly,νrder is
a diagonal matrix. Each diagonal entry is the derivative of
the relative reluctivity with respect to its associated magnetic
flux density and can be described byνderii = ∂νii

∂Bii
. Φd is a

diagonal matrix of the loop flux in each loopΦ. U is a [nl×nl]
matrix describing connections between different loop fluxes.
The elements of it can be described as:

Ui,j =











1 If i= j

1 If Φii − Φjj = Φb (branch flux)

0 otherwise

. (11)

The Jacobian matrix can be calculated easily without the
need to use any for loops in MATLAB. The norm of the
percentage error in the flux loops vector is set to10−5. An
example illustrating the use of (7)-(11) is provided in the
appendix.

The single valued non-linear constitutive relation of the soft
magnetic material is modelled by three material dependent
parametersH0, B0 andNu [22].

The expression for the relative magnetic reluctivity of the
soft magnetic materialνr as a function of the magnetic flux
densityB is given by:

νr(B) =

Hoµo

(

1 +
(

B
Bo

)Nu−1
)

Bo
, (12)

whereµo is the free space permeability. The material used in
the simulations in both the FE and the MEC models is M600-
50A. The fitted parametersH0, B0 and Nu are 237.5A/m,
1.458T, and 20.18.

TheB−H curve is shown in Fig. 5. Machines are normally
designed to operate around the knee point. For the material
M600-50A, the knee point in theB−H curve exists at almost
1.45T.

To account for the radial slices shown in Fig. 2 (b), all
matrices are constructed and placed in the diagonal of a new
matrixD. This includes all the matrices described in (7)-(11).
The winding MMF vectorFc, described in (7), is repeated
equivalently for all slices. However, the PM magnetization

B
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]
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Fig. 5. B-H curve of the M600-50A in the studied models.

vectorFpm is calculated for each slice independently accord-
ing to (6).D can be written as:

D =











D1 0 0 0

0
. . . 0 0

0 0 Di 0

0 0 0 Dns











. (13)

The solution of all radial slices can be obtained simultane-
ously.

To consider the eddy currents effect inside the laminations
on the total field distribution, it is possible to account it by
presenting the magnetic field strength due to eddy currents
as a function of the time derivative of the magnetic flux
density as described in [23], [24]. Then the total magnetic
field strength can be obtained by summation of both the
effects of the non-linear magnetic characteristics and the eddy
currents. Afterwards, the total reluctivity is available and can
be substituted in (7) and (10) to obtain the residual function
r and the Jaccobian matrixJ respectively.

Skin effect can be accounted for by expressing the flux
density distribution in the lamination thickness as a series
using a set of skin-effect basis functions as described in [23].

To take into account the effect of end winding on the volt-
age, an additional term can be added to the voltage equation to
express the rate of change of the currents multiplied by the end
winding inductances. The end winding inductances formulas
can be obtained from [25]. the authors in this article derived
a general equation for the concentrated winding.

D. Stator Iron Loss Computation

The flux densities are recorded in all models at different grid
points. These flux densities are used toa posteriori calculate
the iron losses. For the 3D FE model, the three coordinates are
recorded to calculate the losses; for the 2D FE model and the
MEC model, only thex-y flux densities are recorded. Here,
the principle of loss separation is used [26].

The total stator core lossPFe at each grid pointi is recorded.
Then a summation of the losses at all grid pointsn is done to
obtain the total losses.

PFe =
n
∑

i







Phyi
+

1

T

T
∫

0

Pcli(t) + Pexci(t)dt







. (14)



where Phyi 
, Pcli (t), Pexci (t) are the hysteresis, time dependent 

classical, and time dependent excess losses at each grid point 
respectively [26], [27]. The total excess and classical losses 
are the time averages of the losses over a time period T due 
to varying flux density B at time instant t. The hysteresis loss 
depends only on the peak value of the flux density Bpm at each 
harmonic order m at a certain grid point. The total hysteresis 
losses can be obtained by summation of all harmonic orders 
in the flux density. Each component equals:

Phyi
=kFe,1B

kFe,2

pm

fρVi,

Pcli(t) =kFe,3

(

dB

dt

)2

ρVi,

Pexci(t) =kFe,4

(
√

1 + kFe,5

∣

∣

∣

∣

dB

dt

∣

∣

∣

∣

− 1

)

∣

∣

∣

∣

dB

dt

∣

∣

∣

∣

ρVi,

(15)

wheref is the frequency corresponding with the fundamental
component. The flux densities used to excite the loss equations
in (15) depend on the circumferential and axial components.
kFe,1-kFe,5 are fitting parameters for the losses for the

selected iron material.ρ is the iron material density which
equals 8760 kg/m3. The material used in the simulations is
M600-50A. The iron losses coefficientskFe,1-kFe,6 of the
M600-50 described in (15) are 35.3e-3, 1.7890, 9.264706e-
006, 1.875634e-002, 2.093533e-004 respectively.

III. SIMULATION RESULTS

In order to validate the MEC model, an AFPMSM with 16
poles and 15 tooth coil windings is studied. The geometrical
and electromagnetic properties of the machine are described
in Table I.

In all subsequent simulations, six radial slices are taken in both
the 2D FE model and the MEC model. In the MEC model, the
number of discretizations shown in Fig. 4 equal tonx1 = 8,
nx2 = 8, nx3 = 8, ny1 = 3, ny2 = 3, ny3 = 3, ny4 = 3,
ny5 = 4, andny6 = 3.

Comsol software is used to conduct the FE simulations. The
3D FE model has a 100000 tetrahedral with a quadratic shape
functions. In the 2D FE model, 8000 triangles are used with
quadratic shape functions are used to model the machine.

The validation scenario of the MEC model is conducted
with respective to different parameters. The comparisons are

TABLE I
GEOMETRICAL PARAMETERS OF THE STUDIED MACHINE [19].

Parameter Symbol Value

Rated power Pn 5 kW
Number of pole pairs p = Nm/2 8
Number of stator slots Ns 15
Rated speed nr 2500 rpm
Rated torque Tem 19.1 Nm
Outer diameter Do 148 mm
Inner diameter Di 100 mm
Axial length core element 2(Yc1 + Yc2 + Yc3) 60 mm
Axial length slot 2Yc1 48 mm
Slot width bs 12 mm
Slot opening width bso 3 mm

done with respect to the 3D and 2D multi-slice FE models.
This includes the air gap flux densities, the terminal voltage
and torque, the cogging torque, the flux density and loss
distributions, and the CPU time comparison between different
models used. Different loading and geometrical configurations
are studied. In addition, a comparison between the traditional
MEC and the new MEC is conducted to verify the robustness
of the new MEC model.

A. Air Gap Flux Density Comparison

The curves of the MEC and FE models in Figs. 6 and 7
show good correspondence for the normal and circumferential
components of the air gap flux densities when loading the
machine with the rated currentIrated. The total effect of the
flux density response on the voltage, torque and cogging torque
profiles is illustrated in next subsections for different loading
and geometrical conditions.

B. Terminal Voltage and Torque Comparisons

The voltage and torque are calculated at no load and rated
loading conditions. Fig. 8 shows the phase voltage at no
load and rated load conditions. The voltage curves show a
good correspondence between the results of the FEs and
the MEC model. This figure clearly shows that the MEC
model can predict the voltage of the 3D FE model with
a maximum percentage of difference of 1.8% for the rated
loading condition.

Table II depicts the root mean square (rms) values for the
voltage for different loading and geometrical conditions. The
errors between both 3D FE, 2D FE model and MEC model are
observed. The maximum percentage error between the MEC
and the 3D FE model is 1.8%. This proves a great accuracy
for the MEC model.

Figure 9 compares different models for torque computations
at rated loading condition. This is done using 2D and 3D FE
models. The MEC model can track the same shape of the
torque of the 2D and 3D FE models.

Table III summarizes the deviation of the mean torque
between different models. The torque ripple percentage error
is computed with respect to the 3D FE mean torque. The
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Fig. 6. Axial flux densities comparisons for different models at rated
loading condition.



Fig. 7. Circumferential flux densities comparisons for different models
at rated loading condition.

Fig. 8. Voltage waveform for different models at different loading
conditions.

maximum percentage of mean torque error with respect to
the 3D model mean torque is 1.1%. The MEC model gives
very accurate result for the mean and torque ripple values.

C. Cogging Torque Comparison

The 15 poles and 16 slots combination gives very low
values of cogging torque because of the high value of the least
common multiple of the poles and slots [28]. To make a better
presentation for the cogging torque, a machine of 70 poles and
60 slots is used in this subsection only. In this machine, only
1 over 10 of the machine can be simulated. The details of
this machine can be found in [7]. This machine has a higher
cogging torque amplitude.

Figure 10 shows the difference between the 2D, 3D FE
models and the MEC model for cogging torque computation
at 5 mm slot opening. The horizontal axis in Fig. 10 indicates
the rotor positions while rotating(φm). It is clear that the
MEC model is capable of predicting the cogging torque profile
similarly to the FE models.

To ensure the highest accuracy of the MEC model, the slot
opening is swapped around certain values. Fig. 11 depicts the
peak-to-peak value of the cogging torque as a function of the
slot opening over the tooth pitch at minimum radius. The MEC
model is very accurate to predict the shape of the peak value
for cogging torque for any slot opening.

TABLE II
RMS VALUES FOR THE VOLTAGE FOR DIFFERENT LOADING AND

GEOMETRICAL CONDITIONS.

bso I Parameter 3D FE Model 2D FE Model MEC Model

3mm
0

Vrms [V] 230 232 232
ErrorVrms

[%] - 0.9 0.9

Irated
Vrms [V] 247 242 243

ErrorVrms
[%] - 2 1.6

7mm
0

Vrms [V] 221 225 225
ErrorVrms

[%] - 1.8 1.8

Irated
Vrms [V] 234 231 231

ErrorVrms
[%] - 1.2 1.2

Fig. 9. Torque profile for different models at rated loading condition.

D. Flux Density and Loss Distribution Comparisons

The flux density distribution at the rated loading condition
between the 3D FE, 2D FE and MEC models at a certain
position are shown in Figs. 12 (a), (b) and (c) respectively. The
labels (R, θm, y) depict the cylindrical co-ordinates shown in
Figs. 2 (b) and (c). For the 2D FE and the MEC models, the
flux density in each point (x, y in Fig. 2 (c)) of the plane is
averaged over the number of slices taken. In the MEC model,
there are some space in the figure at the end of the teeth and in
the rotor. This is due to the computation of the flux densities
in grid points. In each grid point the flux is assumed to be
constant.

In conclusions, in addition to the accurate computations of
voltages and torque shown in previous figures, the conclusion
from Figs. 12 (a), (b) and (c) is that the MEC achieves accurate
flux density prediction in all points in the stator, airgap and
rotor.

The iron loss distribution inside the teeth in [W/m3] at

TABLE III
MEAN VALUES FOR THE TORQUE FOR DIFFERENT LOADING AND

GEOMETRICAL CONDITIONS.

bso I Parameter 3D FE Model 2D FE Model MEC Model

3mm Irated

Tmean [Nm] 18.46 18.54 18.66
ErrorTmean

[%] - 0.43 1.1
Tp−p [Nm] 0.34 0.26 0.30

Tp−p
Model

/Tmean
3DFE

[%] 1.8 1.4 1.6

7mm Irated

Tmean [Nm] 17.96 18.11 18.14
ErrorTmean

[%] - 0.84 1
Tp−p [Nm] 0.19 0.16 0.23

Tp−p
Model

/Tmean
3DFE

[%] 1.1 0.9 1.3
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Fig. 10. Cogging torque profile for different models as a function of the
rotor position in mechanical degrees.
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Fig. 11. Cogging torque response as a function of the slot opening.

rated loading condition between the 3D FE, 2D FE and MEC
models are shown in Figs. 13 (a), (b) and (c) respectively.
The loss distribution for the 2D FE and the MEC models are
averaged over the number of slices taken. As a conclusion
from these figures, the MEC model can accurately predict the
loss distribution of the AFPMSM machine.

Table IV summarizes the stator core iron losses inside the
machine. It shows that the MEC model can accurately predict
the total iron losses accurately. The comparison is done for
different loading and geometrical conditions. The maximum
difference compared to the 3D FE model is 6%.

E. CPU Time Comparison

Table V summarizes the CPU time for each of the tested
models. All calculations are done on a PC operating a 64-bit

TABLE IV
STATOR IRON LOSSES COMPARISON FOR DIFFERENT LOADING AND

GEOMETRICAL CONDITIONS.

bso I Parameter 3D FE Model 2D FE Model MEC Model

3mm
0

Piron [W] 181.7 188 188.8
ErrorP

iron
[%] - 3.5 3.9

Irated
Piron [W] 201.4 200.8 202

ErrorP
iron

[%] - 0.3 0.7

7mm
0

Piron [W] 162.7 170.6 172.3
ErrorP

iron
[%] - 4.9 5.8

Irated
Piron [W] 175.6 177.1 179

ErrorP
iron

[%] - 0.85 1.9

(a) 3D FE Model flux density distribution.

(b) 2D FE model average flux density distribution for different radial
slices.

(c) MEC model average flux density distribution for different radial slices.

Fig. 12. Flux density distribution in T for different models at rated loading
conditions.

version of Windows 7, the PC has a core i7 processor, and a
memory of 16 GB. Both the 2D FE and MEC model divide
the machine in six slices. All models were computed for 50
positions of the rotor, equally divided over one cycle. Comsol
3.5 software is used to model the 2D and Comsol 5.3a for the
3D FE models. The 3D FE model has a 100000 tetrahedral
with a quadratic shape functions. In the 2D FE model, 8000
triangles are used with quadratic shape function are used to
model the machine.



(a) 3D FE Model volumetric iron loss density distribution.

(b) 2D FE Model volumetric iron loss density distribution averaged over
number of radial slices taken.

(c) MEC model volumetric iron loss density distribution averaged over
number of radial slices taken.

Fig. 13. Volumetric iron loss density distribution in W/m3 for different
models at rated loading conditions.

The comparison is done with a linear and a non-linear
permeability. For the non-linear case, the comparison shows
that the 3D FE model is very time consuming compared to the
other models. The comparison also shows the superiority of
the MEC model compared to the FE models. The MEC model
takes 55 secs with the non-linear permeability. This is about
900 times faster than the 3D FE model and 600 times faster
than the 2D FE model.

For the linear case, all time steps can be computed at once.
This reduces the computational time to only 1.5 secs. This is

TABLE V
COMPARISON OF THE CPU TIME BETWEEN THE FE AND MEC

MODELS.

Model Type CPU Time

Non-Linear models
3D FE Model 15 hrs
2D FE Model 5.5 hrs
MEC Model 55 s

Linear models
3D FE Model 10 hrs
2D FE Model 1 hrs
MEC Model 1.8 s

very superior to the information that can be obtained within
1 second regarding the flux density distributions, terminal
voltage and torque profile.

F. MEC Model Parameters Optimization and Compara-
tive Study With Conventional MEC

In the developed MEC, the circumferential discretization
(nx = nx1 = nx2 = nx3) and the axial discretization (ny =
ny1 = ny2 = ny3 = ny4 = ny5 = ny6) shown in Fig. 4
can be optimized to keep a good balance between the CPU
time and the accuracy of the electromagnetic parameters with
respect to the 3D FE model.

Therefore, Fig. 14 shows the effect ofnx variations on the
percentage errors of the MEC rms voltagesVMEC, mean torque
TmeanMEC

, torque rippleTp−p
MEC

, and iron lossesPironMEC

compared to the 3D FE model rms voltagesV3DFE, mean
torque Tmean3DFE

, torque rippleTp−p
3DFE

, and iron losses
Piron3DFE

respectively. Thenx is varied in steps from 1 till
8 and the CPU time is noticed for each discretization. In this
caseny equals to 3. This test is performed at rated current
and a slot opening of 3mm.

To achieve a percentage error of less than 5% for all electro-
magnetic parameters, a minimum choice of two discretization
in the circumferential directionnx is mandatory. In this case,
the CPU time is reduced to 10s. The same test is done for
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Fig. 14. The percentage error of the machine electromagnetic pa-
rameters (Voltage, mean torque, ripple torque, and iron losses) of the
MEC model compared to the 3D FE model results on the left scale.
The CPU time is on the right scale. The horizontal axis represents the
circumferential discretization.



different geometrical and loading conditions and the same 
conclusions are obtained.

Moreover, ny plays an important role in the accuracy of 
the results and the CPU time. Therefore, the percentage errors 
of all electromagnetic parameters described before are noticed 
with respect to the variations of ny. nx is fixed at 2 in this 
case. The results of this experiment can be noted from Fig.
15. A choice of 2 axial discretization ny would keep the error
below 5% for all electromagnetic parameters. The CPU time 
in this case is reduced to 5.4s.

In addition, the change of radial slices ns, noted in Fig. 2 
(b), affects the results accuracy and the CPU time. Therefore, 
the number of slices is varied from 2 till 8 with a step of 2. 
The circumferential nx and axial ny discretization are kept 
to be 2 and 2 respectively. Fig. 16 shows the variation of 
the percentage error of the electromagnetic parameters with 
respect to ns. It shows that an optimum selection of 4 radial 
slices keeps the error within 5%. The CPU time is reduced to 
3.2s. It is clear from the above optimizations that an accuracy 
of the electromagnetic parameters of 5% can be achievable 
with a CPU time of only 3.2s including the non-linear behavior 
of the electromagnetic material.

In addition, to make a better assessment of the developed 
MEC model, a comparison with the conventional one is 
done. The conventional MEC is based on the inter connection 
between stator and rotor reluctances as shown in Fig. 17. For 
each rotor position, the air gap reluctance between tooth j 
and PM k depicted as Rj,k has to be recalculated according 
to the window function of the tooth and the PM described in
[21], [29]. This poses some error, delay, and complexity in 

the matrices construction for each rotor position. However, in 
the new developed MEC presented in this article, there is no 
need to interconnect any rotor or stator relcuctances together. 
The only moving element is the MMF sources of the PMs.

Table VI summarizes the percentage error in voltage and 
torque between the 3D FE, conventional MEC and the new
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Fig. 15. The percentage error of the machine electromagnetic param-
eters (Voltage, mean torque, ripple torque, and iron losses) of the MEC
model compared to the 3D FE model results on the left scale. The
CPU time is on the right scale. The horizontal axis represents the axial
discretization.
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Fig. 16. The percentage error of the machine electromagnetic param-
eters (Voltage, mean torque, ripple torque, and iron losses) of the MEC
model compared to the 3D FE model results on the left scale. The
CPU time is on the right scale. The horizontal axis represents the radial
number of slices ns.
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Fig. 17. The conventional MEC sub-division principle.

MEC models. It also shows the CPU time between both
models. The discretization used in the new MEC are the
optimized ones (nx=2, ny=2, and ns=4). Table VI depicts
that the conventional MEC can predict the electromagnetic
parameters with a maximum percentage error of 14.3% in
all parameters within a CPU time of 2.7s. While, the new
MEC can predict the same electromagnetic parameters with a
maximum percentage error of 4.9% in almost the same CPU
time. In addition, the model does not need to rearrange the
reluctance in the airgap while running the dynamic simulation,
which is very suitable for surface PM machines, neither radial

TABLE VI
RMS VALUES FOR THE VOLTAGE AND TORQUE PROFILE FOR RATED

LOADING CURRENT AND 3MM SLOT OPENING COMPARISON BETWEEN
THE 3D FE MODEL, CONVENTIONAL MEC MODEL, AND THE NEW MEC

MODEL.

Parameter 3D FE Conventional New MEC
Model MEC Model Model

Vrms [V] 247 277.6 244
ErrorVrms

[%] - 12.4 1.2
Tmean [Nm] 18.46 21.1 19.36

ErrorTmean
[%] - 14.3 4.9

Tp−p [Nm] 0.34 2.24 0.43
Tp−p

Model
/Tmean

3DFE
[%] 1.8 12.1 2.3

CPU Time 15hrs 2.7s 3.2s



flux or axial flux machine. This shows the high accuracy of 
the results obtained from the developed MEC model compared 
to the conventional one within the same CPU time.

In addition, to make a fair comparison with the conventional 
MEC model, only one radial slice is taken into account in the 
new MEC model. The model only takes one sec to obtain 
the solution. The rms value of the phase voltage equals to 
252V with a percentage error with the 3D FE model of 2%. 
In addition, the mean torque output equals 19.9Nm with a 
percentage error of 7.8%. The torque ripple output is 1Nm. 
This results in a percentage error to the mean torque of the 3D 
FE model of 5.7%. This proves out that even if one radial slice 
is considered, the result is still better than the conventional 
MEC approach. However, many authors use complex PM 
shapes [30] to reduce the torque ripple and cogging torque. 
In this case additional radial slices are required.

IV. EXPERIMENTAL VALIDATIONS

The stator core of the YASA machine consists of thin 
laminated grain oriented material. The lamination thickness 
is 0.23mm. The iron losses coefficients for the GO mate-
rial kFe,1-kFe,6 described in (15) are 7.4e-3, 2, 1.02686e-
06, 1.407179e-02, 8.35812e-05 respectively. Here, kFe,1-kFe,6
are fitted based on quasi-static measurements on an Epstein 
frame. The excess loss coefficient is fitted based on measured 
hysteresis loops with amplitudes up to 1.8 T and frequencies 
between 10Hz and 700 Hz, causing a good correspondence 
of predicted and measured losses up to frequencies above the 
rated operating frequency of the motor 333 Hz. The values 
for The fitted parameters H0, B0 and Nu for the νr(B) curve 
described in (12) are 41.4A/m, 1.6T, and 33.2 respectively. The 
MEC model is adjusted to these parameters while performing 
the experimental analysis. The windings are placed around 
the stator core. A plastic end plate is placed between the 
end-winding and the stator core. A stator housing is made 
of laminated aluminum sheets to reduce the eddy currents 
induced in them. Epoxy potting is used to get the different 
stator parts bonded into a single solid stator structure.

To perform measurements, the AFPMSM prototype is 
placed into a test set-up of which an overview is given in 
Fig. 18. In this test set-up, an asynchronous 7.5 kW, 3000 
rpm motor is used as a prime-mover and is powered by a 
commercial drive. Set-points to this drive for the speed (or 
torque) are given by a dSPACE 1104 platform. The AFPMSM 
is used as a generator connected to the fully-programmable 
three-phase load.

A. Terminal Voltage and Torque Comparisons

The experiment is done at a speed of 2000 rpm. The load
of the AFPMSM is a resistive load of 10Ω. The output rms
current of the AFPMSM is 9.95A which corresponds to an
electromagnetic torque of 14.9Nm. The no load rms voltage
is 127.5V. The output full load rms voltage is 101.2V.

Figure 19 shows good agreements between the MEC model
and experimental results for the no load and the full load phase
voltage. In addition, rms values for the voltage comparisons
between the MEC and the experimental results are compared

TABLE VII
RMS PHASE VOLTAGE COMPARISON BETWEEN MEC MODEL AND

EXPERIMENTAL RESULTS.

I Experiment [V] MEC Model [V] Error [%]

No Load (I = 0) 127.5 128 0.4
Full Load (I = 9.95A) 101.2 106.4 5.1

in Table VII. It shows a maximum error of 5.1% between both
results.

For sake of validations, the load resistances are varied
experimentally over a wide range from 10Ω till 200Ω. The
terminal rms voltages, currents and the output from the torque
transducer are measured. Thed and q axis currents (Id, Iq)
inputs to the MEC model are adjusted according to the no
load voltage measurements, AFPMSM inductance, AFPMSM
resistance and load resistance. Thed and q axis currents are
determined by:

Iq + jId =
√
2Vnm=2000

nm

2000rpm
1

((Rl +Rm) + j2πfLm)
,

(16)

where Vnm=2000 is the no load voltage (the electromotive
force) measurement at 2000rpm which equals 127.5V denoted
in Table VII. nm is the rotational speed in rpm.Rl, Rm are the
load and motor resistances respectively. The motor resistance
equals 0.27Ω. f is the operating frequency in Hz.Lm is the
motor inductance which equals 4.3mH.

Figure 20 shows the difference between the experimental
setup measurements and the MEC model results for the rms
terminal voltage at two different speeds of 1000rpm and
2000rpm. Due to the resistive load, the machine operates
with a negatived axis current. A smaller resistance (larger
current) leads to a reduced voltage which is known by the
field weakening operation. The figure shows that the MEC
model gives higher amplitudes than the experimental setup.
This is a consequence of the lesser inductance anticipated by
the model.

Induction Machine

Torque Transducer

Temperature Sensors

AFPMSM

Fig. 18. Axial-flux PM machine test set-up. From left to right: load
(asynchronous) machine, torque sensor with couplings, axial flux PM
prototype machine.
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Fig. 19. Comparison of no load and full load phase voltages for the
experiment and the MEC model.
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Fig. 20. The rms terminal voltages for different load resistances (Rl) at
two different speeds (1000rpm and 2000rpm) for the experiment and the
MEC model.

However, Fig. 21 shows the percentage error between the
experiments and the MEC model for the two different speeds
for the terminal voltage. It shows that the maximum percentage
error is about 5% from the experimental measurements.

Figure 22 shows the difference between the experimental
setup measurements and the MEC model results for the input
torque at two different speeds of 1000rpm and 2000rpm. The
figure shows clearly that the MEC model can easily track the
same response as the experimental setup.

Figure 23 depicts the percentage error between the experi-
ments and the MEC model. It shows that the maximum per-
centage error is about 5% from the experimental measurements
at high loads (low load resistance). However, at lower loads,
the percentage error increases to 25%. This is a consequence
of the increased effect of the bearing and windage losses at
low loads. Therefore, noticeable difference would be observed
at low loads.

B. Loss Comparison

The iron loss presents a major part of the total losses of
the YASA machine. Therefore, it is mandatory to verify the
robustness of the MEC model with respect to the losses.
However, it is a difficult task to segregate the iron losses from
the total measured losses. Therefore, a similar inverse thermal
modeling to [31], [32] is used.
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Fig. 21. Percentage error difference between the experiment and the
MEC model for the rms terminal voltages for different load resistances
(Rl) at two different speeds (1000rpm and 2000rpm).
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Fig. 22. The torque for different load resistances (Rl) at two different
speeds (1000rpm and 2000rpm) for the experiment and the MEC model.

The method used is based on the least square nonlinear
(MATLAB function lsqnonlin) fitting method. The inputs to
the models are the experimental measured temperatures for the
winding, core and rotor. The outputs are the winding, core,
and rotor losses. The thermal models used were presented in
[33], [34]. They are based on 3D FE and lumped parameter

thermal networks (LPTN) for the machine. The convection
coefficients used are based on computational fluid dynamics
analysis. These models were experimentally validated.

The thermal experiment is conducted at no load and 10Ω
load resistance at 2000rpm. The lsqnonlin tries to fit the loss
components to obtain the same experimental temperatures.
Figs. 24 and 25 show the thermal FE winding, core and PM
temperatures with the experimental ones at no load and 10Ω
load resistance respectively. They show that the thermal mod-
els are capable to track the same response as the experimental
setup.

Figures 26 (a), (b) show the temperature distributions for
rotor and the PMs at steady state at no load and the 10Ω
load resistance. In addition, Figures 26 (c), (d) are depicted
for the stator. Table VIII depicts the core, winding and rotor
losses from the output of the lsqnonlin and the MEC model at
the studied loading conditions. The table shows that the MEC
model is capable of predicting the iron losses with a maximum
percentage error of 26.34%.
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Fig. 23. Percentage error difference between the experiment and the
MEC model for the torque for different load resistances (Rl) at two
different speeds (1000rpm and 2000rpm).
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Fig. 24. Winding, core, and PM temperature in (oC) for the experimental
and FE model at no load at 2000rpm.

V. CONCLUSIONS

This paper presents a fast and a simple semi analytical
model based on magnetic equivalent circuit (MEC) model
for axial flux permanent magnet synchronous machines (AF-
PMSM). This model can be extended for all surface permanent
magnet machines. The main novelty of the model is the static
reluctance network elements despite rotation. The permanent
magnets (PMs) are modeled by an equivalent Fourier series
based model. This Fourier series is a time dependent. This
simplifies the region of the PMs to only time dependent
sources with fixed reluctances. Consequently, the stator, air
gap, PM, and rotor reluctances are kept constant in all time
steps. This boosts the simulation time and simplifies the
solution in the linear case and simplifies the solution in the
non-linear case. Moreover, to account for the 3D effect, a
multi-slicing in the radial direction is done. On each radial
slice, the solution is computed individually. All radial slices
are computed within the same matrix.

The performance of the MEC model is validated at several
loading and geometrical conditions. The model is compared
with 3D and 2D multi-slicing FE models. The comparisons
show a maximum error deviation of 1.8%, 1.1%, 1.6%, 6%
for the rms value of the voltage, the mean torque, the torque
ripple, and the loss computations. Moreover, the iron loss
distributions in the MEC are compared with both FE models.
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Fig. 25. Winding, core, and PM temperature in (oC) for the experimental
and FE model at 10Ω load resistance at 2000rpm.

(a) Rotor temperature at no
load.

(b) Rotor temperature at 10Ω
load resistance.

(c) Stator temperature at no
load.

(d) Stator temperature at 10Ω
load resistance.

Fig. 26. Temperature distribution of the rotor and stator in (oC) at no
load and 10Ω load resistance at 2000rpm for the FE model.

The comparisons show the superiority of the MEC model.
The cogging torque for different geometrical parameters is
compared with the FE models. A distinguished performance
of the MEC model is observed in terms of computation time
versus accuracy. Although, sinusoidal current supply is used
in this case, the model can work directly with different current
waveforms depending on the supply type. The ability of the
post-processing loss models to predict the losses at distorted
flux waveforms depends on the applied loss model. This is
valid also for FE solvers also, if a post-processing model is



TABLE VIII
LOSS DIFFERENCE BETWEEN THE EXPERIMENTAL SETUP AND THE

MEC MODEL.

Load type Loss type Experimental Setup MEC model Error [%]

No Load (I = 0)
Core Losses (W) 25.1 19 24.3%

Winding Losses (W) 0 - -
Rotor Losses (W) 7.5 - -

Rl=10Ω
Core Losses (W) 20.5 15.1 26.34%

Winding Losses (W) 80 - -
Rotor Losses (W) 10 - -

used.
Regarding the simulation time, the MEC model only takes

about 1.5 seconds with a constant permeability for 6 radial
slices and 50 time steps. In the non-linear case, it takes 55
seconds. In non-linear case, it is 900 times faster than the 3D
FE model and 600 times faster than the 2D FE model. Lastly,
the model is verified by a 4kW AFPMSM test setup. The MEC
model proves also a very good performance in comparison
with the experimental setup results. In conclusions, the MEC
model can be used to obtain all the electromagnetic parameters
of the machine for different geometrical and loading condi-
tions.

APPENDIX

Figure 27 shows an example of a simple reluctance network.
This network is provided to give a better understanding of how
to use the equations (7)-(11).

This network consists of a magnetomotive-force source
E in [A.turns] and three reluctancesR1b ,R2b ,R3b. These
reluctances are multiplied afterwards by the relative non-linear
reluctivity of νr(B1b), νr(B2b), νr(B3b) that are dependent
on each branch flux densitiesB1b, B2b, and B3b in [T]
respectively. There are two flux loopsΦ1l, andΦ2l and three
branch fluxesΦ1b, Φ2b, and Φ3b to be solved using the
Newton-Raphson approach described in (7)-(11).

In this example, the number of loopsnl = 2 and the number
of branchesnb = 3. The magnetomotive-force vectorFc in
[A.turns], the diagonal reluctance matrixRd in [A.turns/Wb],
the loop fluxΦ in [Wb], the relative reluctivity matrixνr, and
the loop matrixL described in (8) can be described as:

Fc =

[

E

0

]

, Rd =





R1b 0 0
0 R2b 0
0 0 R3b



 , Φ =

[

Φ1l

Φ2l

]

,

νr =





νr(B1b) 0 0
0 νr(B2b) 0
0 0 νr(B3b)



 , L =





1 0
1 −1
0 1



 ,

(17)

E

R1b

R2b

R3b

Φ1l
Φ2l

Φ1bΦ2b

Φ3b

Fig. 27. A simple reluctance network.

where B1b, B2b, B3b are the flux densities for each branch.
The residual functionr in this case equals:

r = L
T (Rd • νr)LΦ− Fc = RΦ− Fc

=

[

R1bνr(B1b) +R2bνr(B2b) −R2bνr(B2b)
−R2bνr(B2b) R3bνr(B3b) +R2bνr(B2b)

]

[

Φ1l

Φ2l

]

−

[

E

0

]

,

(18)
where the reluctance matrixR equalsLT (Rd • νr)L.

To obtain the Jacobian matrix in (10), the matricesAarea

in [1/m2], U, νrder , andΦd in [Wb] described in (10) need to
be evaluated.

Aarea =





1
A1b

0 0

0 1
A2b

0

0 0 1
A3b



 , U =

[

1 1
1 1

]

,

νrder =





νr1der 0 0
0 νr2der 0
0 0 νr3der



 , Φd =

[

Φ1l 0
0 Φ2l

]

,

(19)
whereA1b, A2b, A3b are the areas of each branch.νr1der =
∂νr(B1b)
∂B1b

is the first derivative of the relative reluctivity (12)
with respect to the flux density at a value ofB1b. Besides,
νr2der , νr3der can be defined similarly.

By substituting the matrices described in (17) and (19) into
(10), the Jacobian matrix is obtained.

J =R+

L
T







R1bνr1
der

A1b

0 0

0
R2bνr2

der

A2b

0

0 0
R3bνr3

der

A3b







(

(LΦdU) • L
)

.

(20)
The Jacobian matrix equals:

J = R+

[

R1bνr1
der

A1b

Φ1l +
R2bνr2

der

A2b

(Φ1l − Φ2l)

−
R2bνr2

der

A2b

(Φ1l − Φ2l)

−
R2bνr2

der

A2b

(Φ1l − Φ2l)
R2bνr2

der

A2b

(Φ1l − Φ2l) +
R3bνr3

der

A3b

Φ2l

] (21)

To obtain the Jacobian matrixJ by the conventional way, it
was proven in [20] thatJ is divided into two parts. One part
is the reluctance matrix termR. The second one describes the
change of the reluctance term with respect to the loop flux.
Therefore, the first entry ofJ can be described as:

J(1, 1) =
∂r(1, 1)

∂Φ1l
= R(1, 1)+

(

R1b
∂νr(B1b)

∂Φ1l
+R2b

∂νr(B2b)

∂Φ1l

)

Φ1l−

(

R2b
∂νr(B2b)

∂Φ1l

)

Φ2l.

(22)

The partial derivative termR2b
∂νr(B2b)

∂Φ1l

is resolved as
follows:



R2b
∂νr(B2b)

∂Φ1l
= R2b

∂νr(B2b)

∂B2b

∂B2b

∂Φ2b

∂Φ2b

∂Φ1l
, (23)

where ∂νr(B2b)
∂B2b

= νr2der can be obtained by differentiating
(12) with respect to the flux density at a value ofB2b. The term
∂B2b

∂Φ2b

is the inverse of the area (A2b) of this reluctance.∂Φ2b

∂Φ1l

denotes the direction of loop flux with respect to the branch
flux. If they are on the same direction, it is one. Otherwise, it
is -1. This simplifies the solution to:

R2b
∂νr(B2b)

∂Φ1l
= R2bνr2der

1

A2b
1 =

R2bνr2der
A2b

. (24)

Therefore, the entries of the Jacobian matrixJ can be
obtained as:

J(1, 1) =R(1, 1) +
(

R1bνr1
der

A1b

+
R2bνr2

der

A2b

)

Φ1l −
R2bνr2

der

A2b

Φ2l,

J(1, 2) =R(1, 2)−
R2bνr2

der

A2b

Φ1l +
R2bνr2

der

A2b

Φ2l,

J(2, 1) =R(2, 1)−
R2bνr2

der

A2b

Φ1l +
R2bνr2

der

A2b

Φ2l,

J(2, 2) =R(2, 2) +
R2bνr2

der

A2b

Φ1l

+
(

−
R2bνr2

der

A2b

+
R3bνr3

der

A3b

)

Φ2l.

(25)
By comparing (21) and (25), the same solution is obtained

by the two methods. However, The traditional method of
obtaining the Jacobian matrix is a heavy computational task.
Therefore, the method described in (10) provides a fast so-
lution for the Jacobian matrix without the need for any for
loops. The use of sparse matrices alow the fast computation
of the Jacobian matrix.
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