' Aalto University

Cremona, Fabio; Lohstroh, Marten; Broman, David; Lee, Edward A.; Masin, Michael; Tripakis,
Stavros

Hybrid co-simulation: it's about time

Published in:
SOFTWARE AND SYSTEMS MODELING

DOI:
10.1007/s10270-017-0633-6

Published: 01/01/2019

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Cremona, F., Lohstroh, M., Broman, D., Lee, E. A., Masin, M., & Tripakis, S. (2019). Hybrid co-simulation: it's
about time. SOFTWARE AND SYSTEMS MODELING, 2019(18). https://doi.org/10.1007/s10270-017-0633-6

This material is protected by colpyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by ?/ou for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other tuhse: Elgctronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

https://doi.org/10.1007/s10270-017-0633-6
https://doi.org/10.1007/s10270-017-0633-6

Softw Syst Model (2019) 18:1655-1679
https://doi.org/10.1007/s10270-017-0633-6

@ CrossMark

SPECIAL SECTION PAPER

Hybrid co-simulation: it’s about time

Fabio Cremonal - Marten Lohstroh! - David Broman? - Edward A. Lee! -

Michael Masin® - Stavros Tripakis!*

Received: 29 February 2016 / Revised: 21 December 2016 / Accepted: 1 November 2017 / Published online: 21 November 2017

© The Author(s) 2017. This article is an open access publication

Abstract Model-based design methodologies are com-
monly used in industry for the development of complex
cyber-physical systems (CPSs). There are many different
languages, tools, and formalisms for model-based design,
each with its strengths and weaknesses. Instead of accept-
ing some weaknesses of a particular tool, an alternative

Communicated by Prof. J. Sztipanovits, M. Broy, and H. Daembkes.

This work is partially based on previous work published by the
authors [7,8, 15], but the contributions presented in this article stand
on their own. This work was supported in part by the TerraSwarm
Research Center, one of six centers administered by the STARnet
phase of the Focus Center Research Program (FCRP) a Semiconductor
Research Corporation program sponsored by MARCO and DARPA,
by the National Science Foundation (NSF) awards #1446619
(Mathematical Theory of CPS), #1329759 (COSMOI) and #1139138
(ExCAPE), and by iCyPhy (the Industrial Cyber-Physical Systems
Research Center) and the following companies: Denso, National
Instruments, and Toyota. This work was also financially supported by
the Swedish Research Council #623-2013-8591, by the Swedish
Foundation for Strategic Research, and by the Academy of Finland.

X Edward A. Lee
eal @eecs.berkeley.edu

Fabio Cremona
f.cremona@eecs.berkeley.edu

Marten Lohstroh
marten @eecs.berkeley.edu

David Broman
dbro@Xkth.se

Michael Masin
michaelm@il.ibm.com

Stavros Tripakis

stavros @eecs.berkeley.edu
1" University of California, Berkeley, Berkeley, CA, USA
KTH Royal Institute of Technology, Stockholm, Sweden

is to embrace heterogeneity, and to develop tool integra-
tion platforms and protocols to leverage the strengths from
different environments. A fairly recent attempt in this direc-
tion is the functional mock-up interface (FMI) standard that
includes support for co-simulation. Although this standard
has reached acceptance in industry, it provides only limited
support for simulating systems that mix continuous and dis-
crete behavior, which are typical of CPS. This paper identifies
the representation of time as a key problem, because the FMI
representation does not support well the discrete events that
typically occur at the cyber-physical boundary. We analyze
alternatives for representing time in hybrid co-simulation and
conclude that a superdense model of time using integers only
solves many of these problems. We show how an execution
engine can pick an adequate time resolution, and how dispar-
ities between time representations internal to co-simulated
components and the resulting effects of time quantization can
be managed. We propose a concrete extension to the FMI
standard for supporting hybrid co-simulation that includes
integer time, automatic choice of time resolution, and the
use of absent signals. We explain how these extensions can
be implemented modularly within the frameworks of existing
simulation environments.

Keywords Co-simulation - Functional mock-up interface -
Time

3 IBM Research — Haifa, Haifa, Israel

4 Aalto University, Espoo, Finland

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-017-0633-6&domain=pdf

1656

F. Cremona et al.

1 Introduction

Model-based design of cyber-physical systems (CPS)
requires modeling techniques that embrace both the cyber
and the physical parts of a system [24]. There is a long
history of modeling languages and tools that integrate tech-
niques that were originally developed independently, and
on different sides of the border that separates the cyber
and the physical. Modelica [20,39], for example, integrates
object-oriented design (a cyber modeling technique) with
differential-algebraic equations (DAEs, a physical model-
ing technique). Languages and tools for hybrid systems
design [11] integrate finite state automata (cyber) with ordi-
nary differential equations (ODEs, physical). Discrete-event
(DE) modeling tools [12,18,29,49] integrate a model of
a time continuum (physical) with discrete, instantaneous
events (cyber). Such simulation tools are capable, in prin-
ciple, of simulating both cyber components (software and
networks) and physical components (mechanical, electrical,
fluid flows, etc.).

In spite of the power and utility of existing tools, we should
not be sanguine about CPS modeling. All of the above inte-
grations have pitfalls, limitations, and corner cases where a
model that can be easily handled in one tool cannot be easily
handled in another. Modelica-based tools, for example, have
difficulty with some discrete phenomena, even purely physi-
cal ones, forcing model builders to sometimes model discrete
behaviors as rapid continuous dynamics [41]. Conversely,
tools that handle discrete events well, such as DE tools, may
have difficulty with continuous dynamics [36], forcing model
builders into brute-force methods such as sampled-data mod-
els with high sampling frequencies.

One possible solution is to embrace the heterogeneity of
tools and to provide tool integration platforms and protocols
that enable co-simulation using a multiplicity of tools [23].
There is a long history of tool integration platforms (some-
times called “simulation backplanes”) for DE modeling and
a well-established standard called the high-level architec-
ture (HLA) for tool interoperability [27]. A more recent
development is the functional mock-up interface (FMI),
a standard initiated by Daimler AG within the ITEA2 MOD-
ELISAR project [5,40], now maintained by the Modelica
Association. It has been designed to enable the exchange
or co-simulation of model components, functional mock-up
units (FMUs), designed with different modeling tools. The
standard consists of a C application program interface (API)
for simulation components and an XML schema for describ-
ing components. Largely unspecified is the algorithm that
coordinates the execution of a collection of FMUs, the mas-
ter algorithm (MA). The idea is that the standard should be
flexible enough to accommodate the inevitable differences
between execution engines in different tools. FMI provides
two distinct mechanisms for interaction between an FMU

@ Springer

and a host simulator: (i) model exchange (FMI-ME), where
the host simulator is responsible for all numerical integration
methods, and (ii) co-simulation (FMI-CS), where the FMU
implements its own mechanisms for advancing the values of
state variables. FMI for co-simulation is more focused on tool
interoperability; the host simulator provides input values to
the FMU, requests that the FMU advance its state variables
and output values in time, and then queries for the updated
output values.

The current standard for co-simulation (version 2.0 [38]),
however, is unable to correctly simulate many mixed dis-
crete and continuous behaviors, limiting its utility in current
form for model-based design for CPS [8]. As a consequence,
the community-driven standardization process is consider-
ing another mechanism called hybrid co-simulation that
strives for the loose coupling of co-simulation, but with
support for discrete and discontinuous signals and instan-
taneous events. The intent of this mechanism is to support
hybrid systems [1,11,34,42,46], where continuous dynam-
ics are combined with discrete mode changes and discrete
events. Hybrid co-simulation promises better interoperabil-
ity between models of the cyber and the physical sides of the
CPS problem.

In this article, we focus on a particular issue with hybrid
co-simulation that has proved central to the problem, namely
the modeling of time. Time is a central concept in reasoning
about the physical world, but is largely abstracted away when
reasoning about the cyber world. As a result, the engineer-
ing methods that CPS builds on have misaligned abstractions
between the physics domain, the mathematical domain used
to model physics, the computational domain used to imple-
ment these mathematical abstractions for simulation, and the
computational domain used on the cyber side of CPS. The
most egregious misaligned abstractions concern time, where
all four domains routinely use mutually incompatible models
of time.

The most common resolution for this conundrum is to
adopt the naive Newtonian ideal model of time, where time
is a real number known everywhere and advancing uni-
formly, and the real number is approximated in software as
a floating-point number. In this paper, we show that floating-
point numbers are inadequate for hybrid co-simulation. We
describe instead a representation of time that eliminates
the problems associated with floating-point representations,
allows for multiplicity of time resolutions, and allows for
cyber abstractions where events can occur discretely in time
and in sequences without time advancing. For the latter prop-
erty, we adopt a form of superdense time [33,34] (see
Sect. 2.2). Our solution satisfies all of the requirements for
hybrid co-simulation stated in [8].

Although the approach presented in this paper is general
and could potentially be applicable to many different hybrid
co-simulation environments, we have chosen to illustrate the

Hybrid co-simulation: it’s about time

1657

Fig. 1 A zero-delay feedback
model

Constant

Integrator

Zero-Crossing
Detector

FMU

Adder

cl

concept concretely, by applying it to FMI and showing that
only modest extensions to the FMI standard are needed to fol-
low our recommendations. Within this framework, we show
how to perform hybrid co-simulation with heterogeneous
time models and accommodate mixtures of components that
may internally represent time differently. Specifically, our
solution supports hybrid co-simulation of FMUs that use
floating-point time together with integer-time FMUs, even
if those integer-time FMUs internally use a different resolu-
tions.

In summary, we make the following contributions:

— We analyze and compare alternatives for representing
time, including floating-point numbers, rational numbers,
and integers. We discuss superdense time and the con-
cepts of time resolution. We also propose a model of
time that supports a multiplicity of time resolutions, dif-
fering even within the same simulation, supports discrete
events with an exact notion of simultaneity, invulnera-
ble to quantization errors, and is efficiently converted to
and from legacy floating-point representations of time to
accommodate legacy simulators within a co-simulation
environment. It also supports abstractions of time such as
sequences of events where time does not elapse, enabling
better integration of cyber models with physical ones
(Sect. 2).

— We present a concrete proposal for a new FMI standard
for hybrid co-simulation, FMI-HC. The three main parts
of the proposal are: (i) the use of integer time, (ii) the
capability of FMUs to negotiate the resolution of time,
(iii) the use of absent signals for handling discrete events
(Sect. 3).

— We describe how a master algorithm can use the FMI-HC
extensions and support co-simulation of components that
operate at different time resolutions. The algorithm finds
a suitable global time resolution for the simulation based
on the FMUSs’ preferences and is able to handle disparities
between the time resolutions of co-simulated FMUs. Our
modular implementation using wrappers demonstrates
that it is easy to add support for hybrid co-simulation
to existing master algorithms (Sect. 3).

— We give a detailed analysis and a solution to the time
conversion and quantization problem, an unavoidable

FMU

c:-0.001

Microstep
Delay

fFMU

consequence when different components operate at dif-
ferent time resolutions (Sect. 4).

And finally, our implementation of the proposed FMU wrap-
pers, a simple method to achieve compatibility with FMI-HC,
is explained in detail in “Appendix”.

1.1 A motivating example

Bromanetal. [8] give the model shown in Fig. 1 asa “simplest
possible” nontrivial illustration of the challenges of hybrid
co-simulation. This model includes a simplest-possible phys-
ical side, an integrator integrating a constant and the result
being offset by a constant via an Adder. This model detects a
zero-crossing of the offset output of an integrator, providing a
simplest-possible nontrivial interface from the physical side
to the cyber side. This detector produces a discrete event that
is then processed by the simplest-possible cyber component,
labeled “Microstep Delay.” The output of this component
then resets the integrator, creating a simplest-possible closed-
loop cyber-physical control system. In this model, the cyber
component is abstracted as instantaneous, and the ensuing
potential causality loop is averted by using superdense time,
introducing an infinitesimal delay that makes the model con-
structive (for subtleties surrounding such models, see [30]).
In this model, the resetting of the continuous output of the
integrator is required to occur as a discrete, zero-duration dis-
continuity, but to ensure consistent semantics for the physical
models, all continuous-time signals are required to be piece-
wise continuous, and continuous from both the left and the
right at all points of discontinuity. These requirements imply
that some form of superdense time is required.

Figure 2 shows the output of the Integrator assuming the
constant values 1 and —0.001 shown in Fig. 1. An essential
feature of this output is that discontinuities occur at precise
times, that they take zero time to transition, and that between
the discontinuities, signals are continuous.

Our goal in this paper is to provide a model of time for the
interactions between these components that is semantically
well defined and exact. If the interactions between the compo-
nents are well defined, then the components themselves can
be made much more complex, with predictable results. The
integrator FMU could be replaced with a sophisticated ordi-

@ Springer

1658

F. Cremona et al.

Fig. 2 Output of

Zero-Delay Feedback - Integer Time

Integrator

0.0 0.5

nary differential equation (ODE) solver with a much more
complicated internal model, the adder could be replaced with
some continuous-time simulation engine, the zero-crossing
detector could be replaced with more elaborate discrete-event
processing, and the microstep delay could be replaced with
some software engineering model of the control strategies.

1.2 Related work

This paper follows the line of research on FMI initiated
in [7], where the FMI standard was formalized, and two
co-simulation algorithms were proposed and proven to be
determinate. In that same paper, small extensions to the
standard were proposed with the goal of enhancing the
standard’s ability to handle mixed discrete and continuous
behaviors. Some of these extensions are reminiscent of func-
tions included in the actor interface in the modular formal
semantics of the Ptolemy tool [48]. For instance, the “get-
MaxStepSize” function of [7] is similar to the D (“deadline”)
function of [48].

Followup work includes [8], which proposes a collec-
tion of test cases together with acceptance criteria that can
be used to determine whether a hybrid co-simulation tech-
nique is acceptable. Tripakis [47] investigates techniques to
bridge the semantic gap between various formalisms (state
machines, discrete-event models, dataflow, etc.) and FMI.
Cremona et al. [14] propose a new master algorithm that
uses step size refinement to enable state event detection with
FMI. An implementation of the FMI extensions on top of
Ptolemy II is described in [15]. This implementation has
been used in [6] to connect via co-simulation the model-
checkers Uppaal [28] and SpaceEx [19]. Several authors have
also described approaches to implement FMI master algo-
rithms [2,45], and ways to implement FMUs in the currently
available FMI standard [17,43], without considering the time
aspects for hybrid co-simulation.

The topics addressed in this paper are relevant to modeling
of hybrid and cyber-physical systems at large, but we choose
to present our ideas on the basis of a concrete framework,
namely the FMI standard. They could equally well be applied
to other frameworks, such as HLA. Several papers exist in
the literature that address the problem of formal modeling of
cyber-physical systems, in particular, using hybrid automata
with an emphasis on verification [1,22,26,46]. The focus of

@ Springer

1.0 15 2.0 2.5 3.0 3.5 4.0
Time [seconds] x107

this paper, however, is not formal verification, but rather (co-)
simulation, with an emphasis on the practicalities, and in
particular the representation of time.

The list of modeling languages and tools for CPS and
hybrid systems design is long, and beyond the scope of this
paper to cover exhaustively. A survey dating from 2006 can
be found in [11], and a description of the mapping between
formalisms, languages, and tools can be found in [9]. There
have been numerous developments in the field, including
many others, e.g., [3,4,10,50,51].

A side benefit of our proposal in this paper is that it
potentially enables co-simulation between classical ODE
simulators and a relatively newer way of modeling continu-
ous dynamics called “quantized-state systems” (QSS) [25].
QSS simulators model continuous dynamics using discrete
events, and sometimes the resulting simulations are more
accurate (because of the use of symbolic computation)
and more efficient than classical ODE solvers [31]. Since
our proposed technique facilitates interoperability between
continuous-time solvers and discrete-event systems, and QSS
is based on discrete-event systems, it potentially enables
interesting hybrid simulation techniques, where QSS can be
used where it is most beneficial.

2 Representing time

A major challenge in the design of cyber-physical systems
is that time is almost completely absent from models used
on the cyber side, while time is central on the physical side.
In order for hybrid simulators to interact in predictable and
controllable ways, we will need a semantic notion of time
that can be used to model both continuous physical dynamics
and discrete events. It is naive to assume that we can just use
the Newtonian ideal, where time is absolute, a real number
t, visible everywhere, and advancing uniformly. We begin
in this section by reviewing a set of requirements that any
useful model of time must satisfy. We then elaborate with an
analysis of practical, realizable alternatives that meet these
requirements, at least partially.

2.1 Models of time

Like the Newtonian ideal, any useful semantic notion of
time has to provide a clear ordering of events. Specifically,

Hybrid co-simulation: it’s about time

1659

each component in a system must be able to distinguish
past, present, and future. The statre of a component at a
“present” is a summary of the past, and it contains every-
thing the component needs to react to further stimulus in the
future. A component changes state as time advances, and
every observer of this component should see state changes
in the same order.

We also require a semantic notion of time to respect an
intuitive notion of causality. If one event A causes another
B, then every observer should see A ordered before B.

In order to cleanly support discrete events, we also require
a semantic notion of simultaneity. Under such a notion, two
events are simultaneous if all observers see them occurring at
the same time. We need to avoid models where one observer
deems two events to be simultaneous and another does not.

We could easily now digress into philosophy or modern
physics. For example, how could a notion of simultaneity be
justifiable, given relativity and the uncertainty principles of
quantum mechanics? We resist the temptation to digress, and
appeal instead to practicality. We need models that are useful
for co-simulation. The goal is be able to design and build bet-
ter simulators, not to unlock the secrets of the universe. Even
after the development of relativity and quantum mechanics,
Newtonian ideal time is a practical choice for studying many
macroscopic systems.

But ironically, Newtonian time proves not so practical
for hybrid co-simulation. The most obvious reason is that
digital computers do not work with real numbers. Com-
puter programs typically approximate real numbers using
floating-point numbers, which can create problems. While
real numbers have infinite precision, their floating-point rep-
resentation does not. This discrepancy leads to quantization
errors. Quantization errors may accumulate. Although real
numbers can be compared for equality (e.g. to define “simul-
taneity”), it rarely makes sense to do so for floating-point
numbers. In fact, some software bug finders, such as Cover-
ity, report equality tests of floating-point numbers as potential
bugs.

Consider a model where two components produce peri-
odic events with the same period starting at the same time.
The modeling paradigm should assure that those events will
appear simultaneously to any other component that observes
them. Without such a notion of simultaneity, the order of
these events will be arbitrary, and changing the order of dis-
crete events can have a much bigger effect than perturbing
their timing, and a much bigger effect than perturbing sam-
ples of a continuous signals. Periods that are simple multiples
of one another should also yield simultaneous events. Quanti-
zation errors should not be permitted to weaken this property.

Broman et al. [8] list three requirements for a model of
time:

1. The precision with which time is represented is
finite and should be the same for all observers in a
model. Infinite precision (as provided by real num-
bers) is not practically realizable in computers, and
if precision differs between observers, then they
will not agree on which events are simultaneous.

2. The precision with which time is represented
should be independent of the absolute magnitude
of the time. In other words, the time origin (the
choice for the meaning of time zero) should not
affect the precision.

3. Addition of time should be associative. That is, for
any three time intervals 71, f,, and #3,

t+n)+n=1+(+1).

In contrast to the above quote from Broman et al. [8], and to
avoid confusion with the term precision in measurement the-
ory, henceforth we will in this article use the term resolution
instead of precision to denote the grain at which we can tell
apart two distinct time stamps.

Definition 1 (7ime resolution) Time resolution is the small-
est representable time difference between two time stamps.

For instance, if we state that “a model has a time resolution
of one millisecond,” or for short, “the time resolution is mil-
liseconds,” it means that the time points 0.001,0.002, 0.003 s,
... are representable, but the time points in between are not.
No values can be defined at unrepresentable time points.

Note that properties 2 and 3 are not satisfied by floating-
point numbers due to rounding errors [21]. For instance,
consider the following C code that adds double-precision
floating-point numbers.

7

double r 0.8;
double k 0.7
k =%k + 0.1;

printf ("%f,%f,%d\n",r,k,r==k);

The output of this program is 0.800000,0.800000, 0.
Both r and k appear to have value 0.800000, but due to
rounding errors, the test for equality r==k evaluates to
false, which is represented as a O-value integer in C. Hence,
floating-point numbers should not be used as the primary
representation for time if there is to be a clean notion of
simultaneity. Unfortunately, in FMI 2.0 and many other sim-
ulation frameworks, it is exactly the representation that is
used. This is problematic.

2.2 Superdense time
A model of time that is particularly useful for hybrid co-

simulation is superdense time [13,33-35]. Superdense time
is supported by FMI-ME, but not by FMI-CS. Fundamentally,

@ Springer

1660

F. Cremona et al.

superdense time allows two distinct ordered events to occur
in the same signal without time elapsing between them.

A superdense time value can be represented as a pair (¢, n),
called a time stamp, where ¢ is the model time and 7 is a
microstep (also called an index). The model time represents
the time at which some event occurs, and the microstep rep-
resents the sequencing of events that occur at the same model
time. Two time stamps (¢, n1) and (¢, ny) can be interpreted
as being simultaneous (in a weak sense) even if n; # nj.
A stronger notion of simultaneity would require the time
stamps to be equal (both in model time and microstep).

Superdense time is ordered lexicographically (like a dic-
tionary), which means that (t;,n1) < (2, ny) if either
11 < p,ort; = tp and n; < ny. Thus, an event is con-
sidered to occur before another if its model time is less or, if
the model times are the same, if its microstep is lower.

An event is value with a time stamp. Time stamps are a par-
ticular realization of tags in the tagged-signal model of [32].
They provide a semantic ordering relationship between
events that can be used in software simulations of physi-
cal phenomena and also in the programming logic on the
cyber side of a cyber-physical system. But computers cannot
perfectly represent real numbers, so a time stamp of form
(t,n) € R x N is not realizable in software. Many soft-
ware systems approximate a time ¢ using a double-precision
floating-point number. But as we noted above, this is not a
good choice. We examine alternatives below.

The microstep can also be problematic for software,
because in theory, it has no bound. But computers can
represent unbounded integers (assuming that memory is
unbounded), although the implementation cost of doing so
may be high, and the benefit may not justify the cost. The
microstep, therefore, should either be represented using a
bounded integer (such as a 32-bit integer), or not repre-
sented at all. With some care in simulator design, it may be
possible to never construct an explicit representation of the
microstep, and instead rely only on well-defined ordering of
time stamped values. Microsteps can implicitly begin at zero
and increment until a signal stabilizes. This is the approach
used in FMI-ME, where there is no explicit microstep, and
yet, superdense time is supported. By contrast, in FMI-CS
version 2.0, microsteps are explicitly disallowed [40].

2.3 Integer time

Given that floating-point numbers are a problematic repre-
sentation of time, what should we use? An obvious alternative
is integers. We postulate that a hybrid co-simulation exten-
sion must use integer numbers in some way to represent the
progress of time for coordinating FMUs. But how, exactly?
And at what cost?

Integers are typically represented in a computer using a
fixed number of bits. E.g., a C int32_t is a 32-bit, two’s-

@ Springer

complement integer. A uint32_t in Cis a 32-bit unsigned
integer. Note that the integer values can be interpreted as
representing a time value with some arbitrary units. For
example, we might interpret an integer value as having units
of microseconds, in which case a value 100, for example,
represents 0.0001 s.

Integers can be added and subtracted without quantization
errors, a key property enabling a clean semantic notion of
simultaneity. For example, suppose that one discrete-event
signal has regularly spaced events with a period of p; = 3,
and another has regularly spaced events with a period of
p2 = 1, both beginning at time 0. The times of the events
in the first signal are O, p1, p1 + p1, p1 + p1 + p1, ..., and
the times of the events in the second signal are 0, p2, p2 +
P2, p2 + p2 + pa2, Then no matter how these additions
are performed, every third event in the second signal will be
simultaneous with an event in the first signal.

Again, we have no such assurance with floating-point
numbers. For example, suppose that we are using the IEEE
754 double-precision floating-point standard, and we let
p1 = 0.000003 (3 ms). If we add p; to itself 12 times,
performing (--- ((p1 + p1) + p1) + p1---), then the result
is 0.000003599999999999999. On the other hand, if we let
g = ((p1 + p1) + p1), then (((g + q) + q) + q) yields
0.0000036. The results are not equal.

If signals are continuous, then such small differences in
time have very little effect on system behavior. But if signals
are discrete, then any difference in time can change the order
in which events occur, and the potential effects on system
behavior are not bounded.

One possible solution is to explicitly use an error tolerance
when comparing two floating-point numbers. For example,
suppose we assume an error tolerance of 100 ns. That is,
we consider two times to be simultaneous if their difference
is less than 100ns. Then the above two times are simul-
taneous. But now consider three times, 11 = 0.0000036,
t, = 0.00000367, and 3 = 0.00000374. Then #; is simul-
taneous with t», and t, is simultaneous with #3, but #; is not
simultaneous with 73. Surely we would want simultaneity to
be a transitive property!

An alternative to floating-point numbers is rational num-
bers. A time value could be given by two unsigned integers,
a numerator and denominator. Addition of two such num-
bers will require first finding the least common multiple M
of the denominators, then scaling all four numbers so that
the two denominators equal M. Then the numerators can be
added, and the denominator of the result will be M. However,
this makes addition a relatively expensive operation, unless
measures are taken to ensure that denominators are equal.
Such measures, however, are equivalent to reaching agree-
ment across a model on a time resolution, so we believe
that a simpler solution uses an integer representation of time
with an agreed resolution. It is also much more difficult to

Hybrid co-simulation: it’s about time

1661

determine when overflow will occur with rational numbers.
For example, if denominators are represented using 32-bit
unsigned integers, and two times with denominators 100,000
and 100,001 are added, will overflow occur?

Suppose we adopt an integer representation of time. What
units should we choose? We could start by considering exist-
ing integer representations of time. For example, VHDL,
a widely used hardware simulation language, uses integer
time with units of femtoseconds. Another example is the
network time protocol (NTP) [37], a widely used clock syn-
chronization protocol that sets the current time of day on
most computers today. NTP represents time using two 32
bit integers, one counting seconds, one counting fractions
of a second (with units of 2732 s). This can be treated as
an ordinary 64-bit integer with units of 2732 s (about 0.23
ns). IEEE 1588 [16], a more recent clock synchronization
protocol, is designed to deliver higher precision clock syn-
chronization on local area networks. A time value in IEEE
1588 is represented using two integers, a 32-bit integer that
counts nanoseconds, and a 48-bit integer that counts seconds.

NTP and IEEE 1588 are designed to coordinate notions
of time across a network. All participants in such a network
agree to a time resolution (based on a resolution of 2732 s
for NTP, 1nanosecond for 1588). The first requirement in
Broman et al. [8] stipulates simply that the time resolution
should be the same for all observers in a model. It need not
be the same across models. In fact, simulation models tend
to have very different time scales; high-speed circuits require
femtoseconds while astronomy may only require years. Co-
simulation involves the coupling of independent models that
are coordinated in a black-box manner, each of which can
operate at a different time resolution. From the perspective
of the master that coordinates the exchange of data between
components, however, all components must be understood
to progress in increments that are multiples of the time reso-
lution used by the master.

In Ptolemy II [44], the time resolution is a single global
property of a simulation model, shared by all components.
The resolution is given as a floating-point number, but the
time itself is given as an integer, representing a multiple of
that resolution. All arithmetic is done on the integer represen-
tation, and the unit is only used when rendering the resulting
times for human observation. For example, if the resolution
is given by the floating-point number 1E-10, which in units
of seconds denotes 0.1 ns, then the integer 10,000,000 will
be presented to the user as 0.001 s.

Integers are, of course, vulnerable to overflow. Adding two
integers can result in an integer that is no longer representable
in the same bit format. Subtracting two unsigned integers can
result in a negative number, which is not representable using
an unsigned integer.

Whether and when an overflow occurs depends on the res-
olution, but also on the origin (what time is zero time). NTP

and IEEE 1588 both set time relative to a fixed zero time,
which in the case of NTP is Oh January 1, 1900, and in the
case of 1588 is Oh January 1, 1970, TAI (international atomic
time). Sometime in the year 2036, 23> s will have elapsed
since January 1, 1970, and all NTP clocks will overflow.
IEEE 1588 uses 48 bits, so the first overflow will not occur
for approximately 9.1 million years. If we define the time
origin to be, say, the start time of a simulation, then the NTP
representation will be able to simulate approximated 62 years
before its representation of time overflows. A VHDL simula-
tor using a 64 bit integer representation of time with units of
femtoseconds can simulate approximately 2.56 h of opera-
tion before overflow occurs, so clearly choosing the origin to
be January 1, 1900, would not be reasonable. In Ptolemy II,
overflow cannot occur, because the integer representation of
time uses an unbounded data structure to represent an arbi-
trarily large integer.! And the resolution is a parameter of
the model, so Ptolemy II simulations can handle high-speed
circuits as well as astronomical simulations.

In computers, addition and subtraction of integers is
extremely efficient. In the IEEE 1588 representation, how-
ever, the two numbers cannot be conjoined into a single
number, and arithmetic on the numbers must account for
carried digits from the nanoseconds representation (32 bits)
to the seconds representation (48 bits). Since computers do
not have hardware support for such arithmetic, such a repre-
sentation will be more computationally expensive to support.
Adding two IEEE 1588 times takes quite a few steps in soft-
ware. For the Ptolemy II unbounded integers, addition and
subtraction are also potentially more expensive than addition
on ordinary 32 or 64-bit integers, but the cost is not as high
as for IEEE 1588 because overflow is more easily detected
in the hardware.

In modern computers, addition and subtraction of 32 and
64-bit integers is at least as fast as addition and subtrac-
tion of floating-point numbers, and it requires significantly
less energy. Multiplication, however, is a more complicated
story. The problem with multiplication of integers lies in the
units. Consider two integers with units of microseconds. If
we multiply the two times, the units of the result will be
microseconds squared. First, this is not a time, and hence
there is no reason to insist that this result be represented the
same way times are represented. Second, whether the result
is representable in a 32 or 64-bit integer will depend on the
origin and resolution of the times.

Multiplication of two times, however, is a relatively rare
operation. A more common operation is multiplication of a
time by a unitless scalar. For the example above, instead of

1 Strictly speaking, overflow can occur in the sense that the machine
may run out of memory to represent the integer times. But this would
occur at such absurdly large times, beyond the age of the universe with
any imaginable resolution, that it is simply not worth worrying about.

@ Springer

1662

F. Cremona et al.

adding pj toitself 12 times, we might have multiplied 12 p;.
As long as there is no overflow, such multiplication will typi-
cally be performed without quantization error and reasonably
efficiently in a computer. However, not all processors have
hardware support for integer division. And multiplication by
anon-integer, as in 0.1 % py, will yield a floating-point repre-
sentation of the result, not an integer representation. Hence,
it will be vulnerable to quantization errors.

We claim that for the purposes of coordinating FMUs,
addition, subtraction, and multiplication by integers are
mostly sufficient, and hence an integer representation of
time can be very efficient. Within an FMU, however, there
may be more complex operations involving time, and the
FMU may include legacy software or ODE solvers that use
floating-point representations of time. Such FMUs will suf-
fer a (hopefully small) cost of conversion of time values at
the interface. Presumably, since such FMUs already tolerate
quantization errors inherent in a floating-point representa-
tion, any errors that are introduced in the conversion process
will also be tolerated. For example, such FMUs should never
compare two times for equality, because if they are using
a floating-point representation of time, such a comparison
is meaningless. They should also not have behavior that
depends strongly on the relative ordering of two time val-
ues.

We choose to represent time with a 64-bit unsigned integer
with arbitrary resolution, where the resolution is a parame-
ter of the model, and origin equal to the simulation start
time. It is computationally efficient on modern machines.
And for well-chosen resolutions, will tolerate very long sim-
ulations without overflow. It is also easily converted to and
from floating-point representations (with losses, of course).
Also, given the enormous range of time scales that might be
encountered in different simulation models, choosing a fixed
universal resolution that applies to all models probably does
not make sense. We believe further that all the acceptance
criteria of [8] can be met without an explicit representation
of the microstep.

2.4 The choice of resolution

The only remaining issue is how to choose the resolution.
There are two questions here. First, what data type should be
used to represent the resolution? Second, should an FMU be
able to constrain the selected resolution?

The latter question seems relatively easier to answer. In
hybrid co-simulation, an FMU may encapsulate consider-
able expertise about a system that it models, and the FMU’s
model may only be valid over a range of time scales. It seems
reasonable, therefore, that an FMU should be able to insist
on a resolution. On the other hand, to be composable with
other FMUs, the FMU should be capable of adapting to a
finer resolution than the one it requests. If two FMUs pro-

@ Springer

vide different resolutions, or if their resolution differ from
the default resolution of the simulation, then how should the
differences be reconciled?

We see two possibilities:

(i) The selected resolution for the model is the finest of all
specified resolutions.

(ii) The selected resolution for the model is the greatest com-
mon divisor (GCD) of all specified resolutions.

Whether the second option is even possible depends on
the data type used for the resolution. Here, we see several
possibilities:

(a) Double. In Ptolemy II, all components share a single
double-precision floating-point number, the unit, which
specifies the resolution of the model. All timestamps are
interpreted as an integer multiple of this value.

(b) Rational. Alternatively, resolution can be specified given
as a pair of integers, a numerator and a denominator. In
this case, it is always possible in theory to find a GCD,
although there is risk of overflow if the numerator and
denominator are represented with a bounded number of
bits. In addition, conversion to and from a floating-point
representation, which is often needed internally by an
FMU, may be costly.

(c) Decimal. Finally, the resolution can also be specified
using integer exponent n that stipulates a resolution of
10" s. For instance, IEEE 1588 resolution is achieved with
n = —9, VHDL resolution is achieved with n = —12.
Using a decimal resolution, the finest resolution is always
the same as the GCD and is always precise.

Defining resolution as a power of ten has the very nice feature
that any parameter that is specified using a decimal repre-
sentation, such as 0.3332, is exactly representable, with no
quantization error, as long as the resolution is sufficient, for
examplen = —4 for 0.3332. In contrast, when such a decimal
number is converted to a binary floating-point representation,
errors may be introduced. Since it is extremely common to
give parameter values in decimal, this advantage cannot be
ignored.

Also, since parameters are often related to one another, the
ability to, for example, calculate the difference between two
parameter values without quantization error can be impor-
tant. For instance, if a component specifies using parameter
values that it produces events at times #1 and #», given in dec-
imal, then the time interval t, — #; can be calculated without
error.

If parameter values are not given in decimal, for exam-
ple “1/3,” then decimal resolution is not sufficient to avoid
quantization errors. Such errors can be avoided by select-
ing rational resolution instead. A rational resolution has the

Hybrid co-simulation: it’s about time

1663

advantage that if an FMU internally performs computation
according to its specified resolution, then simultaneity of
any events it generates compared to events generated by
other similar FMUs is well defined. The simultaneity of such
events will not be subject to quantization errors. However,
this choice comes at a possibly considerable cost in convert-
ing time values to and from floating-point numbers. And, as
we have noted, this choice has a more complicated overflow
risk.

For these reasons, we prefer option (i)c, which also implies
option (ii)c. An FMU can stipulate a minimum required res-
olution and be guaranteed that resolution or a resolution that
divides its resolution by some power of ten:

r = 10" (1

However, not every FMU may be prepared to adapt to a
finer resolution than the preferred resolution it declares. For
instance, an FMU may generate events exclusively at time
instants that are multiples of its declared time resolution. For
such an FMU there is no reason to adopt a finer resolution than
the one it specifies; it would merely complicate the design
of the FMU. For that reason, we believe that this capability
should not be mandatory, rather it should be optional. In the
next section, we describe an architecture that accommodates
such flexibility.

3 Hybrid co-simulation with integer time

In order to examine the effects of using integer time in hybrid
co-simulation, we need a practical framework for our analy-
sis. Instead of defining our own, we leverage the existing
FMI-CS 2.0 standard, and extend it to use integer time.
In addition, in order to support discrete events, we enrich
the interface to encode the absence of an event and allow
FMUs to react instantaneously, i.e., without moving forward
in time. We call this framework FMI-HC (FMI for hybrid
co-simulation).

3.1 Extensions to the FMI standard

As a consequence of using integer time, the FMUs and
MA need to agree on a resolution before the simula-
tion starts. Two new functions are introduced for this:
getPreferredResolution and setResolution.
In addition, we introduce a hybrid step function doStep
Hybrid that uses integer time instead of doubles, a func-
tion getMaxStepSizeHybrid that returns the maxi-
mal allowed communication step size, and the functions
getHybrid and setHybrid that in addition to the
exchange of regular signal values can also communicate

“absent,” to indicate that there is no value present at the cor-
responding time instant.

3.1.1 Advancing time

In FMI, simulation is driven by a master that keeps time and
instructs FMUs to advance their time in increments called
“steps.” Once all participating FMUs have advanced their
time by some delta, an iteration has finished. In each iteration,
FMUs exchange data, the master proposes a new step, and so
forth. The specifics of this sequence are encoded in a master
algorithm. Only the interface of the FMU is standardized.
FMUs are prescribed to advance time through calls to the
function doStep. In the FMI-CS 2.0 standard, this function
has the following signature:

fmi2Status fmi2DoStep (

fmi2Component c,

fmi2Real currentCommunicationPoint,

fmi2Real communicationStepSize,

fmi2Boolean noSetFMUStatePriorToCurrent
Point) ;

The first parameter points to a particular FMU. The second
parameter states the current time, using a double-precision
floating-point value (named fmi2Real in the standard).
The third parameter states the communication step size,
which is the time interval over which the master requests
the FMU to advance. Finally, the fourth parameter provides
information as to whether any rollbacks can occur, which
allows the FMU to abandon any kept state if this parameter
is true.

Clearly, this function is not suitable for communicating
an integer step size to the FMU. For backward compatibility,
we preserve the original fmi2doStep function and add a
new function that is used to advance hybrid co-simulation
FMUs using integer time steps”:
fmi2Status doStepHybrid(

fmi2Component c,
fmiXIntegerTime currentCommunicationPoint,
fmiXIntegerTime communicationStepSize,

fmi2Boolean noSetFMUStatePriorToCurrentPoint),
fmiXIntegerTime* performedStepSize) ;

Instead of using fmi2Real data type, we use the type
definition fmiXIntegerTime, a 64-bit unsigned inte-
ger type. The additional parameter per formedStepSize
is used for communicating back to the master the size
of the performed step, which could be smaller than the

2 Our proposed extension does not target a specific version of FMIL
For this reason (and for brevity), we have removed the prefix “fmi2”
from all newly proposed functions. Newly introduced datatypes honor
the naming convention but have the FMI version number replaced by a
wildcard, “X.”

@ Springer

1664

F. Cremona et al.

requested step, communicationStepSize. If the per-
formed step size is equal to the requested step, then
the FMU has accepted the requested step. If the per-
formed step is smaller than the requested step, then the
FMU has rejected the requested step, but nevertheless
advanced to time currentCommunicationPoint +
performedStepSize.

As observed by Broman et al. [7], adding a function
fmiGetMaxStepSize makes it possible for an FMU to
state a predictable step size. Such function with integer time
can be defined to have the following signature:

fmi2Status getMaxStepSizeHybrid/(
fmi2Component c,
fmiXIntegerTime* maxStepSize) ;

This function returns an upper bound of the step size that the
FMU will accept on the next invocation of doStepHybrid.
The master algorithm should query this function before call-
ing doStepHybrid.

3.1.2 Negotiating the resolution of time

In the previous section, we explained that FMUs may be
designed to preferably (or exclusively) operate at some spe-
cific time scale. To accommodate this, an FMU must be able
to inform the master of its preferred resolution, which can be
done by extending FMI for hybrid co-simulation with:

fmi2Status getPreferredResolution (
fmi2Component c,
fmiXTimeResolutionExponent* n) ;

The preferred resolution is returned as an integer using the
second parameter. As described in the previous section, the
resolution represents an integer n, that stipulates a res-
olution of 10" s.

Although it is important that an FMU can express its pre-
ferred resolution, we will also show the need for the master to
explicitly state that the FMU should use a specific resolution.
We define the following function to enforce this behavior:

fmi2Status setResolution (
fmi2Component c,
fmiXTimeResolutionExponent n) ;

3.1.3 Discrete events

The aforementioned functions are introduced to offer support
for integer time. In order to support discrete signals, an FMU
must be able to output or take in discrete events, which are
present only for a duration of zero time (one microstep in
superdense time) and absent otherwise.

The FMI standard defines two kinds of functions for set-
ting and getting input and output signal values: fmi2SetXXX

@ Springer

and fmi2GetXXX. There are different functions for differ-
ent variable types. The substring XXX is a placeholder for
the type.’ For instance, fmiSetReal is the function that is
used to set input signal values of type fmi2Real, which is
implemented using double-precision floating-point numbers.

In the FMI-CS 2.0 standard, values exchanged between
FMUs are always present. This means that the current co-
simulation standard does not yet have the support for discrete
events. To make it possible to express discrete events, FMI
needs to have functions for setting and getting values, where
the values can be stated to be either present or absent. By
extending the current standard get and set functions, we
obtain the following signatures:

fmiStatus setHybrid (

fmi2Component c,

const fmi2ValueReference vr[],
size_t nvr,
const fmi2XXX valuel],
const fmi2SignalStatus flagll]):;

fmiStatus getHybrid(

fmi2Component c,

const fmi2ValueReference vrl[],
size_t nvr,
fmi2XXX valuel],
fmiXSignalStatus flagll]);

The first argument points to the FMU to set values for or
get values from. The second argument, vr, is an array of
identifiers that refer to specific variables. Furthermore, nvr
is the size of that array, and the array value (also of length
nvr) specifies the values that should be set or gotten. The
irp element from value is assigned to or read from the i,
variable declared in vr. These function arguments are the
same as in the original fmi2Get and fmi2Set functionsin
the FMI-CS 2.0 standard. The “hybrid” get and set functions
introduce an additional argument, fmiXSignalStatus,
which is defined as:

typedef enum {present, absent} fmiXSignalStatus;

If flag[i] == present, the signal is considered to be
present and the value of the variable vr [1] is value[i].
In case flag[i] == absent, the signal is not present
and the value[i] of variable vr[1] should be ignored.
Note that there are many alternative ways of extending the
standard with capabilities of expressing absent and present
signals. For instance, instead of creating new get and set
functions, separate functions can be used for indicating if a
signal is present or absent. However, these implementation

3 For simplicity, we omit this implementation detail from the remainder
of the discussion and refer to these functions without the “XXX” wildcard
suffix.

Hybrid co-simulation: it’s about time

1665

0A FMI-CS No zero 0B EMSOFT Zers(ijzi\tep
20 step size 2013 allowed

FLOATING
POINT

Proposed Extensions to EMSOFT (FMI-HC)

setHybrid| |getHybrid |getMaxStepSizeHybrid doStepHybrid

getPreferredResolution setResolution

o© _—

8 1] x x |

=

< 2| : x |
3| x |
4] ~ |

Fig. 3 A taxonomy for different categories of hybrid co-simulation
FMUs

details are outside the scope of this paper and would be a
decision for the FMI steering committee.

3.2 Categories of FMUs in FMI-HC

Hybrid co-simulation should be able to work with “legacy”
FMU s that do not implement any of the FMI-HC extensions.
Moreover, to make it easy to write FMI-HC FMUs, we do not
wish to require that every FMU implement every extension.
We can divide FMUs into different categories based on the
extensions they implement. It is useful to organize FMUs in a
taxonomy based on this criterion because different category
FMUs require different handling by the master. We use the
taxonomy presented in Fig. 3 throughout the remainder of
the paper to identify and refer to FMUs in terms of their
category.

— Category 0: An FMU in this category internally uses
floating-point numbers to represent time (see the top of
Fig. 3). This category can be further refined into two sub
categories. Category 04 denotes an FMU that is com-
patible with existing FMI 2.0 co-simulation FMUs. Such
FMUs are not suitable for hybrid co-simulation because
the standard disallows zero step sizes and insists on
always calling doStep (advance time) in between set
(providing inputs) and get (retrieving outputs). The for-
mer rules out the use of superdense time while the latter
prohibits the handling of direct feedthrough loops. There-
fore, we do not further discuss category 04 FMUSs in this
paper. In contrast, Category Op follows the assumptions
in [7], which allows a zero step size and getting and set-
ting values (multiple times) without having to advance
time.

— Category 1: This is the first out of four possible cat-
egories of FMUs that use integers to represent time.
Note that categories 1-4 represent the exhaustive com-
binations of getPreferredResolution and set
Resolution. In category 1, neither of these functions
is supported. The operation of an FMU in this category is
time-invariant; it does not use time to determine its out-
puts or state updates. Such a component can implement,
for example, a time-invariant memoryless function such
as addition.

— Category 2: In category 2, function getPreferred
Resolution is supported, but setResolution is
not. This means that the FMU states which resolution
it will use, but does not allow the master to change its
resolution. That is, the resolution is actually required,
not just preferred. A composition of multiple category 2
FMUSs may result in a heterogeneous model with respect
to the resolution of time. Category 2 FMUs are natural
to use in cases where the FMU should output data at
periodic time internals, e.g., periodic samplers or signal
generators. Tools that have a fixed time resolution, such as
Rhapsody from IBM or VHDL programs, would produce
FMUs of this category.

— Category 3: FMUs in this category support set
Resolution, but do not support getPreferred
Resolution. This means that the FMU is using the
integer notation of time (in contrast to category 1), but
any resolution is acceptable. For instance, a zero-crossing
detector would fall into to this category.

— Category 4: An FMU in this category supports both
getPreferredResolutionand setResolution.
This means that the FMU may first communicate to the
master the resolution that it prefers, and be followed by
the master telling the FMU what resolution it should use.
An ODE solver FMU would belong to this category.

3.3 Modular support for FMI-HC

Technically, an FMU developer can choose whether or not
to support functions like get PreferredResolutionor
setResolution and notify the master of the functions
it supports through so-called capability flags in the FMU’s
accompanying XML-file, as prescribed by the FMI standard.
With this approach, the master algorithm must accommodate
the use of all the different categories of FMUs in Fig. 3.
Figure 4 depicts an architectural view of how an FMI
simulation tool can interact with different category FMUs
modularly, without drastic changes to its simulation engine.
In the left part of the figure, the dashed line represent
an FMI simulation tool that takes a set of connected FMUs
as input and produces a simulation result as output. The
basic idea is to separate the concerns of the master algorithm

@ Springer

1666

F. Cremona et al.

o e . FMU Category Og

! . . ! C get, set, doStep

i FMI Simulation Tool (— arCo oS
Category 0 | |

' FMU Category 1

E ! F\\l\\—\"c‘ getHybrid, setHybrid, doStepHybrid
E Wrapper E getMaxStepSizeHybrid

! Category 1 | |

' FMU Category 2

, w Intert. i FMI-HC2 getHybrid, setHybrid, doStepHybrid
! rapper Interface : i i

: Master PP Wrapper : gettFl\’IIa)f(StezilzeH:/l:_nd

E “get,_set, doStep Category 2 : getPreferredResolution

! _getMaxStepSize :

' _getPreferredResolution : FMU Category 3

! _setResolution E FMI-HC3 getHybrid, setHybrid, doStepHybrid
E Wrapper — getMaxStepSizeHybrid

! Category 3 ! setResolution

! . o, FMU Category 4

E Wrapper ' I-He, getHybrid, setHybrid, doStepHybrid
: \ Category 4 | . getMaxStepSizeHybrid

! H getPreferredResolution
R setResolution

Fig. 4 A generic architecture for supporting hybrid co-simulation using wrappers. The left side of the figure shows an (arbitrary) internal interface
between the wrappers and the simulation tool, the right part shows the new FMI-HC extensions used by the wrappers

from the logic that handles the translation between differ-
ent resolutions for different categories of FMUSs. This logic
is instead encoded into wrappers, that is, software compo-
nents that translate function calls from the master algorithm
to the FMUs. Both the implementation of the master algo-
rithm component and the wrapper components are internal
to a specific tool implementation. The design discussed in
this article does not assume any specific implementation lan-
guage. Hence, the wrapper interface functions (with prefix
“_”) are arbitrary; tool vendors can choose the specifics of
their wrapper interface as they see fit and are not tied to a spe-
cific programming language for the implementation of their
execution engine.

The right part of the figure depicts all different categories
of FMUs along with the particular FMI-HC extensions they
implement. The wrapper treats the FMU as a black box and
performs the conversion between the model of time used by
the master and the model of time used by the FMU. This
can either be a conversion between integer time resolutions
(for a category 2 FMU) or a conversion between integer and
floating-point time (for a category 0p FMU).

3.4 An implementation of FMI-HC

The interface extensions described in this paper can be used
by making relatively small adaptations to existing master
algorithms. In a nutshell, it requires adopting our integer-
based representation time, using specific wrappers for FMUs
based on their category, and letting the master negotiate a time
resolution as part of its initialization procedure.

@ Springer

In the following, we outline how to make these adjust-
ments based on our own reference implementation called
FIDE [15], an FMI Integrated Development Environment.
FIDE implements a master algorithm based on the work
of Broman et al. [7]. It is capable of deterministically
simulating mixtures of continuous-time and discrete-event
dynamics, has a superdense model of time [33,34], and fea-
tures extended data types to support an explicit notion of
absent. Superdense time is modeled by allowing the mas-
ter to take zero-size steps, allowing the simulation to iterate
over a number of lexicographically ordered indexes before it
advances to the next Newtonian time instant. The absence of
events in signals is enabled through the FMI-HC functions
getHybrid and setHybrid described in Sect. 3.1.3.

Figure 5 provides a schematic description of the MA
implemented in FIDE. Any tool that supports FMI will fea-
ture an execution engine much like the one in FIDE. The
simulation tool reads a model description that describes how
a set of FMUs is connected. It loads each FMU by reading
the FMI XML-file and dynamically linking the required C
libraries as it normally would. However, in order to accom-
modate FMI-HC, each FMU is now identified by category
and a matching wrapper object is instantiated for every FMU.
The wrapper is specifically designed to interface with FMUs
of a particular category. Since all wrappers are using the
same interface (all are using integer time), the logic of the
execution engine is not complicated by the different ways
that FMUs may interpret time: all the necessary conversions
are performed by the wrappers. For instance, if a category Op

Hybrid co-simulation: it’s about time

1667

|—— _determineResolution()

L _init()

\ 4

FMUs VO

——> _get()
—— _set()

—> At = _determineStepSize()

State Update
FMUs with predictable step size

New Iteration

—— _doStep(At)

FMUs with rollback

— 1f (At<Atp) @ a) _rollback()
b) _doStep(At)

Termination
—> _terminate()

v

Deterministic Master Algorithm

Resolution Negotiation |

Initialization |

Step size evaluation |

Resolution Negotiation
——> n’

= Ngef

All the wrappers

— n'= _getPreferredResolution()
—— n = min(n, n')

All the wrappers

—> _setResolution (n)

v

Step size evaluation
F——> At = Atpay

FMUs with predictable step size
—> (At') = _getMaxStepSize ()
———> At = min(At, At")

FMUs with roll-back
——» _saveState()

—— (At') = _doStep(Atpy)
———» At = min(At, At")
FMUSs without roll-back

— (At') = _doStep(Atpyax)
——> At = min(At, At)

Fig. 5 Schematic description of a variant of the deterministic master algorithm by Broman et al. [7], extended to accommodate integer time. The

figure and implementation are based on Cremona et al. [15]

FMU is used, the wrapper is handling the correct conversion
between integer time and floating-point time.

During initialization, the master calls the function _
determineResolution () thatdetermines the time res-
olution for the simulation. This function iterates over all the
wrappers and queries them for the time resolution exponent
using _getPreferredResolution. The time resolu-
tion exponent of the simulation is computed as the minimum
among a default value and the resolution exponents obtained
from all the FMUs that partake in the simulation. The chosen
resolution exponent is then communicated to the wrappers
using _setResolution. The wrappers will eventually
use it to convert the integer time stamps used by the master
to whichever model of time is used internally by the wrapped
FMU, if necessary.

FIDE must keep track of the global time of the master and
the current step size using integers. Hence, it cannot use the
fmi2Real data type that is prescribed by FMI-CS 2.0 for
this purpose. We use a new data type, fmiXIntegerTime,
instead. Finally, all direct calls from the master to the FMU
functions fmi2DoStep, getMaxStepSize, get, and

set have to be removed and replaced by function calls to the
corresponding intermediate functions provided by the wrap-
pers.

4 Time conversion and quantization

Using integers for representing time does not completely
remove time quantization errors: an FMU may still use a
floating-point number internally for time keeping. In such
case, conversion from the floating-point representation of
the time kept inside of the FMU to the integer time used
by the master comes with a loss of precision. Specifically,
the effects of time quantization come into play when a cate-
gory 0p FMU rejects a proposed step size and makes partial
progress over an interval of which the length (a floating-point
number) cannot be losslessly converted into a corresponding
fixed-resolution integer time for the master to interpret. Simi-
lar problems arise when there is a mismatch in time resolution
between the master and a category 2 FMU. Quantization
errors also result when a higher-resolution integer time is

@ Springer

1668

F. Cremona et al.

converted to a lower-resolution integer time. For instance,
the master may instruct a category 2 FMU to take a step that
is too small to represent with the resolution that the FMU
uses internally.

The key insight here is that in co-simulation participants
are treated as a black box; each component has its own iso-
lated understanding of time that is based on the characteristics
of its local clock. Each level of hierarchy in a co-simulation
gives rise to a different clock domain in which the passing of
time may register differently from another clock domain. The
degree to which two components can be synchronized there-
fore depends on compatibility of their clock domains. The
issue of translating time across different clock domains gets
complicated by corner cases, which, if not handled appropri-
ately, may lead to Zeno behavior or may cause discrete events
emitted by one component to be missed by another. These
kinds of issues play arole only in the interaction with category
0p and category 2 FMUs. The former does not admit integer
time and hence requires an conversion from and to integer
time, and the latter cannot adapt its resolution to its envi-
ronment, which requires a conversion between integer times.
On the other hand, category 1 FMUs have no time resolution
at all, and therefore their behavior must be time-invariant,
while categories 3 and 4 can adapt their resolution and there-
fore synchronize perfectly with their environment. Hence,
category Op and category 2 FMUs are the main focus of the
remainder of this section. A full C implementation of wrap-
pers sufficient to co-simulate any combination of FMUs of
any of the aforementioned categories is given in “Appendix”.

4.1 Converting from integer to real-valued time

In the following, we will show the relationship between a Op
FMU’s internal notion of time and its environment’s integer
representation, with the assumption that the FMU internally
represents time as a real number with no quantization errors.
Please recognize that this is impossible in a computer, and the
FMU will internally encode these real numbers as double-
precision floating-point numbers. The environment’s time
resolution is given as a power of ten, r = 10", measured
in seconds, where n is an integer. An integer time index, i,
once scaled by a resolution, denotes a real-valued time:

t=i-r 2)

also measured in seconds.

We express the step size for the master and the FMU sep-
arately, each in terms of a relative increment with respect to
their local time representation. For the master, we define the
new time index i’ after having taken a step Ai with respect
to the previous time index i to be i’ =i + Ai, where i’ cor-
responds to the time i’ - r. Similarly, for the FMU, we define
the time after a step to be t' =t + At, where ¢ is the current

@ Springer

time in the clock domain of the FMU and At is the time step.
When the master and the FMU agree on the next time step,
we have have t' = i’ - r, and therefore t + At = (i + Ai) - r.
We derive the size of the time step of the FMU as follows:

At = (i + Ai)-r —t. 3)
4.2 Converting from real-valued to integer time

No matter how fine a time resolution we choose, an arbi-
trary real-valued time instant is unlikely to align perfectly
with some integer-time instant. As a result, conversion from
a real-valued time to integer time can introduce a time quan-
tization error up to one unit of the integer time resolution.
Notice that this quantization error is controlled by the user,
modeler, or tool integrator through the simulation parameter
r, the time resolution. The finer the resolution, the smaller
the quantization error.

Ideally, according to (3), the FMU’s step size in the clock
domain of the master should be:

t+ At
= —1.

r

Ai)
But in general, this will not yield an integer Ai, and we
require Ai to be an integer. We have three alternatives to
obtain an integer step from a real-valued time step: (i) take
the floor (the largest smaller integer), (ii) take the ceiling (the
smallest larger integer), or (iii) round (the nearest integer).
Our implementation uses the ceiling operator, rounding to
the next larger integer:

Ai:{H—At—I—i. (5)

This choice prevents quantization errors from blocking the
progress of time. To see this, consider the model depicted
in Fig. 6. This model consists of two category Op FMUs
composed in parallel. FMU A outputs a piecewise-constant
signal with a discontinuity at + = 0.4, while FMU B out-
puts a discrete event at = 0.8. Assume that these FMUs are
coordinated by an integer-time master and interfaced through
wrappers. Both FMUs use floating-point time internally, and
the wrapper provides the glue code between the master and
the FMU. Specifically, the wrapper’s _getMaxStepSize
and _dosStep functions implement the conversions between
integer time and floating-point time in accordance with
Egs. (3) and (5), and determine when and how the FMU
is allowed to advance time.

For simplicity, we assume the master adopted a time res-
olution of 1 second (n = 0). At time t = 0 the master
calls _getMaxStepSize of the FMU A wrapper (FMU
B does not implement _getMaxStepSize, and hence
gives no indication as to what step size it will accept).

Hybrid co-simulation: it’s about time 1669

(1) N . ’ (1)

—? \\\ ?

0 : 0 .

1 1 1 1] ; FMU A X ; f

0 02 04 0.6 0.8 1t 0 1t
y() y()

 FMUB }F—
0 02 04 06 08 1t| .4 . 0 1t

Fig. 6 The outputs of two FMUs composed in parallel. The signal x
shows a discontinuity that registers at ¢ = 0.4 in the clock domain of
FMU A. The signal y shows a discrete event that registers at = 0.8 in

The FMU A wrapper then calls getMaxStepSize which
returns At = 0.4. Because of the master’s time resolution
r = 1, At cannot be represented exactly in terms of multiples
of r. Therefore, using the ceiling operator as its quantization
method, the wrapper reports back 1, indicating to the master
that the FMU will accept a step size of size 1. Notice that
had we used the floor operator instead, the wrapper would
have returned 0, and the simulation would have gotten stuck
forever at t = 0 because the master will proceed with the
smallest of the step sizes that the wrappers return through

_getMaxStepSize. Similarly, if we had used rounding,
and rounding of 0.4 returns O, then again, the simulation
would get stuck.

The master will next invoke _doStep with a proposed
step size of 1. It can invoke this function in either order, first
for FMU A, or first for FMU B. Assume FMU B goes first. It
will reject the step and indicate that it has made progress up
to time 0.8. But that time is not representable in integer time
either, so the wrapper rounds it up using the ceiling function.
Since [0.8] = 1, the wrapper accepts the step, but makes
an internal annotation that the FMU only progressed to time
0.8. The next invocations of get and set will provide inputs
and retrieve outputs that for the master will appear to occur
at time 1, but will look to FMU B as if they occur at time 0.8.

The procedure for FMU A is similar, but the wrapper has
a bit more information to work with, since the FMU has
previously indicated that it would accept a maximum step
of 0.4. Hence, when the master proposes a step of size 1,
the wrapper can propose a step of 0.4 to the FMU. The next
invocations of get and set will provide inputs and retrieve
outputs that, again, for the master appear to occur at time 1,
but will look to FMU A as if they occur at time 0.4.

the clock domain of FMU B. The discontinuity and the discrete event,
however, occur at the same time, ¢t = 1, in the clock domain of the
master

Assume further that the output of FMU A has a discon-
tinuity at time 0.4. This means that the FMU requires that
the next invocation of doStep has a step size of 0. It indi-
cates this by returning 0 when getMaxStepSizeis called.
The wrapper passes this on to the master by returning 0 in

_getMaxStepSize. The master now has no choice but
to propose a zero step size. Upon invocation of this zero step,
FMU A advances in superdense time because of the disconti-
nuity, so its local time remains at 0.4. Since FMU B produces
a discrete event at this time, its local time will remain at 0.8.
The outputs of both FMUs will appear to the master to occur
at time 1.

Suppose that after this neither FMU has any anticipated
events and therefore will accept any step size. Suppose the
master proposes a step of size 10 to the wrappers. The wrap-
pers will need to compensate for the lag of their FMUs, and
instead propose a step of 10.6 and 10.2, respectively, to FMU
A and FMU B.

It may be possible to design other wrappers with a different
API that use the floor or other rounding functions instead
of the ceiling function, but the our solution appears to be
simple, to work well, to preserve causality, and to ensure
that time continues to advance. We observe that using the
floorin _getMaxStepSize will always make the FMU
lag behind with respect to the master. For 0p FMUs, the
quantization effects due to the use of integer time only play
a part in the conversion of time steps in the FMU’s clock
domain to time steps in the master’s clock domain, not vice
versa. Conversion from master time to FMU time suffers
only from ordinary rounding that is a consequence of the
floating-point representation of time inside the FMU.

@ Springer

1670

F. Cremona et al.

4.3 Converting between different-resolution integer
times

Conversions between times expressed in different-resolution
clock domains can be derived in a similar fashion as shown in
Sect. 4.2. These conversions are necessary for the support of
fixed-resolution integer-time FMUs; the master might choose
to operate using a different time resolution than a category 2
FMU. In such scenario, each time the master proposes a time
step Ai, expressed as a multiple of the master’s resolution,
10", this step must be converted into a time step Aj that
is interpreted as a multiple of the FMU’s resolution, 10
Assuming that the FMU has accepted the time step, Ai in
clock domain of the master, Aj in the clock domain of the
FMU, then j' = j + Aj is the future time index of the FMU
andi’ = i+ Ai is the target time index of the master. After the
step is completed, we assume master and FMU have reached
the same point in time, hence: i’ - 10" = j - 10%. We obtain
Aj, the step to be taken by the FMU, as follows:

Aj = (i + Ai)-10"F — j. (6)

Observe that the term 10"~% in Eq. (6) could be a fractional
number (specifically, it is fractional when n — k < 0). This
is possible because n shall always be smaller than or equal to
k (as per the resolution negotiation procedure in Fig. 5, the
resolution of the master must be at least as fine as the reso-
lution of the FMU). Therefore, since Aj must be an integer,
quantization may be necessary. Just as we did for the time
conversion method for category 0p FMUs, we need to pick
a quantization method for category 2 FMUs.

It should be noted that we can compute the floor or ceiling
of Aj using solely integer arithmetic; there is no need for
floating-point arithmetic for either of them. The floor can be
implemented using an integer division that truncates toward
zero, which is standard in C99 and most other contempo-
rary programming languages. The ceiling function can also
be implemented using integer division: if the division trun-
cates to zero then P)i,] can be computed using the following
expression: (x+y-1)/y.

Using the ceiling operator as our quantization method
allows the FMU to move ahead of the master (and any
other higher-resolution FMUs), while using the floor operator
would let the FMU lag behind. Neither of the two solutions is
more accurate than the other, but given that we quantize time
for 0Op FMUs such that they lag behind with respect to the
master’s clock, it would make sense to adopt the same policy
for category 2 FMUs and therefore select the floor operator;
to round to the previous smaller integer. Hence, we obtain:

Aj = [(i + Ai)- 10" — . @)

@ Springer

FMUA | > FMUB

r=1 r=10

A\ 4

Fig. 7 Two category 2 FMUs in cascade composition. Each FMU can
only update their input and output signal at times that are multiples of
their resolution. The discrete event produced by FMU A at local time 15
is received at by FMU B at local time 10. No time quantization occurs
with the discrete events produced at times 20 and 30

To convert a step in the clock domain of the FMU to a
step in the clock domain of the master, we essentially use
Eq. 7, except here, we can omit the rounding. Because the
master operates at a time resolution greater than or equal to
the time resolution of the FMU, it must be thatk —n > 0, so
no rounding is ever needed. Hence, we compute a step in the
master’s clock domain based on a step in the FMU’s clock
domain as follows:

Ai = (j + Aj) - 1057 — . (®)

It is important to emphasize that time quantization plays a
different role for category 2 FMUs than it does for category
0p FMUs. The former experience quantization only in the
conversion from master time to time FMU time, while the lat-
ter experience quantization only in the conversion from FMU
time to master time; the directionality of time quantization
is opposite in comparison between the two. This observation
also explains why it is no issue to use ceiling quantization
for category 2 FMUs, because the Zeno condition described
in Sect. 4.1 is due to loss of precision in the conversion from
FMU time to master time, which for category 2 FMUs is
lossless. A detailed description of the application of Egs. (7)
and (8) in the wrapper for category 2 FMUs can be found in
“Appendix”.

Finally, let us examine the effects of time quantization
using an example. Consider the model in Fig. 7 that depicts
two category 2 FMUs. The master, along with FMU A, uses
a resolution of 1 s, while FMU B uses a resolution of 10 s.
In other words, a step of size 1 in the clock domain of FMU
B represents a step size of 10 in the clock domain of FMU
A. Conversion the other way around, dividing by 10!, may
not yield a whole number and therefore incurs a quantization
error.

Interestingly, the event emitted by FMU A at internal time
index j4 = 15, which corresponds to time ¢t = 15, will
appear on the input of FMU B (due the use of the floor

Hybrid co-simulation: it’s about time

1671

function) when it is at internal time index jp = 1 which
corresponds to time ¢ = 10. Superficially, this may look like
a causality violation, but it is not, because the two internal
clock domains are completely isolated from each other. They
are analogous to two people having a phone conversation, but
where one is looking at a clock that is ahead compared to a
clock the other is looking at. They cannot see each other’s
clocks. An outside observer (the master) has its own clock,
which may differ from both the internal clocks (although
in this particular example it is perfectly synchronized with
FMU A because they use the same resolution). In all three
clock domains, causality is preserved.

5 Conclusions

Although we all harbor a simple intuitive notion of time,
how it is measured, how it progresses, and what it means for
two events to be simultaneous, a deeper examination of the
notion, both in models and in physics, reveals considerable
subtleties. Cyber-physical systems pose particularly interest-
ing challenges, because they marry a world, the cyber side,
where time is largely irrelevant and is replaced by sequences
and precedence relations, with a physical world, where even
the classical Newtonian idealization of time stumbles on dis-
crete, instantaneous behaviors and notions of causality and
simultaneity. Since CPS entails both the smooth continuous
dynamics of classical Newtonian physics, and the discrete,
algorithmic dynamics of computation, it becomes impossible
to ignore these subtleties.

We have shown that the approach taken in FMI (and many
other modeling frameworks) that embraces a naive Newto-
nian physical model of time, and a cyber-approximation of
this model using floating-point numbers, is inadequate for
CPS. 1t is suitable only for modeling continuous dynamics
without discrete behaviors. Using this unfortunate choice for
CPS results in models with unnecessarily inexplicable, non-
deterministic, and complex behaviors. Moreover, we have
shown that these problems are solvable in a very practi-
cal way, resulting in CPS models with clear semantics that
are invulnerable to the pragmatics of limited-precision arith-
metic in computers. To accomplish this, our solution requires
an explicit choice of time resolution that quantizes time so
that arithmetic on time values is performed on integers only,
something that modern computers can do exactly, without
quantization errors. Moreover, we have shown that such an
integer model of time can be used in a practical co-simulation
environment, and that this environment can even embrace
components that internally use floating-point representations
of Newtonian time, for example to model continuous dynam-
ics without discrete behaviors.

We have gone to considerable effort in this paper to show
that choosing a better model of time does not complicate

a co-simulation framework such as FMI by much. A small
number of very simple extensions to the existing standard are
sufficient, and these extensions can be realized in a way that
efficiently supports legacy simulation environments that use
floating-point Newtonian time. But while supporting such
legacy simulators, it also admits integration of a new class
of simulators, including discrete-event simulators, software
engineering models, hybrid systems modelers, and even the
new QSS classes of simulators for continuous dynamics.
Such a co-simulation framework has the potential for offer-
ing a clean and universal modeling framework for CPS. And
although we have only worked out the details for FMI, we
are convinced that the same principles can be applied to other
co-simulation frameworks such as HLA and to simulators
that directly embrace mixed discrete and continuous behav-
iors such as Simulink/Stateflow. We hope that our readers
include the people who can make this happen.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

A. Appendix: Implementation details

This appendix details a C implementation of the wrap-
pers outlined in Sect. 3. For each category of FMU, we
discuss the logic required to let it successfully partake in
hybrid co-simulation. Each wrapper fully implements the
API shown at the left in Fig. 4 in Sect. 3.3 and makes
use of the FMI-HC extensions implemented by the FMU.
It should be fairly straightforward to augment any master
algorithm to support FMI-HC through the use of wrappers
like the ones we describe in this section. Before discussing
any category-specific implementation details, we first pro-
vide implementations of the functions that should be the same
for wrappers of all categories.

A.1 A Template for wrappers

Although each FMU category requires a different wrapper,
there is an intersection between the functionality of all these
wrappers. One could think of this intersection in terms of a
“base class” in object-oriented terminology. Yet the C lan-
guage has no object-oriented features, so we implement a
makeshift wrapper base class using a struct that bundles
pointers to the wrapper API functions, along with the state
kept by the wrapper, and of course, a pointer to the FMU
itself. The C code is given in Fig. 8. This bundle serves as a
template for wrappers category Op through 4.

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1672

F. Cremona et al.

typedef struct {

1
2 FMU* fmu; /7
3 fmi2Real r_master; //

/7
5 /7
6 fmi2Integer r_ratio; /7
7 fmiXIntegerTime t_FMU; /7

s } wrapperState;

typedef struct {
wrapperState component;

(SIS OO S

0 =

} WRAPPER;

fmi2Status (*_doStep) (wrapperStatex,

fmiXIntegerTime,

fmiXIntegerTime,

fmi2Boolean,

fmiXIntegerTime*) ;
fmi2Status (*_setResolution) (wrapperStatex,

fmiXTimeResolutionExponent);

fmi2Status (*_getPreferredResolution) (wrapperStatex*,

1 fmi2Status (*_getMaxStepSize) (wrapperStatex,
2 fmiXIntegerTime,

3 fmiXIntegerTime*);
1

pointer to the FMU

floating -point representation
of the master’s time resolution
t.e., 10°n

10°(k - n)

local time of the FMU

fmiXTimeResolutionExponent*);

Fig. 8 We declare the wrapper as a struct containing pointers to
each function in the wrapper interface and a pointer to the wrapper’s
state. The state is also kept in a struct, which keeps a pointer to the
FMU and holds the following state: a floating-point representation of
the master’s time resolution (r_master, used only by the category Op
wrapper), the ratio between the FMU’s time resolution and the master’s
time resolution (r_ratio), and the current integer time of the FMU

(t_£fmu). The last two variables are only used by the category 2 wrap-
per. In our working implementation of WRAPPER struct inside the FIDE
framework, we also included pointers to functions like _rollback,
_saveState,_init,_set and _get. However, we did not include
these functions here since they are not inherent to the problem of con-
verting time

7 // FMU-HC2 and FMU-HC4

0 ¥

2 return status;

| fmi2Status _getPreferredResolution(wrapperState* wrp,
2 fmiXTimeResolutionExponent* n) {

3 FMU* fmu = (*wrp).fmu;
4 fmi2Component c = (*fmu).component;
5 fmi2Status status = fmi2Discard;

8 if ((*fmu).canGetPreferredResolution) {
9 status = (*fmu).getPreferredResolution(c, n);

Fig. 9 Our implementation of _getPreferredResolution.
This function is the same for all categories. When the FMU does not
implement the method fmiGetPreferredResolution (capabil-

Not all categories of FMUs implement the functions
getPreferredResolution and setResolution.
The wrapper, however, must implement both. We list an
implementation of _getPreferredResolution in
Fig. 9 that is generic in the sense that it can be used
for all FMU categories. In case the FMU does imple-
ment getPreferredResolution (categories 2 and
4), the wrapper invokes it and returns to the master the
preferred time resolution specified by the FMU. In case

@ Springer

ity flag canGetPreferredResolution == fmi2False), the
wrapper returns fmi2Discard. In this case, the master should ignore
the value that pointer n points to

getPreferredResolution is not implemented (cate-
gories Op, 1, and 3), the function simply returns a fmi2
Discard status. We assume that the master interprets this
response as if the component states no preference.

After negotiating a time resolution based on the pref-
erences stated by the FMUs, according to the algorithm
described in Fig. 5 in Sect. 3.4, the master calls

_setResolution on each wrapper to inform it of the
time resolution that it has adopted. Note that instead of pass-

Hybrid co-simulation: it’s about time

1673

| fmi2Status _setResolution(wrapperStatex wrp,
2 fmiXTimeResolutionExponent n) {

FMU* fmu = (*wrp).fmu;

4 fmi2Component c = (*fmu).component;
fmi2Status status = fmi20K;

6 unsigned int delta_n = 0;

8 // FMU-HCOB

9 if (!(*¥fmu).canHandleIntegerTime) {

10 (*wrp).r_master = realPowl1O(n);

11 return status;

12 ks

13 // FMU-HC2

if ((*fmu).canGetPreferredResolution &&
! (*fmu).canSetResolution) {
fmiXTimeResolutionExponent k;
status = (*fmu).getPreferredResolution(c, &k);
// the master’s resolution must always finer or equal!

e
1 O Ut

0 -

assert(n <= k);
delta_n = k - n;

-

return status;

}
// FMU-HC3 and FMU-HC4
if ((*fmu).canSetResolution) {

SN

return status;

0

}

return status;

WNNNNNNNNNN

(-

(*wrp).r_ratio = intPowl0(delta_n);

status = (*fmu).setResolution(c, n);

Fig. 10 Our implementation of _setResolution. This function
is shared between all categories. For an FMU of category Oy it computes
and stores the master’s resolution r_master, for an FMU of category
2 it computes and stores r_ratio, the ration between the FMU’s time

ing the actual resolution to the wrappers, the master passes
the exponent n that determines the adopted time resolution
as 10 to the power of n [see Eq. (1) in Sect. 2.4].

In Fig. 10, we list an implementation that can be used
for all FMU categories. Importantly, the wrapper acts differ-
ently depending on the category of FMU it interacts with. A
category Op wrapper computes and stores the time resolu-
tion in floating-point format, whereas a category 2 wrapper
computes the ratio between its own time resolution and the
resolution that the master has chosen. This ratio, as is further
explained in Sect. 4, is used by the wrapper to compute the
step size in the master’s clock domain with respect to a step
taken in the FMU’s clock domain, and vice versa.

It should be noted that in Fig. 10 we use two dif-
ferent functions to compute powers of ten. On line 10,
we use function fmi2Real realPowlO (int n). It
takes the time resolution exponent of the master (n) and
returns a double-precision floating-point number that repre-
sents the time resolution (10"). Function unsigned int
intPowl0 (unsigned int n) at line 10, on the other
hand, takes an unsigned integer as input (the difference
between the time resolution exponent of the FMU, k, and
n) and returns the integer representing the ratio between

resolution 10¥ and the master’s resolution 10”. For categories 3 and 4,
the function simply invokes setResolution () onthe FMU to pass
on the time resolution exponent selected by the master

the FMU’s time resolution (10%) and the master’s resolu-
tion (10"). Function realPowl0 returns a floating-point
number since n can be any integer value, positive or nega-
tive. It suffices for function int Pow10 to solely work with
unsigned integers since the variable delta_n = k - n
at line 10 is always positive because k is always smaller than
or equal to n.

Aside from _getPreferredResolutionand _set
Resolution, our template lacks implementations for
_get, _set, _getMaxStepSize, and _doStep. The
first two are trivial for category 1-4; they simply pass their
arguments to getHybrid and setHybrid, respectively,
and return. For the category 0p wrapper the situation is a bit
different, because this type of FMU does not support absent.
Therefore, when the wrapper encounters absent in _get
or _set, it substitutes the absent value by the last-known
present value of the referenced variable. This mechanism
implements a so-called zero-order hold and is consistent with
the semantics of FMI 2.0, and therefore suitable for legacy
FMU s. The functions _getMaxStepSize,and _doStep
require logic that is specifically tailored to their category of
FMU. Hence, we discuss these two functions separately for
each of the different categories.

@ Springer

1674

F. Cremona et al.

1 fmi2Status _getMaxStepSize (wrapperState* wrp,
2 fmiXIntegerTime currentCommunicationPoint,
3 fmiXIntegerTime* maxStepSize) {

5 FMU * fmu = (*wrp).fmu;

6 fmi2Component c = (*fmu).component;
7 fmi2Status status = fmi20K;

8 fmi2Real resolution = (*wrp).r_master;
9 fmi2Real h_FMU = 0;

10 fmi2Real t_FMU = 0;

12 status = (*fmu).getMaxStepSize(c, &h_FMU);
13 (*fmu) . getRealStatus (c, fmi2LastSuccessfulTime, &t_FMU);

15 *maxStepSize = ceil ((h_FMU + t_FMU) / resolution)
16 - currentCommunicationPoint;
17 return status;

18}

Fig. 11 An implementation of _getMaxStepSize function for category Op wrappers

I fmi2Status _doStep(wrapperState* wrp,

2 fmiXIntegerTime currentCommunicationPoint,

3 fmiXIntegerTime communicationStepSize,
fmi2Boolean noSetFMUStatePriorToCurrentPoint,

5 fmiXIntegerTime* performedStepSize) {

7 FMU * fmu = (xwrp).fmu;

8 fmi2Component c = (*fmu).component;
9 fmi2Status status = fmi20K;
10 fmi2Real resolution = (*wrp).r_master;
1 fmi2Real h_FMU = 0;

2 fmi2Real t_FMU = 0;
3 fmi2Real new_t_FMU 0;
|

(¥*fmu) . getRealStatus (c, fmi2LastSuccessfulTime, &t_FMU);

7 h_FMU = (currentCommunicationPoint + communicationStepSize)
8 * resolution - t_FMU;

0 status = (*fmu).doStep(c, t_FMU, h_FMU,
noSetFMUStatePriorToCurrentPoint);

x*performedStepSize = ceil ((new_t_FMU) / resolution)
6 - currentCommunicationPoint;

8 // Overwrite status in case of partial progress
) if (xperformedStepSize == communicationStepSize)

30 status = fmi20K;

1
32 return status;
3
3

1
3 (*fmu) .getRealStatus (c, fmi2LastSuccessfulTime, &new_t_FMU);
|

Fig. 12 An implementation of _doStep function for category 0p wrapper

A.2 Wrapper implementations
A Wrapper for category Op FMUs

The wrapper for a category Op FMU is predominantly
tasked with performing conversions between integer time

@ Springer

and floating-point time, and vice versa. Refer to Sects. 4.1
and 4.2, respectively, for a detailed discussion on these types
of conversions.
Figure 11 shows an implementation of the function
_getMaxStepSize. This function queries a category Op
FMU for the maximum step size using getMaxStepSize

Hybrid co-simulation: it’s about time

1675

I fmi2Status

7 FMU * fmu

8 fmi2Component c

9 fmi2Status status
10 fmi2Integer r_ratio

11 fmiXIntegerTime t_FMU
fmiXIntegerTime h_FMU
13 fmiXIntegerTime h_FMU_accepted

2 *performedStepSize = 0;
else

2 *performedStepSize =

27 (*wrp) . t_FMU =
8 return status;

_doStep (wrapperState* wrp,

2 fmiXIntegerTime currentCommunicationPoint,
fmiXIntegerTime communicationStepSize,
fmi2Boolean noSetFMUStatePriorToCurrentPoint,
fmiXIntegerTime* performedStepSize) {

15 h_FMU = (currentCommunicationPoint

16 + communicationStepSize) / r_ratio - t_FMU;
17

18 status = (*fmu).doStepHybrid (c,

if ((t_FMU + h_FMU_accepted) * r_ratio < currentCommunicationPoint)

(t_FMU + h_FMU_accepted) * r_ratio
25 - currentCommunicationPoint;

t_FMU + h_FMU_accepted;

t_FMU,
noSetFMUStatePriorToCurrentPoint, &h_FMU_accepted);

(xwrp) . fmu;
(*fmu) .component;
fmi20K;
(*wrp).r_ratio;
(*wrp).t_FMU;

0;

0;

h_FMU,

Fig. 13 An implementation of _doStep function for category 2 wrapper

(line 12), which returns a floating-point number. The con-
version from FMU time (a floating-point number) to master
time (an integer) is based on Eq. (5), and implemented
on lines 15-16 (we use here the ceiling function defined
in the C standard library math.h). The correspondence
between the variables in Eq. (5) and the variables in the
code is as follows: t < t_FMU , At < h_FMU, r <
resolution, i < currentCommunicationPoint,
and Ai < maxStepSize. Function _doStep is pre-
sented in Fig. 12. Conversion from master time to local time
is based on Eq. (3) and is performed at line 17 and 18. If the
FMU only made partial progress (the performed step size
is not equal to the requested step size), converting the per-
formed step size in the time resolution of the master, again
involves time quantization. The conversion is implemented
on lines 25-26 according to Eq. (5).

A wrapper for category 1 FMUs

A category 1 FMU neither implements function set
Resolution, nor function getPreferredResolu
tion. This means that the FMU is not making use of time.
Hence, the functions _setResolution and

_getPreferredResolution do not have to do any-
thing. The _doStep function only needs to forward the
call to doStepHybrid, but the actual communication time

can be arbitrary because the FMU of category 1 does not
consider time. Finally, _getMaxStepSize should return
that it accepts any step size.

A wrapper for category 2 FMUs

A category 2 FMU implements getPreferredResolu
tion, butnot setResolution. The FMU therefore does
not only prefer, but insists on using the resolution returned by
getPreferredResolution. This means that the cate-
gory 2 wrapper needs to convert between the resolution that
the master algorithm decides to use and the resolution that
the FMU insists on using, and vice versa. These types of
conversions are discussed in depth in Sect. 4.3.

The first step in the implementation of function _doStep
(Fig. 13) is to compute the local step size (Aj) according to
Eq. (7). The next step in function _doStep is to call the
FMU function doStepHybrid using the local step size
h_FMU. If the FMU accepts the step, the wrapper returns
that the performed step size h_ FMU_accepted is equal
to the requested step size communicationStepSize.
However, if the local progress h_FMU_accepted is less
than the local step size communicationStepSize, then
the FMU made partial progress. In such a case, we compute
the performed step size according to Eq. (8).

@ Springer

1676

F. Cremona et al.

1 fmi2Status

fmiXIntegerTime* maxStepSize) {

*maxStepSize = 0;
16 else

*maxStepSize =

return status;

_getMaxStepSize (wrapperState* wrp,
2 fmiXIntegerTime currentCommunicationPoint,

(*wrp) . fmu;
(*fmu) . component;

(xwrp).r_ratio;
(*wrp).t_FMU;

FMU * fmu =
6 fmi2Component c =
7 fmi2Status status = fmi20K;
8 fmi2Integer r_ratio =
9 fmiXIntegerTime t_FMU =
0 fmiXIntegerTime h_FMU = 0;
1
status = (xfmu).getMaxStepSizeHybrid (c,

| if ((h_FMU + t_FMU) * r_ratio < currentCommunicationPoint)

(h_FMU + t_FMU) * r_ratio -
18 currentCommunicationPoint;

&h_FMU) ;

Fig. 14 Animplementation of _getMaxStepSize function for category 2 wrappers

In _getMaxStepSize (Fig. 14), we need to compute
the maximum step size of the FMU. The first step is to call
getMaxStepSizeHybrid, which returns the local max-
imal step size (Aj). The returned value is an integer that
encodes a multiple of the FMU’s resolution. To convert the
step into a multiple of the master’s resolution (Ai), we use
again Eq. (8). Function _getMaxStepSize returns Ai.
It should be noted that the ratio between the resolutions of
the FMU and the master as used in Egs. (8) and (7) is pre-
computed during initializationin _setResolution (see
Fig. 10) and stored in wrp->r_ratio.

There is one additional subtlety that this wrapper accounts
for. When the global time advances with time steps that are
smaller than the time resolution of the FMU, the FMU time
does not advance (as can be deduced from Eq. 7) causing
the FMU to lag behind the master algorithm. When the FMU
indeed lags behind, and the master instructs the wrapper to
take a zero-size step, however, Eq. 8 would yield a negative
value for Ai (a negative time index), which is clearly wrong.
Therefore, the wrapper returns O in this particular situation
(Figs. 13 line 22 and 14 line 15).

Wrappers for category 3 and category 4 FMUs

Wrappers for category 3 and category 4 FMUs are straightfor-
ward to implement. Both category 3 and 4 FMUs implement
setResolution, which means that the FMUs must accept
the resolution that the master algorithm states. The only dif-
ference between these two categories is that category 4 FMUs
also implement getPreferredResolution, whereas
category 3 FMUs do not. All the wrapper functions are simply
transferring the call to the corresponding FMI function. No

@ Springer

translation of resolutions are necessary because the FMUs
promise to handle the resolution that is set by the master.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.,
Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic
analysis of hybrid systems. Theoret. Comput. Sci. 138, 3-34 (1995)

2. Bastian, J., Clauss, C., Wolf, S., Schneider, P.: Master for co-
simulation using FMI. In: 8th Modelica Conference, pp. 115-120
(2011)

3. Benveniste, A., Bourke, T., Caillaud, B., Pouzet, M.: Non-standard
semantics of hybrid systems modelers. J. Comput. Syst. Sci. 78,
877-910 (2012)

4. Bliudze, S., Krob, D.: Modelling of complex systems: systems as
dataflow machines. Fundam. Inform. 91(2), 251-274 (2009)

5. Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Clauf}, C.,
Elmgqvist, H., Junghanns, A., Mauss, J., Monteiro, M., Neidhold,
T., Neumerkel, D., Olsson, H., Peetz, J.-V., Wolf, S.: The functional
mockup interface for tool independent exchange of simulation
models. In: Proceedings of the 8-th International Modelica Con-
ference, Dresden, Germany. Modelica Association (2011)

6. Bogomolov, S., Greitschus, M., Jensen, P. G., Larsen, K. G.,
Mikucionis, M., Strump, T., Tripakis, S.: Co-simulation of hybrid
systems with SpaceEx and Uppaal. In: Proceedings of the 11th
International Modelica Conference. Linkoping University Elec-
tronic Press (2015)

7. Broman, D., Brooks, C., Greenberg, L., Lee, E.A., Masin, M.,
Tripakis, S., Wetter, M.: Determinate composition of FMUs for
co-simulation. In: Proceedings of the International Conference on
Embedded Software (EMSOFT 2013). IEEE (2013)

8. Broman, D., Greenberg, L., Lee, E.A., Masin, M., Tripakis, S.,
Wetter, M.: Requirements for hybrid cosimulation standards. In:
Proceedings of 18th ACM International Conference on Hybrid
Systems: Computation and Control (HSCC), pp. 179-188. ACM
(2015)

9. Broman, D., Lee, E.A., Tripakis, S., Torngren, M.: Viewpoints,
formalisms, languages, and tools for cyber-physical systems. In:

Hybrid co-simulation: it’s about time

1677

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Proceedings of the 6th International Workshop on Multi-Paradigm
Modeling, pp. 49-54. ACM (2012)

Broman, D., Siek, J.G.: Modelyze: a gradually typed host language
for embedding equation-based modeling languages. Technical
report UCB/EECS-2012-173, EECS Department, University of
California, Berkeley (2012)

. Carloni, L.P,, Passerone, R., Pinto, A., Sangiovanni-Vincentelli,

A.: Languages and tools for hybrid systems design. Found. Trends
Electron. Des. Autom. 1(1/2), 1-193 (2006)

Cassandras, C.G.: Discrete Event Systems, Modeling and Perfor-
mance Analysis. CRC Press, Boca Raton (1993)

Cataldo, A., Lee, E., Liu, X., Matsikoudis, E., Zheng, H: A con-
structive fixed-point theorem and the feedback semantics of timed
systems. Michigan. In: Workshop on Discrete Event Systems
(WODES), Ann Arbor (2006)

Cremona, E., Lohstroh, M., Broman, D., Di Natale, M., Lee, E.A.,
Tripakis, S.: Step revision in hybrid co-simulation with FMI. In:
International Conference on Formal Methods and Models for Sys-
tem Design (MEMOCODE) (2016)

Cremona, F., Lohstroh, M., Tripakis, S., Brooks, C., Lee, E.A.:
FIDE—an FMI integrated development environment. In: Sympo-
sium on Applied Computing (SAC) (2016)

Eidson, J.C.: Measurement, Control, and Communication Using
IEEE 1588. Springer, Berlin (2006)

Feldman, Y.A., Greenberg, L., Palachi, E.: Simulating rhapsody
SysML blocks in hybrid models with FML. In: 10th Modelica Con-
ference, pp. 43-52 (2014)

Fishman, G.S.: Discrete-Event Simulation: Modeling, Program-
ming, and Analysis. Springer, Berlin (2001)

Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel,
0., Ripado, R., Girard, A., Dang, T., Maler, O.: Spaceex: scal-
able verification of hybrid systems. In: International Conference
on Computer Aided Verification, pp. 379-395. Springer (2011)
Fritzson, P.: Principles of Object-Oriented Modeling and Simula-
tion with Modelica 2.1. Wiley, Hoboken (2003)

Goldberg, D.: What every computer scientist should know about
floating-point arithmetic. ACM Comput. Surv. 23(1), 548 (1991)
Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K.,
Kurshan, R.P. (eds.) Verification of Digital and Hybrid Systems,
Volume 170 of NATO ASI Series F: Computer and Systems Sci-
ences, pp. 265-292. Springer, Berlin (2000)

Karsai, G., Lang, A., Neema, S.: Design patterns for open tool
integration. Softw. Syst. Model. 4(2), 157-170 (2005)

Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.. Model-
integrated development of embedded software. Proc. IEEE 91(1),
145-164 (2003)

Kofman, E., Junco, S.: Quantized-state systems: a DEVS approach
for continuous system simulation. Trans. Soc. Model. Simul. Int.
18(1), 2-8 (2001)

Kopke, P., Henzinger, T., Puri, A., Varaiya, P.: What’s decidable
about hybrid automata? In: 27th Annual ACM Symposium on The-
ory of Computing (STOCS), pp. 372-382 (1995)

Kuhl, F.,, Weatherly, R., Dahmann, J.: Creating Computer Simu-
lation Systems: An Introduction to the High Level Architecture.
Prentice Hall PTR, Upper Saddle River (1999)

Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J.
Softw. Tools Technol. Transf. (STTT) 1(1), 134-152 (1997)

Lee, E.A.: Modeling concurrent real-time processes using discrete
events. Ann. Softw. Eng. 7, 25-45 (1999)

Lee, E.A.: Fundamental limits of cyber-physical systems modeling.
ACM Trans. Cyber Phys. Syst. 1(1), 26 (2016)

Lee, E.A., Niknami, M., Nouidui, T.S., Wetter, M.: Modeling and
simulating cyber-physical systems using CyPhySim. In: Interna-
tional Conference on Embedded Software (EMSOFT) (2015)

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

Lee, E.A., Sangiovanni-Vincentelli, A.: A framework for com-
paring models of computation. IEEE Trans. Comput. Aided Des.
Circuits Syst. 17(12), 1217-1229 (1998)

Lee, E.A., Zheng, H.: Operational semantics of hybrid systems.
In: Morari, M., Thiele, L. (eds.) Hybrid Systems: Computation
and Control (HSCC), Volume LNCS 3414, pp. 25-53. Springer,
Zurich (2005)

Maler, O., Manna, Z., Pnueli, A.: From timed to hybrid systems.
In: Real-Time: Theory and Practice, REX Workshop, pp. 447-484.
Springer (1992)

Manna, Z., Pnueli, A.: Verifying hybrid systems. Hybrid Syst. 736,
4-35 (1993)

Migoni, G., Bortolotto, M., Kofman, E., Cellier, FE.: Linearly
implicit quantization-based integration methods for stiff ordinary
differential equations. Simul. Model. Pract. Theory 35, 118-136
(2013)

Mills, D.L.: A brief history of NTP time: confessions of an internet
timekeeper. ACM Comput. Commun. Rev. 33, 9-21 (2003)
Modelica Association. Functional mock-up interface for model
exchange and co-simulation. Report 2.0 (2014)

Modelica Association. Modelica—A Unified Object-Oriented
Language for Physical Systems Modeling—Language Specifica-
tion Version 3.3 Revision 1. http://www.modelica.org (2014)
Modelisar Consortium and the Modelica Association. Functional
mock-up interface for model exchange and co-simulation. Report
Version 2.0. https://www.fmi-standard.org/downloads (2014)
Otter, M., Elmqvist, H., Lépez, J.: Collision handling for the
Modelica multibody library. In: Modelica Conference, pp. 45—
53 (2005). Describes three approaches, impulsive, spring-damper
ignoring contact area, and spring-damper including contact area
Otter, M., Malmheden, M., Elmqvist, H., Mattsson, S.E., Johnsson,
C.: A new formalism for modeling of reactive and hybrid systems.
In: Modelica Conference. The Modelica Association (2009)
Pohlmann, U., Schifer, W., Reddehase, H., R6ckemann, J., Wagner,
R.: Generating functional mockup units from software specifica-
tions. In: 9th Modelica Conference, pp. 765-774 (2012)
Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation
using Ptolemy II. Ptolemy.org, Berkeley, CA (2014)

Schierz, T., Arnold, M., Clauss, C.: Co-simulation with commu-
nication step size control in an FMI compatible master algorithm.
In: 9th Modelica Conference, pp. 205-214 (2012)

Tabuada, P.: Verification and Control of Hybrid Systems: A Sym-
bolic Approach. Springer, Berlin (2009)

Tripakis, S.: Bridging the semantic gap between heterogeneous
modeling formalisms and FMI. In: International Conference
on Embedded Computer Systems: Architectures, Modeling and
Simulation—SAMOS XV (2015)

Tripakis, S., Stergiou, C., Shaver, C., Lee, E.A.: A modular formal
semantics for Ptolemy. Math. Struct. Comput. Sci. 23, 834-881
(2013)

Zeigler, B.P., Prachofer, H., Kim, T.G.: Theory of Modeling and
Simulation, 2nd edn. Academic Press, Cambridge (2000)

Zhu, Y., Westbrook, E., Inoue, J., Chapoutot, A., Salama, C., Per-
alta, M., Martin, T., Taha, W., O’Malley, M., Cartwright, R., Ames,
A., Bhattacharya, R.: Mathematical equations as executable mod-
els of mechanical systems. In: Proceedings of the 1st ACM/IEEE
International Conference on Cyber-Physical Systems, ICCPS’10,
pp- 1-11. ACM, New York, NY, USA (2010)

Zimmer, D.: Equation-Based Modeling of Variable-Structure Sys-
tems. PhD thesis, Swiss Federal Institute of Technology, Zurich,
Switzerland (2010)

@ Springer

http://www.modelica.org
https://www.fmi-standard.org/downloads

1678

F. Cremona et al.

Fabio Cremona is Senior Sim-
ulation Engineer at United Tech-

He received a Ph.D. degree
in Computer Engineering in
2016 from Scuola Superiore
Sant’ Anna, Pisa, Italy advised by
Professor Marco Di Natale. From
2014 to 2016 he joined the Uni-
versity of California, Berkeley,
advised by Professor Edward A.
Lee collaborating on the devel-
opment of Ptolemy II, a mod-
eling and simulation framework
for heterogeneous systems. His
research interests are cyber-physical systems design and verification
with focus on simulation and synthesis problems. He holds a BS and MS
in Electrical Engineering, both from University of Rome “La Sapienza”.

Marten Lohstroh is a Ph.D.
student in Computer Science
at the University of California,
Berkeley, advised by Professor
Edward A. Lee. He studies mod-
els of computation, program-
ming languages, and systems
design. From 2012 to 2014 he
was an Associate Specialist at
UC Berkeley, mostly dedicated
to the development of Ptolemy II,
an open-source software frame-
work that supports experimenta-
tion with actor-oriented design.
Lohstroh holds a BS in Computer
Science and MS in Grid Computing, both from University of Amster-
dam.

David Broman is an Associate
Professor at the KTH Royal
Institute of Technology in Swe-
den, where he is leading the
Model-Based Computing Sys-
tems (MCS) research group.
Between 2012 and 2014, he was
a visiting scholar at the Uni-
versity of California, Berkeley,
where he also was employed
as a part time researcher until
2016. David received his Ph.D. in
Computer Science in 2010 from
Linkdping University, Sweden,
and was appointed Assistant Pro-
fessor there in 2011. He earned a Docent degree in Computer Science
in 2015. His research focuses on model-based design of time-aware
systems, including cyber-physical systems, embedded systems, and
real-time systems. In particular, he is interested in modeling language
theory, formal semantics, compilers, and machine learning. In 2017,
he was awarded the individual grant for future leaders (FFL 6) from
the Swedish Foundation for Strategic Research (SSF). He has worked
several years within the software industry, co-founded the EOOLT
workshop series, and is a member of IFIP WG 2.4, Modelica Asso-
ciation, and the TAACCS steering committee.

@ Springer

nologies Research Center (UTRC).

Edward A. Lee is the Robert
S. Pepper Distinguished Pro-
fessor in Electrical Engineering
and Computer Sciences (EECS)
at the University of Califor-
nia at Berkeley, where he has
been on the faculty since 1986.
He is the author of Plato and
the Nerd—The Creative Partner-
ship of Humans and Technology
(MIT Press, 2017), a number of
textbooks and research mono-
graphs, and more than 300 papers
and technical reports. Lee has
delivered more than 170 keynote
and other invited talks at venues worldwide and has graduated at least 35
Ph.D. students. Professor Lee’s research group studies cyber-physical
systems, which integrate physical dynamics with software and net-
works. His focus is on the use of deterministic models as a central part
of the engineering toolkit for such systems. He is the director of iCyPhy,
the Berkeley Industrial Cyber-Physical Systems Research Center, and
the Berkeley Ptolemy project. From 2005-2008, he served as Chair of
the EE Division and then Chair of the EECS Department at UC Berkeley.
He has led the development of several influential open-source software
packages, notably Ptolemy and its various spinoffs. He received his BS
degree in 1979 from Yale, with a double major in Computer Science and
Engineering and Applied Science, an SM degree in EECS from MIT
in 1981, and a Ph.D. in EECS from UC Berkeley in 1986. From 1979
to 1982 he was a member of technical staff at Bell Labs in Holmdel,
New Jersey, in the Advanced Data Communications Laboratory. He is
a co-founder of BDTI, Inc., where he is currently a Senior Technical
Adbvisor, and has consulted for a number of other companies. He is a
Fellow of the IEEE, was an NSF Presidential Young Investigator, won
the 1997 Frederick Emmons Terman Award for Engineering Education,
and received the 2016 Outstanding Technical Achievement and Leader-
ship Award from the IEEE Technical Committee on Real-Time Systems
(TCRTS).

Dr. Michael Masin is a Research
Staff Member in the Systems
and IoT Engineering group at
IBM Research - Haifa and has
served as the technical lead
and Principle Investigator for
numerous projects, both with
government and private cus-
tomers. Michael’s research inter-
ests focus on the develop-
ment of engineer-friendly tools
and applications for determin-
istic and stochastic combinato-
rial multi-objective optimization.
These include simulation and
optimization-based engineering of complex systems and system of sys-
tems design, control, scheduling and logistics. Michael received his
masters in mechanical engineering from the Moscow State University
of Railway Transport, and then went on to get his masters and Ph.D.
in industrial engineering at the Technion - Israel Institute of Technol-
ogy. He has published many papers in leading professional journals and
conferences, filed 10 IBM patents, and continues to supervise graduate
students at the Technion and Tel Aviv University.

Hybrid co-simulation: it’s about time

1679

Stavros Tripakis is a Full Pro-
fessor at Aalto University, and
an Adjunct Associate Professor
at the University of California,
Berkeley. He received a Ph.D.
degree in Computer Science in
1998 at the Verimag Labora-
tory, Joseph Fourier University,
Grenoble, France. He was a Post-
doc at UC Berkeley from 1999
to 2001, a CNRS Research Sci-
entist at Verimag from 2001 to
2006, and a Research Scientist at
Cadence Research Labs, Berke-
ley, from 2006 to 2008. His
research interests include formal methods, computer-aided system
design, and cyber-physical systems. Dr. Tripakis was co-Chair of the
10th ACM and IEEE Conference on Embedded Software (EMSOFT
2010), and Secretary/Treasurer (2009-2011) and Vice-Chair (2011-
2013) of ACM SIGBED. His h-index is 45 (Google Scholar).

@ Springer

