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Robust signal transfer in the form of electromagnetic waves is of fundamental importance in modern technology, yet its operation is
often challenged by unwanted modifications of the channel connecting transmitter and receiver. Parity-time- (PT-) symmetric
systems, combining active and passive elements in a balanced form, provide an interesting route in this context. Here, we
demonstrate a PT-symmetric microwave system operating in the extreme case in which the channel is shorted through a small
reactance, which acts as a nearly impenetrable obstacle, and it is therefore expected to induce large reflections and poor
transmission. After placing a gain element behind the obstacle, and a balanced lossy element in front of it, we observe full
restoration of information and overall transparency to an external observer, despite the presence of the obstacle. Our theory,
simulations, and experiments unambiguously demonstrate stable and robust wave tunneling and information transfer supported
by PT symmetry, opening opportunities for efficient communication through channels with dynamic changes, active filtering,
and active metamaterial technology.

1. Introduction

Information transfer in the form of electromagnetic waves is
ubiquitous in today’s world, from free space (wireless) to
transmission line (guided) channels [1–5]. The channels
connecting a transmitter and a receiver are typically time-
varying and are affected by the presence of various obstacles.
Therefore, the wave must tunnel through nonideal channels,
with strong insertion loss. Resonant transmission, such as
electron tunneling through quantum wells, resonant photon
tunneling through optical barriers, and microwave tunneling
through extremely squeezed or bent channels can address
this issue to some extent, but typically with severe trade-offs
in terms of bandwidth, sensitivity, and complexity, among
others [6–9]. In most practical scenarios, dynamic and
complex electromagnetic environments pose challenges to
the system operation and make these solutions even more
challenging. For instance, in applications where dynamic
obstacles are inevitable, like communicating with biomedical

implants such as artificial cardiac pacemakers [10] or interro-
gating embedded health sensors in civil infrastructures [11],
engineers need to adaptively tune complex matching net-
works or the operational frequency to maximize the trans-
mission efficiency. In extreme scenarios, the channel
between a transmitter and a receiver may be completely
blocked, which cannot be addressed by dynamically tuning
the matching network. In such practical scenarios, transfer-
ring the signal over the channel may be impossible.

In a recent theoretical work [12], we showed that in such
systems instead of transferring the input signal to the receiv-
ing port through a channel with dynamic changes, one can
just transfer little information about the input signal during
the transient and replicate the entire signal at the output port
using this information based on a different form of signal
tunneling driven by parity-time (PT) symmetry. Quite
interestingly, in contrast to conventional solutions, in such
a system, the input and output ports do not have to stay con-
nected throughout the whole information transfer process.
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Here, we experimentally prove that, by placing a
shunt lossy element in the transmitting node before the
obstacle and a judiciously designed gain element in the
receiving node, forming a PT-symmetric conjugate pair
[13–31], we can restore full transmission at the opera-
tional frequency, despite the presence of a nearly unitary
reflective obstacle blocking the transmission channel. The
obstacle in our experiment is modeled as a shorting ele-
ment along a transmission line. The lossy element paired
with the obstacle is designed to behave as a Salisbury
screen absorber [32], while the gain element acts as a
synchronized emitter operating as the time-reversed ver-
sion of a Salisbury absorber. This PT-symmetric wave
tunneling and information transfer system enables robust
full-wave transmission through an otherwise impenetrable
barrier.

2. Results

2.1. PT-Symmetric Wave Tunneling and Information
Transfer. PT-symmetric tunneling and robust information
transfer are schematically sketched in Figure 1(a), where
the signal is transported wirelessly via an air channel from
a transmitting to a receiving antenna. When a reflective
obstacle is inserted within the transmission channel, infor-
mation transfer efficiency is expected to drop dramatically.
To restore full-wave transmission, in this work, we add a
gain element −Z0 behind the reflecting obstacle and a
conjugate lossy element Z0 in front of it to form a PT-
symmetric conjugate pair, where Z0 is the characteristic
impedance of the transmission channel (see Figure 1(a)).
As we show in the following, this combination can largely
restore transmission through the channel, despite the pres-
ence of the largely reflective obstacle. In order to prove
this principle, we model the wireless information transmis-
sion channel with a basic transmission line, as shown in
Figure 1(b), and the highly reflective obstacle with a small
inductor L0, close to a short and therefore highly reflec-
tive. Since we utilize the resonant tunneling feature of
the PT-symmetric system, the transmission line is set at
half-wavelength of the impinging wave. As a result, the
loss element Z0, the first quarter-wavelength transmission
channel, and the highly reflective obstacle behave like a
Salisbury screen absorber. The obstacle and the second
quarter-wavelength transmission channel, together with
the gain element −Z0, work as a synchronized information
transmitter, a time-reversed replica of a Salisbury absorber,
which emits in sync with the absorbing portion. We show
that in a steady state the whole PT-symmetric system
works as a tunneling channel for impinging waves, mim-
icking a lossless, ideally transmitting channel.

To begin with, we analyze the resonant transmission
mode and frequency of the PT-symmetric wave tunneling
and information transfer system. We define the steady-state
voltage on the transmitting node, obstacle, and receiving
node as V source, Vobstacle, and V load, which form the state vec-
tor jψi = ½V source Vobstacle V load�T. The characteristic equation
reads PTjψi = λjψi, which supports even and odd eigenstates

jψ+i = 1 −1 1½ �T and jψ−i = 1 0 −1½ �T and eigen-
values λ± = ±1, where

P =

0 0 1

0 1 0

1 0 0

2
664

3
775 ð1Þ

is the parity operator, T is the time reversal operator (equiv-
alent to complex conjugation for a steady state), and T is the
transpose operator. As we can infer from the above analysis,
the obstacle is a short and contributes no phase delay at odd
resonant tunneling states. Therefore, the total phase delay
of the transmitted wave is ωðT0/2Þ = ð2k + 1Þπ with ω =
ð2k + 1Þω0, k = 0, 1, 2, 3⋯ , and ω0 = 2π/T0 being the reso-
nant frequency of the fundamental standing mode. For
the even scattering state, we sum up the phase delay on
the transmission line and the inductor:

−ω
T0
4

+ 2 arctan
Z0

2ωL0
− ω

T0
4

= 2kπ, ð2Þ

which can be simplified to the characteristic equation

1
2α

ω

ω0

� �−1
= tan

π

2
ω

ω0

� �
, ð3Þ

where α = ω0L0/Z0 is the coupling strength between the
Salisbury screen absorber and its conjugate emitter and Z0
is the characteristic impedance of the transmission line. The
eigenequation of even standing modes is a transcendental
equation, which requires a numerical evaluation. As α
approaches zero, the circuit is shorted by the obstacle and
the wave cannot tunnel through the system; as α approaches
infinity, the load can be neglected and the even mode has the
close-form solution ω = 2kω0, k = 0, 1, 2, 3⋯ . An alternative
approach to find the resonant frequencies of the system is to
employ the transfer matrix method and the generalized con-
servation law, with detailed calculations presented in the
Supplementary Materials. The standing even/odd mode solu-
tions jψ±i explicitly show that the absorber and emitter
exhibit identical amplitudes and 0/π phase difference, which
is direct evidence of synchronized wave absorption at the
input port and emission at the output port. We demonstrate
the standing wave profile of this PT-symmetric absorber-
emitter pair in Figure 1(c). The unusual standing mode pro-
file, considering the presence of the reflective obstacle, is a
direct manifestation of PT symmetry and Neumann bound-
ary conditions at the ports. We also show the power trans-
mission spectrum in Figure 1(d), which demonstrates full-
wave tunneling at the resonant frequencies. The tunneling
mechanism satisfies the generalized flux conservation law
applicable to any two-port PT-symmetric network [33],
which reads T − 1 = jrLrRjeiðϕL−ϕR+πÞ, where T is the power
transmission coefficient, rL and rR are the amplitude reflec-
tion coefficients on the left and right ports of the system,
and ϕL and ϕR are the corresponding phases of the amplitude
reflection coefficients. As a result, the system demonstrates
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superunitary power transmission inside the region bounded
by any pair of even and odd tunneling eigenfrequencies.
Note that, due to the presence of gain in the system, the
transmission may go over unity at frequencies close to the
tunneling frequency; however, the system remains stable.

To better understand the PT-symmetric wave tunneling,
it is of interest to investigate the scattering properties at res-
onance and analyze the PT phase transition of the scattering
state. Rigorous transfer matrix analysis enables us to express
the scattering properties of even and odd resonant states of
this two-port information transfer network as

S± =
0 ±1

±1 ±
2j
α

ω

ω0

� �−1

2
64

3
75, ð4Þ

where S+ and S− are scattering matrices of even and odd res-
onant modes, respectively, obeying the symmetry relation
PS∗±ðωÞPS±ðωÞ = I [29]. Wave tunneling happens at the reso-
nant frequencies, and it is totally independent of the obstacle
strength α or its type (inductive, capacitive, even resistive, or
any combination of these) between the Salisbury absorber
and the synchronized emitter, since the obstacle is effectively
shorted in a steady state. This offers unique flexibility to
maintain the transmissivity of the proposed system for arbi-

trary variations of the obstacle, ensuring stable operation.
Even for dynamically varying obstacles, the system is capable
of self-tuning to a stable full-transmission region (see Supple-
mentary Materials).

The scattering matrix in the equation has two eigenvalues

λ1,2 = ð−j ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαðω/ω0ÞÞ2 − 1

q
Þ/ðαðω/ω0ÞÞ. At α = ðω/ω0Þ−1,

these two eigenvalues coalesce, supporting a non-Hermitian
degeneracy. This exceptional point (EP) separates the scatter-
ing system from its PT-symmetric phase when α > ðω/ω0Þ−1
and its broken PT-symmetric phase when α > ðω/ω0Þ−1. We
substitute the eigenfrequencies of even and odd scattering
states α < ðω/ω0Þ−1 into the expression α = ðω/ω0Þ−1 to find
the EPs:

αEvenEP =
π

2 arctan 1/2 + 2kπ
, k = 0, 1, 2⋯,

αOddEP =
1

2k + 1
, k = 0, 1, 2⋯:

ð5Þ

Depending on the reflectivity of the obstacle, i.e., how
close to zero is its reactance, the resonant tunneling state
can be in the exact PT symmetry phase with unitary eigen-
values jλ1j = jλ2j = 1 or in the broken PT symmetry phase
with jλ1j = 1/jλ2j > 1 [29]. The PT tunneling functionality is
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Figure 1: PT-symmetric wave tunneling model, mode profile, and power transmission characteristics. (a) PT-symmetric wave tunneling and
information transfer scheme. A highly reflective obstacle blocks the channel. A gain element −Z0 is placed behind this obstacle, and a lossy
element Z0 is placed before the obstacle to facilitate full-wave transmission. (b) A simplified wired version of the PT-symmetric robust
information transfer scheme based on a transmission line. The obstacle is modeled as a small inductive element L0. (c) Fundamental odd
and even mode profiles of the PT-symmetric absorber-emitter pair. They are significantly different from the Hermitian system due to the
Neumann boundary condition and PT symmetry. The points Z = −ðL/2Þ and Z = L/2 mark the location of the loss and gain unit,
where L is the electrical length of the transmission connecting these two elements. (d) Tunneling characteristics of the PT-
symmetric system. The π phase transmission maxima locate at ω = ð2k + 1Þω0, k = 0, 1, 2, 3⋯ , and the in-phase transmission peaks
are determined by the transcendental equation ð1/2αÞðω/ω0Þ−1 = tan ðπω/2ω0Þ, where α = ω0L0/Z0 is the coupling strength between
the absorber and emitter and ω0 = 2π/T0 is the fundamental resonant frequency.
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independent of the PT symmetry phase transition point. The
stability analysis is presented in the Supplementary Mate-
rials, which shows inherent stability for any finite value of
the obstacle reflectivity [0 < α<∞].

Quite interestingly, the proposed system is robust even
when the time delay on the transmission line is asymmetric
(see the detailed discussion in the Supplementary Materials).
As it was mentioned above, regardless of how small or large
the inductive load is (i.e., how reflective the inductive load
is), the structure will still fully retrieve the input signal at
the output once it reaches a steady state. In fact, the obstacle
can be inductive, capacitive, or even resistive, and yet the PT-
symmetric setup will still recover the input signal at the out-
put. In the general case of a finite-size obstacle, the 1-D trans-
mission line model implemented here does not apply,
because of scattering into the continuum of radiation. How-
ever, if the beamwidth of the input wave is smaller than the
size of the obstacle and the obstacle does not scatter energy
from its edges, scattering loss can be modeled as a small resis-
tive load in our transmission line model and we still expect to
efficiently recover the input signal at its output.

2.2. Experimental Realization and Robustness Analysis. We
experimentally demonstrate a robust proof-of-concept PT-
symmetric microwave tunneling prototype (see Figures 2(a)
and 2(b)). The gain unit is realized through a dispersive neg-
ative impedance converter (NIC) based on a noninverting
feedback amplifier configuration (see Figure 2(a)). A com-
pensating inductor Lc in series with the noninverting port
realizes purely negative impedance −Z0 at the operational
frequency. The dispersion relation of the NIC follows

ZNIC sð Þ = s + A0βωp

s + A0 β − 1ð Þωp
ZF + sLc, ð6Þ

where A0 is the open-loop gain of the amplifier, ωp is the pole
frequency of the amplifier, β = Rf /ðRf + RgÞ is the feedback
factor, ZF = 2Z0 is the feedback resistor, and s is the complex
frequency. We choose a compensating inductor Lc = 3Z0/
ω3dB and the operational frequency ω0 = ω3dB/

ffiffiffi
3

p
, where

ω3dB = A0ωp/2 is the 3 dB frequency of the closed-loop gain
coefficient. The NIC dispersion is shown in Figure 2(c), show-
ing a negative impedance−Z0 at the operational frequencyω0.

Our prototype is designed to work at the fundamental
odd scattering state. We realize the transmission line through
a π-type LC resonator to reduce the form factor (see

Figure 2(a)), which offers unitary transmission as well as
π/2 phase delay at resonant frequency to mimic a
quarter-wavelength transmission line segment. The imped-
ance is automatically matched at both transmitting and
receiving nodes, as we choose L = Z0/ω0 and C = 1/Z0/ω0.
This compact design significantly reduces the form factor
of our device from λ/2 to a deeply subwavelength scale
λ/50. The fabricated device is shown in Figure 2(b), with
a size of approximately 2 cm by 2 cm.

We confirm our theoretical analysis with a cosimulation
between ADS and the Modelithics package, which shows
excellent PT-symmetric tunneling at 48.7MHz. The scatter-
ing properties are demonstrated in Figure 2(d) with a tunnel-
ing point of -0.01 dB transmission and -28.8 dB reflection.
Finally, we confirm the PT symmetry of our designed circuit
by graphing the spectral properties of the eigenvalues of the
scattering matrix in Figure 2(e). With the coupling coeffi-
cient α = 0:13, the eigenvalues demonstrate unitary prop-
erty jλ1j = 1/jλ2j at ω0, which is a typical hallmark of PT
symmetry in the broken symmetry phase. No other PT
symmetry point is found in the full spectra.

To better understand how this PT-symmetric wave
tunneling circuit works, we plot the temporal response at
the source, obstacle, and load nodes in Figures 2(f)–2(h).
We place a microwave generator Vg = sin ω0t with internal
impedance Z0 in the source node. The voltage at this port ini-
tially experiences a small reflection and then rapidly reaches a
steady state V source = ð1/2Þ sin ω0t, indicating that the
impinging wave is fully absorbed by the shunt resistor Z0.
The obstacle node demonstrates a purely decaying response,
confirming our previous steady-state analysis in the ideal PT-
symmetric configuration Vobstacle = 0. The load port is essen-
tially an emitter, and it demonstrates an exponentially grow-
ing trend towards a steady state V load = −ð1/2Þ sin ω0t. Since
it operates at the fundamental odd resonant tunneling state,
the emitted wave has a π phase shift with respect to the
impinging wave.

Apart from the PT-symmetric full-wave tunneling func-
tionality, our design is stable and robust to parameter detun-
ing and reasonable fabrication errors [34–36]. More
interestingly, our system can self-tune to the stable region
even if the obstacle dynamically changes in time (see Supple-
mentary Materials). To study the stability issue, it is impor-
tant to investigate the voltages at the source, obstacle, and
load in the complex frequency domain. Application of
Kirchhoff’s current and voltage laws leads to a set of linear
equations:

2 +
s
ω0

+
s
ω0

� �−1
−

s
ω0

� �−1
0

s
ω0

� �−1
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s
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1
α

� �
s
ω0

� �−1 s
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where ~VgðsÞ is the voltage of the microwave generator and
~V sourceðsÞ, ~VobstacleðsÞ, and ~V loadðsÞ are the complex voltages
on the source, obstacle, and load nodes, respectively. Here,
we define the transfer function as the voltage ratio between
the load and generator: ~HðsÞ = ~V loadðsÞ/~VgðsÞ (see the
detailed expression in Materials and Methods). To main-
tain a stable operation, the impulse response should have
a finite energy, which is equivalent to requiring that all
the poles of the transfer function lie on the left hemi-
Riemann sphere [36]. Equation (7) indicates that the rel-
ative pole locations only depend on the strength of the
obstacle. As α approaches to zero, the transfer function
turns to zero and it is meaningless to study the stability
issue. As α goes to infinity, the emitter is directly con-
nected with the absorber, creating a marginally stable
point on the north pole (see Figure 3(a)). In this sce-
nario, any small perturbation in the system will move

the marginally stable point and transform it into eight
poles on the right hemi-Riemann sphere. Numerical com-
putation indicates that our circuit operates robustly as the
coupling strength varies between 0.1 and 0.3. As our realis-
tic design involves both dispersive negative feedback and a
π-type transmission line, they place a more stringent condi-
tion on stability compared with the ideal model where the
stable condition is 0 < α<∞. In our fabricated prototype,
we carefully choose α = 0:13 to ensure a stable operation
within expected fabrication imperfections. Figure 3 demon-
strates the pole distributions as well as the impulse response
of our design. There are eight poles on the left hemi-
Riemann sphere when α = 0:13, indicating that our fabri-
cated prototype is stable. To further confirm the robustness
of our implemented prototype, we study the influence of
feedback factor β and feedback resistor ZF perturbation
on the pole distribution and impulse responses in Materials
and Methods.
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Figure 2: Realistic design and implementation of the PT-symmetric wave tunneling prototype. (a) Circuit schematic. Transmission line is
replaced with a π-type transmission line which consists of inductor L and capacitor C. (b) Photograph of the fabricated PCB prototype.
Two big white components are tunable resistors. The black component with six pins is the OPA 355-Q1 amplifier. Left and right ports are
source port 1 and load port 2 in the schematic. Upper and lower ports are DC bias ports for the amplifier. (c) Dispersion of the
impedance of the gain element. Black circle marks the operational point. (d) ADS and Modelithics simulation of the amplitude of
scattering parameters. Tunneling point is marked in the figure. (e) Spectral properties of eigenvalues of the scattering matrix. Exact PT
symmetry is achieved at tunneling frequency where eigenvalues obey unitary condition jλ1ðω0Þλ2ðω0Þj = 1. The coupling coefficient α is
0.13, ensuring robust operation of the whole circuit in the presence of the obstacle. (f) Numerical transient response at the source port
where full absorption is achieved at tunneling frequency. The generator voltage is 1 volt. (g) Numerical transient response at the obstacle
which is short in the steady state. (h) Numerical transient response at the load port where full-wave tunneling is observed in the steady state.
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2.3. Observation of PT Tunneling and Information Transfer.
Figures 4(a) and 4(b) show the experimentally measured
and theoretically calculated forward transmission spectrum
and phase. A PT-symmetric unitary transmission was
observed at 44.8MHz with a 180-degree phase, which agrees
with our simulation. Meanwhile, the reflection is fully sup-
pressed at this point, as shown in Figures 4(c) and 4(d).
The experimental reflection phase at resonance is essentially
undefined due to the zero amplitude, causing fast oscillations
around the resonance, as shown in Figure 4(d). It is worth
mentioning that at resonance, the experimental backward
reflection amplitude jS22j is 15 dB and the phase Arg½S22� is
-90 degrees, confirming that our PT-symmetric system has
asymmetric reflections and satisfies the generalized conserva-
tion law. Since the system is linear and time-invariant, reci-
procity is satisfied and the transmission coefficients in
forward and backward directions are identical. The observed
tunneling frequency is smaller than the simulation results,
which may stem from fabrication errors where the induc-
tance or capacitance values in the transmission line are
smaller than the designed ones. The scattering parameters
in a narrower or wider spectrum are demonstrated in the
extended data figure section in the Supplementary Materials
(Figs. S3 and S4). In the extended Fig. S5, we show the linear-
ity of our tunneling circuit, which demonstrates an excellent
linear relation between input and output power at tunneling
frequency. This graph clearly shows that although at the

steady state, the output is completely disconnected from the
input (since the inductive load is fully shorted), the output
can still linearly follow the input. In other words, if after
reaching the steady state, any change happens to the input
signal, the system goes into the transient regime for a very
short period of time, during which the information of the
input signal is communicated towards the output port and
then the output reaches the steady state again and fully repli-
cates the input signal.

3. Discussion

In conclusion, we have demonstrated microwave tunneling
and information transfer through a PT-symmetric
absorber-emitter pair. Our study represents a landmark
towards realistic implementation of information transfer sys-
tems with extreme robustness, able to tunnel the input signal
through otherwise impenetrable obstacles with large robust-
ness, and it shows promises to spawn a series of applications.
For instance, our loss-neutral-gain arrangement exhibits a
third-order exceptional point in the bound state. By properly
designing the system at this higher-order exceptional point,
the eigenfrequency splitting of the corresponding Hamilto-
nian matrix shows enhanced high sensitivity proportional
to the cubic root of the perturbation strength on the system,
which is very favorable to design ultrasensitive microsensors.
Meanwhile, this prototype can be used as a bandpass active
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Figure 3: Pole diagram and impulse response. (a) Pole distribution of the transfer function on a Riemann surface. Grey solid line (prime
meridian) marks the watershed between stable and unstable regions. The north pole is the pole in the case α =∞, corresponding to an
open obstacle and leading to marginally stable operation. For the prototype, we fabricated α = 0:13; there are eight poles in the transfer
function, A, B, C, D, E, C∗, D∗, and E∗, where C∗, D∗, and E∗ are the conjugates of C, D, and E, respectively. A and B are located on the
90-degree west longitude; C, D, and E are located close to the prime meridian but to the left; C∗, D∗, and E∗ are located in the back
surface. All these eight poles are in the stable region. (b) Numerical impulse response at the gain unit. The input port is excited with a
pulse Vgenerator = δðtÞ.
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filter which allows for simultaneous narrowband signal filter-
ing and amplification. Furthermore, our design provides rel-
evant insights into realization of active cloaking devices and
active metasurfaces which exhibit unique properties not
available in passive counterparts. In summary, the design
strategies and stability analysis in this work pave the way
towards future realizations of PT-symmetric functionalities
in optics and microwave regimes. Considering the extensive
connections between electromagnetic, mechanic, and matter
waves, our study can also spur practical applications of PT
symmetry in these other fields of research.

4. Materials and Methods

4.1. Circuit Design and Fabrication. The design of the circuit
and fabricated prototype is shown in Figures 2(a) and 2(b). In

the NIC part, we use the amplifier OPA 355-Q1 from Texas
Instruments. This amplifier has a 200MHz gain bandwidth
product, with an open-loop gain A0 = 105 and pole frequency
ωp = 2π × 2000Hz. The effective impedance of the NIC in the
Fourier domain can be easily inferred from Equation (6) by
replacing complex frequency s with physical frequency jω:

ZNIC = ZF
ω2 + A0ωp

� �2β β − 1ð Þ
ω2 + A0 β − 1ð Þωp

� �2
+ j

−ωA0ωpZF

ω2 + A0 β − 1ð Þωp
� �2 + ωLc

( )
:

ð8Þ

To have purely negative impedance −Z0, the real part of
the above equation should be −Z0 and the imaginary part
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Figure 4: Measurements of the amplitude transfer characteristics and reflection coefficient. (a) Forward transmission spectrum. Resonant
tunneling occurs at 44.8MHz. (b) Phase diagram of the transmission coefficient. Tunneling field experiences π phase shift at resonant
frequency. (c) Reflection at the input port. -50 dB reflection is observed at 44.8MHz, indicating that the matching network works quite
well. (d) Phase diagram of reflection coefficient at the input port. Measured data in a wider (20-200MHz) and narrower (40-50MHz)
spectrum are presented in the extended data Figs. S3 and S4 in the supplementary document.
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of the effective impedance should be 0. Then, we have the fol-
lowing operational conditions:

ω = A0ωp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βð Þ ZFβ − Z0 1 − βð Þ½ �

ZF + Z0

s
, ð9Þ

Lc =
ZF + Z0

1 − βð ÞA0ωp
, ð10Þ

where Z0 = 50Ω, ZF = 100Ω, β = Rf /ðRf + RgÞ = 0:5, and
Rf = Rg = 560Ω. Here, the feedback resistor ZF is chosen
as 2Z0 due to the dispersion of the one-pole model ampli-
fier. We substitute these values into Equation (9) and get
the operational frequency f = ω/2π = 57:74MHz of the
negative impedance converter and the compensating
inductor Lc = 238:7 nH. In circuit simulation, we use two
inductors with inductance value 120nH. Then, we cosimu-
late our circuit with ADS and Modelithics to check the
effective negative impedance. Our simulations demonstrate
a −50.9Ω negative impedance at 50.2MHz. The shift of
the design frequency can be contributed to the parasitic
effect and possible high-order poles in the amplifier. The
inductor L = 150 nH and capacitor C = 68 pF in the trans-
mission line are chosen to match both the operational
frequency of NIC and the characteristic impedance of
the port. The reflective obstacle is modeled as an induc-
tor L0 = 20 nH, leading to a coupling factor α = 0:13 and
ensuring robust operation of the system.

The circuit is fabricated on a 0.062-inch-thick FR-4
substrate with relative permittivity 4.4 and dissipation fac-
tor 0.017. The following components are surface mounted
on the PCB board: (1) characteristic impedance Z0 from
KOA Speer with part number RK73B1ETTP510J; (2)
feedback resistor ZF from KOA Speer with part number
RK73B1ETTP910J; (3) feedback resistor Rf from KOS
Speer with part number RK73B1ETTP561J; (4) two vari-
able resistors from Bourns Inc. with part numbers
3223W-1-101ETR-ND and 3223W-1-200ETR-ND; (5)
capacitor in the resonator from Murata Inc. with part
number GRM1552C2A680GA01#; (6) inductors from
Coilcraft with part numbers 0402HPHR15X, 0402CS20N,
and 0402CS12X; (7) amplifier from Texas Instruments
with part number OPA355QDBVRQ1; and (8) port con-
nectors from Amphenol with part number 132322.

4.2. Stability Analysis. A linear, time-invariant, causal circuit
is stable if and only if the impulse response is absolutely inte-
grable, which means

ð∞
0

H tð Þj jdt = finite, ð11Þ

whereHðtÞ =∑∞
n=0cne

pnt is the impulse response, pn is the nth
pole of the transfer function HðsÞ =∑∞

n=0cn/ðs − pnÞ, cn is the
amplitude coefficient of each Laplace component [36].

Therefore, to operate in the stable region, all the real parts
of the poles must be negative:

∀n, Re pn½ � < 0, ð12Þ

which is the stability condition of a linear, causal, and time-
invariant circuit.

In our circuit, we assume that the system is excited with a
power source Vg which has an internal impedance Z0. The

transfer function ~HðsÞ can be defined as the ratio between
~V loadðsÞ and ~VgðsÞ. According to Kirchhoff’s current and
voltage laws, we express currents and voltages in the Laplace
domain:

I1 = ~V source
1
Z0

+ sC
� �

+ I2,

I2 = ~Vobstacle 2sC +
1
sL0

� �
+ I3,

I3 = ~V load sC +
1
Z0

+
1

ZNIC

� �
,

 ~Vg − ~V source = I1Z0, ~V source − ~Vobstacle

= I2sL, ~Vobstacle − ~V load = I3sL,

ð13Þ

where ZNIC = 2Z0½ðs +
ffiffiffi
3

p
ω0Þ/ðs −

ffiffiffi
3

p
ω0Þ +

ffiffiffi
3

p
s/2ω0�. We

solve the above linear equation set and get the transfer
function:

~H sð Þ = s
ω0

α 2
ffiffiffi
3

p
−

s
ω0

+
ffiffiffi
3

p s
ω0

� �2
 !

2
ffiffiffi
3

p
+ 5

ffiffiffi
3

p
α + 1ð Þ − 1

h i s
ω0

	

+ 7
ffiffiffi
3

p
− 2 − 2α


 � s
ω0

� �2

+ 8
ffiffiffi
3

p
− 2 − 4α + 23

ffiffiffi
3

p
α


 � s
ω0

� �3

+ 6
ffiffiffi
3

p
− 2 − 8α + 24

ffiffiffi
3

p
α


 � s
ω0

� �4

+ 3
ffiffiffi
3

p
− 1 − 6α + 22

ffiffiffi
3

p
α


 � s
ω0

� �5

+
ffiffiffi
3

p
− 4α + 14

ffiffiffi
3

p
α


 � s
ω0

� �6

+ 6
ffiffiffi
3

p
α − 2α


 � s
ω0

� �7
+ 2

ffiffiffi
3

p
α

s
ω0

� �8
)−1

:

ð14Þ

Simple numerical calculation is employed to solve the
pole locations of the above transfer function. Our calcula-
tion indicates that for stable operation of the PT-
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symmetric circuit, the coupling coefficient must meet the
following condition:

0:1 < α < 0:3: ð15Þ

To verify the robustness of our PT-symmetric wave
tunneling circuit, we investigate the influence of parameter
detuning on pole locations. Extended data Fig. S1 demon-
strates pole locations with feedback factor detuning and
feedback resistance detuning, which shows excellent stabil-
ity under reasonable perturbation.

It is also equally important to investigate the impulse
response and confirm the stability of our PT-symmetric sys-
tem in the time domain. We substitute the solutions of the
poles into the following equation of impulse response:

H tð Þ = 〠
∞

n=1
Res estH sð Þ� �

n
, ð16Þ

where “Res” means the residue of a complex function.
Extended data Fig. S2 in the supplementary document dem-
onstrates the impulse responses with parameter detuning,
which shows that the impulse response has a finite energy
and evolves in a stable fashion in the time domain. Both fre-
quency and time domain analyses prove that our system is
immune from reasonable unwanted perturbation and fabri-
cation error and maintains stable operation. It is important
to note that the stability issue inherently relies on the mea-
surement circuit (where the generator, source, and load
impedance are included), rather than the isolated PT-
symmetric tunneling system.

4.3. Measurement Setup. The scattering properties of our
device are measured with the Agilent Technologies network
analyzer with part number E5071C, which can analyze S
parameters from 9kHz to 8.5GHz with great precision.
One of the DC bias ports of the amplifier is grounded, and
the other port is supplied with a 1.3V DC voltage. The source
is from Agilent Technologies with part number E3631A.
When the measurement range is from 20MHz to 80MHz,
the step size of the excitation signal is 0.0375MHz.

Data Availability

All data needed to evaluate the conclusions in the paper are
present in the paper. Additional data related to this paper
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