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Abstract—The integration of Internet of Things (IoT) and
cloud services with edge technologies has enabled the devel-
opment of many new types of edge services, which leverage
blockchain features for cross-organizational, traceable and ver-
ifiable records. However, developing such edge services with
blockchain features requires not only knowledge about complex
blockchain technologies but also how blockchain technologies
coexist with edge computing service models and architectures and
deployments. In the context of edge service development, coupling
edge systems, software models for edge services and blockchain
technologies is complex. Thus, a strong collaboration and knowl-
edge sharing for edge systems and blockchain technologies will
help addressing many concerns of the developer. However, there
is a lack of frameworks for sharing knowledge about blockchain
software artefacts and deployments for edge services. In this
paper, we present various types of information linking blockchain
performance with service deployments at different levels. We
represent and associate benchmarked performance information
of blockchain operation and blockchain infrastructural services
with common edge service interactions and resource deploy-
ments. Based on that, we develop a service offering blockchain
knowledge to the developer seeking relevant blockchain operation
information for their development decisions. We will present
a prototype of our framework with benchmarked information
obtained from experiments with Ethereum and Hyperledger.

Index Terms—blockchain, edge computing, performance,
knowledge sharing, software development, benchmark

I. INTRODUCTION

Edge Services (ES) are complex, consisting of various IoT,
edge and also cloud components[1], [2], [3], [4]. Blockchain-
based features in ES environments have recently been inten-
sively studied by researchers [5], [6], [7]. Due to the problem
complexity, developers are faced with many challenges [5],
[8], [9] in engineering blockchain-based applications in ES, for
example, how to choose a suitable deployment of blockchain
features into ES components [10]. Through our motivation
discussion (see Section II), we show that there are many
complex issues and various types of performance knowledge
that the developer wants to obtain for designing and deciding
blockchain features and suitable deployments. However, there
is a lack of generic frameworks to help developers sharing
and recommending such suitable deployments of blockchain
features for blockchain-based applications in ES. Related
work (see Section V) applies design patterns on blockchain
systems as well ES deployment patterns. There are also many
description languages [11] for specifying ES deployments.

However, they miss models of knowledge about the blockchain
deployment topologies and artefacts for blockchain features.

Our goal is to build a generic framework to manage
the knowledge about blockchain performance for ES. Such
knowledge can be shared among developers, facilitating the
collaboration among them. A developer could provide bench-
mark information to our framework, helping to enrich the
knowledge, while other developers can utilize the knowledge
through searches and recommendations. To this end, at the
center of our framework is a service for management of the
knowledge. In the architecture of our framework (see Section
III), performance knowledge can be gathered from existing
benchmarks and monitoring tools for blockchain, such as
[12], [13], and can be combined with deployment models and
service operations.

To represent useful blockchain performance knowledge,
we propose a comprehensive model (in Section III), which
covers software topologies, composed of ES components,
blockchain software artefacts deployed to the topologies, ES
infrastructures and quality metrics measured. Having such a
suitable model enables us to aggregate data across various de-
ployments and build knowledge from the data. Based on that,
we provide a service managing knowledge and recommending
performance information to the developer. Our framework has
been implemented into a prototype called GIAU (knowledGe
for blockchaIn Applications and Utilities). In this paper, we
will evaluate our prototype, which is open source in GitHub1,
through examples how the developers could benefit from
mobile edge computing scenarios.

The remainder of this paper is structured as follows. Section
II presents our motivation scenarios. In Section III we present
a high-level architectural overview of GIAU and detail how
we manage the knowledge. Prototype and experiments are
given in Section IV. Related work is elaborated in Section V.
Remaining issues of the work will be discussed in Section VI.

II. MOTIVATION

Development of blockchain-based ES involves activities at
multiple levels. At the highest level the developer may have
to choose an underlying blockchain infrastructure for ES, e.g.,
to use Ethereum [14] or Hyperledger Fabric [15], [16]. At a
lower level, a suitable deployment of blockchain features in

1https://github.com/rdsea/blockchainbenmarkservice/tree/master/giau



a topology of ES components has to be decided. Consider,
for example, the developer develops a blockchain-based ap-
plication for vehicle-to-everything (V2X) communication2 that
will be executed in an ES topology, composed of a vehicle,
a smartphone, an edge device and an edge data center. The
developer needs to decide which blockchain software artefacts
should be deployed to which nodes of the topology. Such
a decision on the deployment is very challenging for the
developers. Another type of knowledge is at the level of
blockchain nodes, e.g., the developer has to decide whether to
deploy a Hyperledger Fabric peer node [15] to an edge device
or to an edge data center. If s/he would prefer to deploy the
peer node to the edge device, it might decrease latency, but
increase the infrastructure cost, as opposed to a deployment
in the edge data center.

At the lowest level, blockchain features are executed in
blockchain nodes running in ES components; nodes carry
out typical blockchain operations, such as mining, creating
and verifying transaction, and accepting transactions. Thus,
knowing characteristics of blockchain operations is crucial. To
demonstrate the importance of understanding operations, let us
consider a code excerpt3 in Listing 1, which stores a warning
message from a vehicle on a blockchain system (Hyperledger
Fabric in this example). We assume the piece of code is
executed in one of components of ES and fabricClient
wraps a connection to a blockchain node, which is deployed
to an ES component as well. The operation, which submits a
transaction, containing the warning message, to blockchain, is
invoked on line 20 in Listing 1.

Listing 1. Example of blockchain transaction submission
1 let request = {
2 chaincodeId: ’warn_cc’,
3 fcn: ’createWarning’,
4 args: [1, ’obstacle detected’, latitude, longitude],
5 chainId: ’mychannel’
6 };
7 let tx_id = fabricClient.newTransactionID(false);
8 request.txId = tx_id;
9 // send the transaction proposal to the peers

10 channel.sendTransactionProposal(request).then((results) =>
{

11 let proposalResponses = results[0];
12 let proposal = results[1];
13 if (proposalResponses && proposalResponses[0].response &&

proposalResponses[0].response.status === 200) {
14 let txRequest: TransactionRequest = {
15 proposalResponses: proposalResponses,
16 proposal: proposal,
17 txId: tx_id
18 };
19 // submitting a transaction to blockchain
20 return channel.sendTransaction(txRequest);
21 } else {
22 throw new Error(‘Transaction proposal is bad.‘);
23 }
24 }).then( (results) => {
25 // work with results of the transaction
26 } );

The developer is interested in the following questions: how
long does it take to perform the operation, how much resources

2https://networks.nokia.com/products/vehicle-to-everything
3Extracted from https://github.com/rdsea/blockchainbenmarkservice/blob/

master/emulators/v2x communication/src/main/hypfab/HypFabVehicleDAO.
ts

are needed to execute the operation, and eventually what
is the dependency between the underlying infrastructure and
performance of the operation. The answers to those questions
are dependent on the deployment. These answers are important
for the developer as they help to improve qualities of the
applications.

In this paper, we first determine what data do we need
for the knowledge and propose a structure capturing the
knowledge. Having the structure we work on techniques of
managing and providing the knowledge under a service for
facilitating collaboration among developers.

III. KNOWLEDGE FOR BLOCKCHAIN APPLICATIONS AND
UTILITIES

A. Architectural overview

Figure 1 depicts a high-level architectural overview of
GIAU, our framework enabling knowledge sharing for deploy-
ment of blockchain to ES. Via Deployment Pattern Service
a developer can manage all deployment patterns stored in
GIAU. A deployment pattern is a graph consisting of ES
components, represented as graph nodes, while edges of
the graph represent interactions among the ES components.
Infrastructure Service manages metadata about compute re-
sources and network configurations in an ES infrastructure.
The resources are provided by an external resource provider.
The responsibility of Software Artefact Service is to manage
metadata of blockchain software artefacts. GIAU uses external
repositories of the blockchain software artefacts so we store
only metadata concerning those artefacts; the artefacts are
stored at an external provider (e.g. DockerHub). The metadata
provide enough information for developers to obtain and ex-
ecute those artefacts. Blockchain Benchmark DaaS represents
and manages benchmark data, stored in the GIAU but provided
by existing benchmark tools. Benchmark data are arranged
into experiments. An experiment specifies a case in which
blockchain operations have been been benchmarked (or to be
benchmarked) in a concrete setting. Each experiment has a
topology and quality metrics measured when benchmarking
the experiment. A topology of the experiment is a deployment
pattern, such that software artefacts (from Software Artefact
Service) are deployed to the ES components involved in the
pattern. Each of ES components in an experiment’s topology
has an associated resource (from Infrastructure Service); in
many cases a resource is used as a container for the ES
component. The purpose of Recommendation Service is to
utilize knowledge stored by GIAU to give recommendations
about deployment of blockchain artefacts to ES components
involved in a topology of blockchain-based application.

B. Linking blockchain knowledge with service and infrastruc-
ture knowledge

Figure 2 illustrates a model of data representing the knowl-
edge in GIAU. We will explain them in the following.



Fig. 1. High-level overview of GIAU framework

1) Capturing deployment patterns: Developer might be
interested in patterns of blockchain interaction between ES
components and how do those interactions perform concern-
ing various quality metrics. Consider a following example:
a developer is implementing an application, which utilizes
blockchain for interaction between Internet of Things (IoT)
devices and edge data-centers. S/he’s is not sure if an edge
device, added to the interaction between IoT devices and edge
data-centers, would enrich performance of the interaction. To
be able to answer that question, we have to consider the
patterns of interaction and link them to benchmark results.
The interaction patterns are represented via DeploymentPattern
class. The DPNode class stands for an ES component partic-
ipating in an interaction. In order to support various types of
ES components, we create sub-classes of DPNode; they are:
DPCloud, DPEdgeNode, DPEdgeDev and DPThing. DPThing
represent IoT devices [10]. IoT devices are interacting among
each other, with devices at the edge [10], with edge data
centers and with cloud services. The devices at the edge are
represented by the DPEdgeDev class, edge data-centers by the
DPEdgeNode. DPCloud is used to capture cloud services. The

model is extendable to support new ES components, which can
be introduced by a new DPNode’s subclass. Each DPNode
is identified by its id. Attribute name presents its caption. A
DPNode’s peers are other DPNodes, which are connected to
the DPNode by an edge in the graph representing a deployment
pattern.

2) Representing blockchain software artefact information:
We represent knowledge at two levels: blockchain nodes
and blockchain operations. At the blockchain node level, a
blockchain node is represented by an executable blockchain
software artefact; examples of blockchain artefacts, as con-
sidered in this paper, are Geth4, Hyperledger Fabric
peer node [15], and Hyperledger-Fabric orderer
node [15]. At the blockchain operation level, blockchain op-
erations, used to implement blockchain features in ES, include
creating a transaction, verifying a transaction, and mining
and accepting a block, and are carried out by blockchain
software artefacts (nodes). Let us consider a developer who
uses Hyperledger-Fabric. Listing 2 illustrates an example of in-

4https://github.com/ethereum/go-ethereum/wiki/geth



Fig. 2. Model of data stored in GIAU

formation representing knowledge at the level of a blockchain
node whereas an example for blockchain operations is given
in Listing 3, which can be carried out by the artefact in Listing
2. Both types of information can be extracted from existing
benchmarks or software configurations in the developer work
through manual actions and custom utilities. Some types
of information are common for many developers, such as
container images used and environment variables, but other
specific information reflect the setting used by the developer.

As depicted in Figure 2 the knowledge is linked to the
benchmarks results. Linking benchmark results to blockchain
software artefacts information is important for giving rec-
ommendations (our approach for the recommendations is
described in Section III-C). Blockchain artefact is repre-
sented via the class BlockchainArtefact depicted in Figure
2. BlockchainArtefact is a subclass of SoftwareArtefact. The
artefacts are deployed and run in an execution environment,
which might be a docker container, operating system, etc. That
is specified via executionEnvironment property and GIAU uses
external repository of the artefacts. Variable repositoryTag is
an identification of the artefact within the external repository.
Additionally some configuration data are stored as well. The

structure of the configuration is on the developer. As we
explained above the BlockchainArtefact is a representation of
blockchain node (BlockckhainNode class) and the blockchain
node is capable of executing a set of blockchain operations
(BlockchainOperation class). Those classes illustrate how we
represent knowledge of blockchain for both discussed levels.

Listing 2. Example of information capturing Hyperledger-Fabric
peer node as blockchain software artefact
{
name: ’hyperledger-fabric peer’,
implementation: ’hyperledger’,
feature: ’creator’,
executionEnvironment: ’docker’,
imageTag: ’hyperledger/fabric-peer’,
configuration: {

organization {
peer_name: "peer1",
domain: "org1.example.com"

},
environment_variables: {
CORE_PEER_ID: "peer1",
CORE_PEER_TLS_ENABLED: false,
CORE_PEER_GOSSIP_USELEADERELECTION: true

,
CORE_PEER_GOSSIP_ORGLEADER: false,



...
}

}
}

Listing 3. Examples of information capturing blockchain operations carried
out by blockchain node
{
bcArtefact: {
name: "hyperledger-fabric peer",
...

},
bcOperations: [
{
name: "creating a transaction",
libraryMeta: {

language: ’nodejs’
source: "https://fabric-sdk-node.

github.io/release-1.4/index.html"
}

},
{
name: "signing a transaction",
libraryMeta: {

language: ’nodejs’
source: "https://fabric-sdk-node.

github.io/release-1.4/index.html"
}

},
...

]
}

3) Capturing infrastructure information: Many papers have
been introduced for capturing service information in the edge
and cloud. Bellini [17] et al. presented models of infrastructure
as a service information in the cloud. Combined with our
previous work on IoT Cloud Systems [18], we reuse their
model of data-center when modelling edge data-center, model
of virtual machines to depict hosts of the blockchain-based ap-
plications and model of networks to model connections among
nodes of the ES topology. Furthermore, we also consider reuse
models of resources in [19], [20] to be able to model IoT
devices.

4) Modeling experiments information: When a developer
wants to obtain recommendation about the deployments then
s/he needs to know topologies, to which blockchain artefacts
have been deployed. Knowing the topology is important for the
developer because it helps understand various circumstances
in which benchmarks have been measured for the topology.
Those circumstances include role of blockchain (i.e. whether
blockchain has been used for interactions or datastore), how
many blockchain artefacts have been deployed, scale of the
topology, etc. A topology in GIAU is represented by the
Topology class. It’s a graph composed of instances of Node
class, presenting graph’s nodes. Instance of the Node class is a
representation of ES component. The edges of the graph repre-
sent interactions among the Node’s instances (ES components).
SoftwareArtefacts, including BlockchainArtefacts deployed to
the ES components. There is a known infrastructure specified
via container of the Node class. The developers can utilize a

deployment language, such as as Topology and Orchestration
Specification for Cloud Applications (TOSCA), and AWS
CloudFormation, to specify the topology. The specification is
stored in specification attribute and the description language is
specified via specificationLang. A topology is associated with
an experiment.

5) Incorporating benchmark and monitoring data: The de-
velopers can utilize blockchain benchmarking and monitoring
tools [12] [13] to benchmark blockchain-based applications
in ES. The knowledge in our model is extracted from the
benchmarks. Since benchmarks (from the developers) might
have very different representations, we need to employ data
processing techniques (e.g. utilizing a parser utility) to extract
benchmarks and ingest the data into our framework. We
retrieve data concerning (i) deployment pattern, (ii) soft-
ware artefact and (iii) infrastructure information from the
benchmarks. Then the (i), (ii) and (iii) are queried in a
graph database (Neo4J) (to find (i)) and a document database
(MongoDB) (to find (ii), (iii)) to determine whether those are
known. If so then the benchmarks data are linked to those.
Otherwise the data concerning (i), (ii) and (iii) are stored to
the graph database and the document database and then the
stored data is linked to the benchmarks data. Finally, we take
the benchmarks data linked to the (i), (ii) and (iii) and insert
them to the document database. The results of the benchmarks
in GIAU are represented via quality metrics (QualityMetric
class, depicted in Figure 2). There are many metrics of quality
for blockchain systems, these have been extensively studied in
literature ([21], [12], [13]). For example, transaction latency
[21] equals confirmation time minus submit time or transaction
throughput [21] is computed as total committed transactions
divided by total time in seconds. The value of a metric is stored
in the value property of QualityMetric. Furthermore, there are
other metrics, like resource utilization and cost, which can be
stored.

C. Search and recommendation

GIAU can be used by developers to search for topologies, to
which certain blockchain artefacts have been deployed and to
see what benchmarks have been measured in those topologies.
The developers can also share topologies of their blockchain-
based applications to GIAU. Searching the topologies allows
the developers to compare their topologies with the bench-
marked topologies stored in GIAU. Based on the benchmark
information, the developers can infer a recommendation.

We support the developers to look up information represent-
ing both levels of knowledge regarding blockchain software
artefacts. Our proposed recommendation solution accepts a
deployment pattern (derived from the application’s topology)
as input and utilizes the knowledge stored in GIAU to
find deployment pattern, which is most similar to the one
submitted on input. Furthermore, the solution has to take
quality metrics, which are most relevant to the developer,
into consideration. Based on the preferred quality metrics,
GIAU looks up benchmarks associated with the most similar
deployment pattern and returns a deployment pattern with



Fig. 3. Obtaining interaction pairs from a deployment pattern

deployed blockchain software artefacts. The returned topology
provides a recommendation to the developer about a suitable
deployment. Since our goal is to support ES development
in the edge and cloud environments, we support the known
TOSCA specification of the deployment patterns as input. In
order to be able to specify the deployment patterns in TOSCA
we derive node types from existing TOSCA Cloudify node
types5. The derived node types represent different types of
nodes of deployment patterns as explained before6.

Recommendations need to rank a similarity between an
input deployment pattern against existing patterns. Neverthe-
less, the problem of finding the largest common subgraph
is known to be NP-hard [22]. That implies that especially
for large scale topologies it might take a very long time
till a largest common subgraph is obtained. In the current
version, we just implement a simple approach. GIAU will
iterate over all deployment patterns stored and split each
deployment pattern into interaction pairs. An interaction pair
is a pair of nodes (representing ES components) connected
by an edge in the graph, representing deployment pattern. An
example illustrating a transformation of a deployment pattern
to a set of interaction pairs is depicted in Figure 3. The
deployment pattern for which we find the largest number of
matching interaction pairs with the interaction pairs of the
submitted deployment pattern is considered as the most similar
one. When the most similar deployment pattern is obtained,
we search all benchmark experiments associated with the
deployment pattern to find the benchmark with best results
concerning the preferred quality metrics set by developer.

IV. PROTOTYPE AND EXPERIMENTS

A. Prototype

We have implemented a prototype of GIAU with key ser-
vices shown in Figure 4. The prototype has been developed in
Typescript, runs in a NodeJS environment and can be executed
inside a docker container. It uses a single MongoDB and a
Neo4J database for the repository layer. The implementation
and documentation of the prototype is available in the GitHub
repository7.

5https://docs.cloudify.co/4.6/developer/blueprints/built-in-types/
6Further node types can be found in giau/tosca_node_types.yaml

of the GitHub repository at https://github.com/rdsea/
blockchainbenmarkservice

7https://github.com/rdsea/blockchainbenmarkservice/tree/master/giau

B. Experiment data

Real data: We performed evaluations based on our real
data from benchmarking Vehicle-to-Everything (V2X)
communication scenarios8. The real data are stored at
experiments/results/benchmarks_results of
the GitHub repository. We have 324 benchmarks for the
topologies with deployed blockchain software artefacts
from the real data. There are five entries about different
infrastructure’s metadata and six related to blockchain
software artefacts.
Emulated data To have more data for testing, we generated
the emulated data9. We generated 250 diverse deployment
patterns, of which sizes have been generated randomly by
following a normal distribution with µ = 100 and σ = 30.
The types of nodes (refer to Section III) of the deployment
patterns are represented by a random variable X ∼ N (2, 1),
such that P (X < 1) = 0.1587 is the portion of edge
node node type, P (1 < X < 2.5) = 0.5328 of thing,
P (2.5 < X < 3.5) = 0.2417 of edge dev and the rest
is cloud. One of the most complex emulated deployment
patterns is composed of 196 nodes (99 thing node types,
43 edge dev, 41 edge node, 12 cloud). Topologies,
created based on the deployment patterns, are associated
with metadata of infrastructures having configurations, which
values (CPU core count, storage and memory of containers, la-
tency and bandwidth of network, etc.) are normally distributed.
Furthermore, we generated 50 different metadata of blockchain
software artefacts. For each deployment pattern we created two
different benchmarks results, which values of quality metrics
are normally distributed as well. Altogether the emulated data
presents more diverse structures and larger scale of the data
than we have from the real data.

C. Examples of providing knowledge in blockchain develop-
ment

Suppose a developer is struggling with selecting a suitable
deployment of blockchain software artefacts into the nodes
of the deployment pattern. The TOSCA specification for
the deployment is given in Listing 4, when developing an
ES. The developer utilizes GIAU to obtain recommendations
about the deployment. Figure 5 depicts the recommended
deployment returned by GIAU10. We can observe that the
submitted and returned deployment pattern (Figure 5) are
similar, but not the same. The returned deployment pattern
provides following hints to the developer about the deploy-
ment: Deploy Hyperledger-Fabric peer node to IoT

8The work of benchmarking is out of the scope of this paper. Initial
information can be obtained from https://www.researchgate.net/publication/
333388734 Benchmarking Blockchain Interactions in Mobile Edge
Cloud Software Systems.

9All emulated data can be found in
giau/tests/data/emulated_data directory of the
above GitHub repository. We implemented a simple utility
giau_emulated_data_generator published in the GitHub repository

10A complete TOSCA .yaml representation of the input and output is given
in the directory giau/tests/data/examples of the prototype GitHub
repository.



Fig. 4. GIAU Microservice-based prototype

devices, Hyperledger Fabric orderer node to edge
devices and both Hyperledger Fabric peer node
and Hyperledger Fabric order node with Apache
Kafka and Apache Zookeeper (those are required by
Hyperledger Fabric blockchain) to the edge node. Because
those Hyperledger Fabric nodes have been deployed to the re-
spective components in the recommended deployment. Beside
the deployment, GIAU provides following recommendations
(these are not visible in the Figure 5, but are in the TOSCA
.yaml representation) regarding hardware configuration of the
underlying infrastructure. Use big machine for IoT devices
and edge node, small machine’s configuration for edge
devices and a 5G network configuration for connections among
the nodes of the deployment pattern. Exact information regard-
ing the hardware (number of CPU cores, memory, etc.) and
network (latency and bandwidth) configurations can be found
via the Infrastructure Service. We can observe that in this case
our recommendation service was able to find a deployment
pattern among all in the real data, which is actually most
similar to the submitted one. Furthermore, a deployment,
for which best benchmarks concerning the preferred quality
metrics of the developer, has been returned.

Listing 4. Input example - TOSCA description of a deployment pattern
node_templates:
edge_dev1:
type: giau.nodes.rsu
relationships:
- target: iot1

type: giau.relationships.nodes_network
edge_node:
type: giau.nodes.edge
relationships:
- target: edge_dev2

type: giau.relationships.nodes_network
- target: edge_dev1

type: giau.relationships.nodes_network
- target: iot3

type: giau.relationships.nodes_network
edge_dev2:
type: giau.nodes.rsu

relationships:
- target: iot2

type: giau.relationships.nodes_network
iot1:

type: giau.nodes.vehicle
iot2:

type: giau.nodes.vehicle
iot3:

type: giau.nodes.vehicle

D. Performance evaluation

To evaluate performance of GIAU we perform stress testing.
We simulate different numbers of concurrent requests being
sent to the service and we measure response time (rT) in
milliseconds and success rate [23] of the requests by utilizing
Apache JMeter12. We have performed testing on the following
endpoints exposed by the service: (i) sharing knowledge to
the service (ii) obtaining recommendation. For both endpoints
we have have executed two experiments, first one with the
real data and the second one with the emulated data. GIAU
has been executed in a docker container on a machine with
following hardware configuration Intel Core i7-6820HQ CPU,
16GB RAM memory, Ubuntu 18.04 during the testing.

We performed experiments for stress tests and for rec-
ommendation. Shown in Figure 6, Experiment 1 and
Experiment 2 are for obtaining knowledge from the ser-
vice by calling a POST request to the /experiment
endpoint of GIAU with real data and with emulated data,
respectively, and Experiment 3 and Experiment 4
are for recommendation requests by calling requests to
/recommendTopology with real data and with emulated
data, respectively. When we look on those results we can
observe that there is a linear dependency between the number
of concurrent requests and average rT in Experiment 1
and Experiment 2. But we witness longer rT for the

11https://docs.cloudify.co/4.5.0/developer/composer/
12https://jmeter.apache.org/



Fig. 5. Deployment information returned by GIAU, depicted via Cloudify Composer11

Fig. 6. Results of stress testing - Experiments 1 to 4

Experiment 2. That is caused by the diversity and larger
scale of the emulated data than we have for the real data.

We observe that in Experiment 3 GIAU was able to give
recommendations even if 100 concurrent requests have been
issued and we measured 100% success rate. In Experiment
4, we observed that for 50 and 100 concurrent requests GIAU
wasn’t able to respond on 92% and 98% of requests. In
these cases we witness a HeapOutOfMemory Exception
thrown by the Neo4J database.

E. API for different Tools

External tools with blockchain benchmark and deployment
information can use APIs to upload their data into GIAU,
thus enriching the knowledge. For example, Figure 7 shows
some selected APIs. Currently, we do not provide connectors
for extracting information from other tools. However, using

various big data ingestion pipelines based on, e.g., Logstash13,
Apache Nifi14 and Python/JavaScript programs, pushing data
into GIAU should be straightforward.

V. RELATED WORK

Knowledge models for IoT and Cloud: The authors of
[19] present a unified semantic knowledge base for IoT.
The knowledge base models IoT resources (sensors, actuators
and physical objects), location information, information about
context, policies for dynamic environment and IoT services.
However, in [19] they don’t provide any knowledge about
blockchain in ES as we do in our work. In our work we can
reuse their models of IoT resources. Bellini et al. [17] present

13https://www.elastic.co/products/logstash
14https://nifi.apache.org/



Fig. 7. Example of APIs for integrating with data collection pipelines

a modeling of cloud knowledge by utilizing ontologies to
model cloud representations at layers of IaaS, PaaS and SaaS.
The authors don’t give any blockchain knowledge. However,
they provide modelling of IaaS, which we can reuse when
specifying infrastructure information in our work.
Design patterns and knowledge models for blockchain
Zhang et al. [24] explain potentials of interoperability im-
provements and challenges in utilizing blockchain to health-
care applications. The authors show that those challenges can
be mitigated by applying familiar software patterns as Abstract
Factory, Flyweight, Proxy and Publisher-Subscriber. In our
work, we focus on blockchain in ES, as opposed to Zhang
et al., who concentrate on healthcare applications specifically.
In the work by Xu et al. [25] they present design patterns
for blockchain-based applications. They utilize the patterns to
describe communications of blockchain with external world,
to manage data on blockchain, to secure blockchain-based
applications, etc. Lu et al. [26] contribute a design pattern as
a service platform, which involves data management services
and smart contract design. They focus on scalability, privacy
and security. The data management services concentrate on
scalability and privacy of data in blockchain. The authors
of [24], [25] and [26] show application of software patterns
on blockchain-based applications but have not provided any
blockchain knowledge sharing service as we do in our work.
Blockchain benchmark and monitoring: Several papers
have performed benchmarks and testing of blockchain and
blockchain networks [12], [27], [28]. Our work complements

these blockchain benchmarks and testing as we do not focus
on benchmarking but integrate benchmark information.

VI. CONCLUSIONS AND FUTURE WORK

Mastering requirements and performance understanding of
blockchain and edge computing systems is challenging for
edge service developers. In this paper we have presented
a framework for managing performance information about
blockchain features and their related deployments for edge
services. Knowledge are captured from benchmarks and other
information to enable the developer to share and reuse useful
information for design and implementation of blockchain-
based edge services. Our framework – GIAU – has aggre-
gated various types of data via generic models and provides
services for the developer to update, retrieve and search useful
blockchain-related performance information.

Currently we work on improving our prototype by em-
ploying software engineering techniques to make the perfor-
mance of the service better. We are also analyzing possi-
bilities to provide a richer evaluation of the prototype. Our
future work includes implementation of interfaces to existing
benchmarking tools [12], [13] to simplify the gathering of
performance information through benchmarks measured by
blockchain tools.
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