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ABSTRACT

Context. Convective motions that overshoot into regions that are formally convectively stable cause extended mixing.
Aims. We aim to determine the scaling of the overshooting depth (dos) at the base of the convection zone as a function of imposed
energy flux (Fn) and to estimate the extent of overshooting at the base of the solar convection zone.
Methods. Three-dimensional Cartesian simulations of hydrodynamic compressible non-rotating convection with unstable and stable
layers were used. The simulations used either a fixed heat conduction profile or a temperature- and density-dependent formulation
based on Kramers opacity law. The simulations covered a range of almost four orders of magnitude in the imposed flux, and the
sub-grid scale diffusivities were varied so as to maintain approximately constant supercriticality at each flux.
Results. A smooth heat conduction profile (either fixed or through Kramers opacity law) leads to a relatively shallow power law
with dos ∝ F

0.08
n for low Fn. A fixed step-profile of the heat conductivity at the bottom of the convection zone leads to a somewhat

steeper dependency on dos ∝ F
0.12
n in the same regime. Experiments with and without subgrid-scale entropy diffusion revealed a

strong dependence on the effective Prandtl number, which is likely to explain the steep power laws as a function ofFn reported in the
literature. Furthermore, changing the heat conductivity artificially in the radiative and overshoot layers to speed up thermal saturation
is shown to lead to a substantial underestimation of the overshooting depth.
Conclusions. Extrapolating from the results obtained with smooth heat conductivity profiles, which are the most realistic set-up we
considered, suggest that the overshooting depth for the solar energy flux is about 20% of the pressure scale height at the base of the
convection zone. This is two to four times higher than the estimates from helioseismology. However, the current simulations do not
include rotation or magnetic fields, which are known to reduce convective overshooting.

Key words. turbulence – convection

1. Introduction

Convective mixing in stars has important consequences, for
example, in early and late phases of stellar evolution and for
the diffusion of light elements. Furthermore, stellar differential
rotation (e.g. Rüdiger 1989) and dynamos (e.g. Moffatt 1978;
Krause & Rädler 1980; Brandenburg & Subramanian 2005) owe
their existence to turbulent fluid motions. The efficiency of mix-
ing in convective and radiative layers in stars differs greatly.
The former are vigorously mixed on a timescale much shorter
than the evolutionary timescale of the star. Thus it is of great
interest to be able to predict where effective convective mixing
occurs. The greatest uncertainty in this respect is the amount of
overshooting from convection zones (CZ) to adjacent radiative
layers.

Stellar structure and evolution models most often apply some
variant of the mixing length (ML) model of Vitense (1953) to
describe convection. These models are completely local and do
not allow overshooting. Non-local extensions to ML models
(e.g. Shaviv & Salpeter 1973; Schmitt et al. 1984; Skaley & Stix
1991) yield estimates of overshooting, but the validity of the
ML approach has been questioned (e.g. Renzini 1987). More
advanced closures of convection based on Reynolds stress (e.g.
Xiong 1985; Deng et al. 2006; Garaud et al. 2010; Canuto 2011)
are physically more consistent but challenging to implement
(see, however, Zhang et al. 2012; Zhang 2013). Furthermore,
testing and validation of the Reynolds stress models, for exam-

ple, by comparison to three-dimensional numerical simulations,
is still in its infancy (e.g. Kupka 1999; Snellman et al. 2015; Cai
2018).

A seemingly attractive option to study overshooting is to solve
the governing equations directly by means of three-dimensional
simulations. Numerical simulations of convection have been
used to estimate the overshooting depth in numerous studies
(e.g. Hurlburt et al. 1986, 1994; Roxburgh & Simmons 1993;
Singh et al. 1995, 1998; Saikia et al. 2000; Brummell et al. 2002;
Ziegler & Rüdiger 2003; Rogers et al. 2006; Tian et al. 2009;
Pratt et al. 2017; Brun et al. 2017; Hotta 2017; Korre et al. 2019).
Early studies indicated overshooting of the order of a pressure
scale height at the base of the CZ, which is an order of magni-
tude more than typical estimates from helioseismology (e.g. Basu
1997). The difference between these studies and the Sun is that the
energy flux imposed in the simulations is typically much greater
than the corresponding solar flux. This leads to higher convec-
tive velocities in the simulations and to an overestimation of the
overshooting. Scaling laws, based on the relation of convective
velocities with the energy flux, arise in analytic models of over-
shooting (e.g. Zahn 1991; Rempel 2004) and predict a reduction
of the overshooting depth as a function of decreasing flux. The pri-
mary aim of the current study is to establish these relations from
carefully controlled numerical experiments.

Compressible simulations with realistic solar energy flux
are hampered by the disparity of the acoustic and dynamical
timescales, or by a low Mach number, in the deep parts of the
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CZ. According to ML arguments, the enthalpy flux Fenth =

cP(ρu)′T ′, where cP is the heat capacity at constant pressure, ρ
is the density, u is the convective velocity, and T is the temper-
ature, and the apostrophes (overbar) denote fluctuations (aver-
ages) that can be approximated as Fenth = φρu′3 (Brandenburg
2016). Assuming that Fenth ≈ F�, it is possible to construct a
normalised energy flux (e.g. Brandenburg et al. 2005),

F
(�)
n = F�/ρc3

s ≈ φρu′3/ρc3
s ≈ Ma3. (1)

The last approximation is justified by the fact that the factor φ has
been reported to be in the range 4−20 (Brandenburg et al. 2005;
Brandenburg 2016), whereas convection carries only a fraction
of the total flux in the lower part of the solar CZ (see, e.g. the
solar model of Stix 2002). Using solar values at r0 = 0.71 R�,
where R� = 7 × 108 m is the solar radius, F� = L�/(4πr2

0) ≈
6 × 1025 W m−2, where L� = 3.84 × 1026 W is the solar luminos-
ity, ρ ≈ 200 kg m−3, and cs ≈ 200 km s−1, the normalised flux
at the base of the solar CZ is F (�)

n ≈ 4 × 10−11. Thus the Mach
number in the deep CZ is about 10−4. This leads to a short time-
step due to the high sound speed and to prohibitively long inte-
gration times (e.g. Kupka & Muthsam 2017). Although anelastic
methods (e.g Gough 1969) bypass the acoustic time-step prob-
lem at solar luminosity, any simulation attempting to do this
self-consistently would need to be run for a Kelvin–Helmholtz
time to achieve thermal saturation. This is not feasible for solar
parameters without resorting, for example, to arbitrarily chang-
ing the heat conductivity in the radiative layer (e.g. Brun et al.
2017) with current and any foreseeable supercomputers (e.g.
Kupka & Muthsam 2017).

Recently, Hotta (2017) presented results from numerical
simulations of fully compressible convection where the over-
shooting depth was computed from a range of two orders of
magnitude in the input flux. He reached values of Fn = 5 ×
10−7, which is at the limits of current numerical feasibility, and
obtained a power law dos/Hp ∝ F

0.31
n for the overshooting depth

dos. This led Hotta (2017) to estimate that the overshooting at the
base of the solar CZ is about 0.4% of the pressure scale height,
or roughly 200 km. Earlier numerical studies (e.g. Singh et al.
1998; Tian et al. 2009) have reported results that suggest a simi-
lar steep dependency of dos onFn.

Here these studies are revisited by a set-up where the heat
conductivity is self-consistently computed using the Kramers
opacity law. This set-up allows the depth of the CZ to dynam-
ically adapt to changes in the thermodynamic state of the
system (Käpylä et al. 2019a) and to produce a smooth transi-
tion between convective and radiative layers (Brandenburg et al.
2000; Käpylä et al. 2017). Furthermore, a significantly broader
range of imposed flux values is covered than in any of the previ-
ous studies. Moreover, particular care is taken to isolate the effect
of the input flux by performing models where the supercriticality
of convection, degree of turbulence, and effective thermal Pran-
dlt number are approximately constant as the flux varies. An
effort is made to link to the earlier studies of Singh et al. (1998)
and Tian et al. (2009) by targeted sets of simulations probing the
influence of subgrid scale entropy diffusion on convection and
the resulting overshooting depth. Finally, a critical assessment
of some of the modeling choices of Hotta (2017) is presented.

The Pencil Code1 was used to produce the simulations.
At the core of the code is a switchable finite-difference solver
for partial differential equations that can be used to study
a wide selection of physical problems. In the current study

1 https://github.com/pencil-code/

a third-order Runge–Kutta time-stepping method and centred
sixth-order finite differences for spatial derivatives are used (cf.
Brandenburg 2003).

2. The model

The Kramers set-ups used in the current study are similar to
those in Käpylä et al. (2017). The equations for compressible
hydrodynamics

D ln ρ
Dt

= −∇ · u, (2)

Du
Dt

= g −
1
ρ

(∇p − ∇·2νρS), (3)

T
Ds
Dt

= −
1
ρ

[∇· (Frad + FSGS)] + 2νS2 + Γcool, (4)

are solved, where D/Dt = ∂/∂t+u ·∇ is the advective derivative,
ρ is the density, u is the velocity, g = −gêz is the acceleration due
to gravity with g > 0, p is the pressure, T is the temperature, s
is the specific entropy, and ν is the constant kinematic viscosity.
Furthermore, Frad and FSGS are the radiative and turbulent sub-
grid scale (SGS) fluxes, respectively, and Γcool describes cooling
at the surface (see below). S is the traceless rate-of-strain tensor
with

Si j =
1
2

(ui, j + u j,i) −
1
3
δi j∇ · u. (5)

An optically thick fully ionised gas is considered, where radia-
tion is modelled through diffusion approximation. The ideal gas
equation of state p = (cP − cV)ρT = RρT applies, where R is the
gas constant, and cV is the specific heat at constant volume. The
radiative flux is given by

Frad = −K∇T, (6)

where K is the radiative heat conductivity. Two qualitatively dif-
ferent heat conductivity prescriptions are considered, where K
either has a fixed profile K(z) or is a function of density and tem-
perature, K(ρ,T ). In the latter case, K is given by

K =
16σSBT 3

3κρ
, (7)

where σSB is the Stefan-Boltzmann constant and κ is the opacity.
κ is assumed to obey a power law

κ = κ0(ρ/ρ0)a(T/T0)b, (8)

where ρ0 and T0 are reference values of density and temperature.
Equations (7) and (8) combine into

K(ρ,T ) = K0(ρ/ρ0)−(a+1)(T/T0)3−b. (9)

Here a = 1 and b = −7/2 are used, which correspond to
the Kramers opacity law for free-free and bound-free tran-
sitions (Weiss et al. 2004). Heat conductivity consistent with
the Kramers law was first used in convection simulations by
Brandenburg et al. (2000).

Owing to the strong depth dependence of the radiative diffu-
sivity, χ = K/(cPρ), additional turbulent SGS diffusivity is used
in the entropy equation to keep the simulations numerically fea-
sible. Here the SGS flux is formulated as

FSGS = −ρTχ(1)
SGS∇s′, (10)
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where s′ = s − s is the fluctuation of the specific entropy. The
overbar indicates horizontal averaging here and in what follows.
The coefficient χ(1)

SGS is constant in the whole domain. FSGS has
a negligible contribution to the net horizontally averaged energy
flux, such that FSGS ≈ 0. The current SGS formulation is similar
to those used in Käpylä et al. (2007, 2019a), and Brown et al.
(2010), for example.

The cooling at the surface is described by

Γcool = −Γ0 f (z)(Tcool − T ), (11)

where Γ0 is a cooling luminosity, T = e/cV is the temperature
where e is the internal energy, and where Tcool = Ttop is a ref-
erence temperature corresponding to the fixed value at the top
boundary.

2.1. Geometry, and initial and boundary conditions

The computational domain is a rectangular box where zbot ≤

z ≤ ztop is the vertical coordinate, where zbot/d = −0.45,
ztop/d = 1.05, and where d is the depth of the initially isen-
tropic layer (see below). In a few runs the domain extends to
deeper layers such that zbot/d = −0.75 to accommodate deeper
overshooting. The horizontal coordinates x and y run from −2d
to 2d. The horizontal size of the box is thus LH/d = 4, and the
vertical extent Lz/d is either 1.5 or 1.8.

The initial stratification consists of three layers. Two config-
urations of the three-layer set-up are considered here: in the first
set-up (hereafter P2I), the two lower layers are polytropic with
polytropic indices n1 = 3.25 (zbot/d ≤ z/d ≤ 0) and n2 = 1.5
(0 ≤ z/d ≤ 1). The uppermost layer above z/d = 1 is ini-
tially isothermal. This layer mimics a photosphere where radia-
tive cooling is efficient. The choice of n1 is motivated by fact that
in the special case where the temperature gradient in the cor-
responding hydrostatic state is constant, the solution is a poly-
trope with index 13/4; see Barekat & Brandenburg (2014) and
Appendix A of Brandenburg (2016). Assuming that an extended
stable layer forms at the bottom of the domain, its stratification is
close to the hydrostatic solution (see, e.g. Käpylä et al. 2019a).
This, however, can only be confirmed a posteriori because the
depth of the convective layer is not pre-determined in the cases
where the Kramers opacity law is used. In the second set-
up (hereafter P3) all three layers are polytropic with indices
(n1, n2, n3) = (2, 1.5, 1.5). In these cases the radiative diffusion
in the uppermost layer is enhanced and no explicit cooling is
applied. This configuration is the same as in Singh et al. (1998)
and was chosen to accommodate comparisons with that study.
The choice of n2 = 1.5 for the thermal stratification in the middle
layer comes from the expectation that the convectively unstable
layer is nearly isentropic in the final statistically saturated state.
The initial velocity follows a Gaussian-noise distribution with an
amplitude of about 10−4

√
dg.

The horizontal boundaries are periodic, and on the vertical
boundaries, impenetrable and stress-free boundary conditions
are imposed for the flow such that

∂ux

∂z
=
∂uy
∂z

= uz = 0. (12)

The temperature gradient at the bottom boundary is set according
to

∂T
∂z

= −
Fbot

Kbot
, (13)

where Fbot is the fixed input flux and Kbot(x, y, zbot) is the value of
the heat conductivity at the bottom of the domain. On the upper
boundary a constant temperature T = Ttop, coinciding with the
initial value, is assumed.

2.2. Units, control parameters, and simulation strategy

The units of length, time, density, and entropy are given by

[x] = d, [t] =
√

d/g, [ρ] = ρ0, [s] = cP, (14)

where ρ0 is the initial value of the density at z = ztop. The models
with Kramers heat conductivity are fully defined by choosing the
value of the kinematic viscosity ν, the gravitational acceleration
g, the values of a, b, K0, ρ0, T0 and the SGS Prandtl number

Pr(1)
SGS =

ν

χ(1)
SGS

, (15)

along with z-dependent cooling profile f (z). The values of K0,
ρ0, and T0 are subsumed into a new variable K̃0 = K0ρ

a+1
0 T b−3

0
that is fixed by assuming the radiative flux at zbot to equal Fbot in
the initial state. The profile f (z) = 1 above z/d = 1 and f (z) = 0
below z/d = 1, connecting smoothly over the interface over a
width of 0.025d. Furthermore, ξ0 = Htop

p /d = RTtop/gd sets the
initial pressure scale height at the surface, thus determining the
initial density stratification. All of the current simulations have
ξ0 = 0.054.

In runs where a fixed profile of heat conductivity is used, the
profile K(z) is needed instead of specifying K̃0. In these cases
the value of K at z = zbot is fixed similarly as was done for K̃0 in
the Kramers cases. In these cases the initial profile of the Prandtl
number based on the radiative heat conductivity

Pr(z) =
ν

χ(z)
, (16)

where χ(z) = K(z)/cPρ(z), sets the relative importance of viscous
to temperature diffusion. We note that in general Pr = Pr(x, t)
because ρ = ρ(x, t). In cases where K has a piecewise con-
stant profile, it can be represented in terms of polytropic indices
(n′1, n

′
2, n
′
3), which refer to a corresponding non-convective

hydrostatic solution. Starting the simulations from such solu-
tions for the thermodynamic quantities is, however, impractical
especially if the value n2 is far away from the final convective
state, which is always close to the adiabatic value of 1.5. Thus
these indices typically differ from those used to initialise the
thermal variables (see also Brandenburg et al. 2005). The heat
conductivities in the different layers are connected through

Ki

K j
=

n′i + 1
n′j + 1

, (17)

where i and j refer to any of the three layers.
The dimensionless normalised flux is given by

Fn = Fbot/ρbotc3
s,bot, (18)

where ρbot and cs,bot are the density and the sound speed, respec-
tively, at zbot in the initial non-convecting state.

The input energy flux determines the overall convective
velocity realised in the simulations via uconv ∝ F

1/3
n , see Eq. (1)

and Käpylä et al. (2019b). Thus if only Fn were changed, the
relative importance of the diffusion coefficients, measured by
Reynolds and Péclet numbers, would change as well. To elim-
inate these dependences, and to be able to concentrate solely on
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the effects of varying input flux, the viscosity and SGS entropy
diffusion are scaled proportional to F 1/3

n . In addition to chang-
ing the diffusion coefficients, the cooling luminosity Γ0 at the
surface is also scaled proportionally to Fn. The input flux itself
is varied by changing the overall magnitude of K such that the
value at the bottom is given by Kbot = −Fbot/(∂T/∂z)zbot . Fur-
thermore, the degree of supercriticality of convection, measured
by a Rayleigh number, and the Prandtl number, describing the
ratio of viscosity to thermal diffusion, will affect the properties
of convection and overshooting if they are allowed to vary. The
current choice of the dependency of ν and χ(1)

SGS onFn, however,
eliminates these dependences such that the supercriticality and
effective Prandtl numbers are nearly constant over the range of
Fn considered here. This is discussed in detail in Sect. 4.1.

In addition to the explicit viscosity, SGS, and radiative diffu-
sion, the advective terms in each of the Eqs. (2)–(4) are written in
terms of a fifth-order upwinding derivative with a hyperdiffusive
sixth-order correction where the diffusion coefficient depends
locally on the flow, see Appendix B of Dobler et al. (2006).

2.3. Diagnostics quantities

The following quantities are outcomes of the simulations that
can only be determined a posteriori. These include the global
Reynolds and SGS Péclet numbers,

Re =
urms

νk1
, PeSGS =

urms

χ(1)
SGSk1

, (19)

where urms is the volume-averaged rms velocity, and k1 = 2π/d
is an estimate of the largest eddies in the system. Typically χ �
χ(1)

SGS in the CZ in most of the current simulations. Furthermore,
χ has a strong depth dependence due to the density stratification.
Thus it is useful to define Reynolds and effective Péclet numbers
separately for the overshoot zone,

ReOZ =
uOZ

rms

νkOZ
, Peeff

OZ =
uOZ

rms

(χ(1)
SGS + χOZ)kOZ

, (20)

where all quantities are taken from the base of the CZ, z = zCZ,
with χOZ = KOZ/(cPρOZ) being the mean (horizontally averaged)
radiative diffusivity, and where kOZ = 2π/dos is a wavenumber
based on the depth of the overshoot layer dos. Similarly, an effec-
tive Prandtl number can be defined as

Preff
OZ =

ν

(χ(1)
SGS + χOZ)

· (21)

Precise definitions of zCZ and dos are given in Sect. 3.
To assess the level of supercriticality of convection, radiative

and SGS Rayleigh numbers are defined as

RaRad =
gd4

νχ

(
−

1
cP

ds
dz

)
, (22)

RaSGS =
gd4

νχ(1)
SGS

(
−

1
cP

ds
dz

)
. (23)

Supercriticality of convection is roughly determined by
min(RaRad,RaSGS). Both quantities vary as functions of height
and are quoted near the surface at z/d = 0.85 for all models.
Conventionally, the Rayleigh number in the hydrostatic non-
convecting state is one of the control parameters. This is still
true for the cases with fixed K profile in the current study, but
in the runs with Kramers conductivity, the convectively unstable

layer in the hydrostatic case is very thin and confined to the near-
surface layers (Brandenburg 2016). Thus the Rayleigh numbers
are quoted from the thermally saturated and statistically station-
ary states.

The path in parameter space taken here is artificial in that
in real fluids, there is no SGS diffusivity (RaSGS = 0) and any
change in the flux would be reflected by the then decisive radia-
tive Rayleigh number. For example, a system where Pr is fixed
Rarad ∝ F

−4/3
n . However, taking this path severely limits the

computationally feasible range ofFn because the Reynolds and
Péclet number also increase in proportion to Fn and the resolu-
tion requirements quickly become prohibitive.

Contributions to the vertical energy flux are

Frad = −K
∂T
∂z
, (24)

Fenth = cP(ρuz)′T ′, (25)

Fkin =
1
2
ρu2u′z, (26)

Fvisc = −2νρuiSiz (27)

Fcool =

∫ ztop

zbot

Γcooldz. (28)

Here the primes denote fluctuations and overbars horizontal
averages. The total convected flux (Cattaneo et al. 1991) is the
sum of the enthalpy and kinetic energy fluxes:

Fconv = Fenth + Fkin. (29)

The radiative flux can be written in terms of the mean double-
logarithmic temperature gradient ∇ = ∂ ln T/∂ ln p as

Frad = −K
∂T
∂z

=
Kg
cP

∇

∇ad
, (30)

where cP∇ad = cP(1 − 1/γ) = R, and g = |g|. Above, ∇ is the
actual temperature gradient realised in the system. Now it is pos-
sible to define the total flux and the flux transported by adiabatic
stratification as

Ftot =
Kg
cP

∇rad

∇ad
, F

ad
rad =

Kg
cP
, (31)

where ∇rad is a hypothetical radiative gradient in the absence of
convection and Ftot = Fbot. The ratio of the total-to-adiabatic
flux is the Nusselt number (e.g. Brandenburg 2016),

Nu =
Ftot

F
ad
rad

=
∇rad

∇ad
· (32)

In the current set-up the Nusselt number is fixed from the outset
for cases with a static profile of K. This is because the total flux
imposed at the lower boundary is proportional to K. In the cases
where Kramers conductivity is used, K can evolve but the change
in the Nusselt number is not very large; see, for example, Table 1.
The behaviour of Nu is different in cases where fixed tem-
perature is imposed at both boundaries (e.g. Yadav et al. 2016;
Gastine et al. 2016) because the total flux is no longer in direct
proportion with the heat conductivity.
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Table 1. Summary of the runs with smoothly varying profiles of K.

Run Fn RaRad [107] RaSGS [106] Preff
OZ Re ReOZ Peeff

OZ Nu ∆ρ dos/Hp K

K-3 4.5 × 10−4 0.12 0.5 0.4 15 1.3 0.5 19 55 1.29 Kramers
K-2 1.8 × 10−4 0.64 0.6 0.5 17 1.2 0.7 36 74 1.05 Kramers
K-1 9.1 × 10−5 1.7 0.8 0.7 18 1.2 0.8 51 91 0.90 Kramers
K0 4.5 × 10−5 4.0 0.9 0.8 19 1.1 0.9 63 108 0.79 Kramers
K1 1.8 × 10−5 9.9 1.0 0.9 20 1.0 0.8 77 128 0.69 Kramers
K2 9.1 × 10−6 18 1.1 0.9 20 0.9 0.8 84 139 0.63 Kramers
K3 4.6 × 10−6 28 1.1 0.9 20 0.9 0.8 88 147 0.60 Kramers
K4 1.8 × 10−6 55 1.1 1.0 19 0.8 0.8 92 154 0.55 Kramers
K5 9.1 × 10−7 94 1.1 1.0 19 0.8 0.8 94 158 0.51 Kramers
K6 4.6 × 10−7 157 1.2 1.0 19 0.8 0.7 96 161 0.49 Kramers
K7 1.8 × 10−7 302 1.2 1.0 19 0.8 0.8 98 164 0.46 Kramers
K-3h 4.6 × 10−4 0.39 2.4 0.2 34 2.8 0.7 24 58 1.28 Kramers
K-2h 1.8 × 10−4 1.7 3.1 0.4 37 2.8 1.1 41 76 1.04 Kramers
K-1h 9.1 × 10−5 4.3 3.6 0.5 39 2.7 1.4 55 93 0.88 Kramers
K0h 4.5 × 10−5 9.6 4.2 0.6 41 2.5 1.6 68 111 0.77 Kramers
K1h 1.8 × 10−5 23 4.7 0.7 42 2.3 1.7 80 130 0.67 Kramers
K2h 9.1 × 10−6 40 4.8 0.8 42 2.1 1.7 87 141 0.61 Kramers
K3h 4.6 × 10−6 65 4.7 0.9 41 2.0 1.8 91 150 0.58 Kramers
K4h 1.8 × 10−6 130 5.0 0.9 41 2.0 1.9 94 157 0.53 Kramers
K5h 9.1 × 10−7 221 5.3 1.0 40 2.0 1.9 97 161 0.50 Kramers
K6h 4.6 × 10−7 367 5.5 1.0 40 1.9 1.8 98 163 0.47 Kramers
K7h 1.8 × 10−7 700 5.6 1.0 40 1.7 1.7 99 166 0.45 Kramers
P-1 8.9 × 10−5 0.27 0.8 0.7 19 1.3 0.9 71 86 0.86 K-profile
P0 4.5 × 10−5 0.47 0.9 0.8 19 1.1 0.9 71 106 0.76 K-profile
P1 1.8 × 10−5 0.92 1.0 0.9 20 1.0 0.9 71 127 0.68 K-profile
P2 9.1 × 10−6 15 1.1 0.9 20 0.9 0.8 71 139 0.63 K-profile
P3 4.5 × 10−6 23 1.1 0.9 19 0.9 0.8 71 146 0.61 K-profile
P4 1.8 × 10−6 42 1.1 1.0 19 0.8 0.8 71 154 0.56 K-profile
P5 9.1 × 10−7 71 1.2 1.0 19 0.8 0.8 71 158 0.52 K-profile
P6 4.6 × 10−7 116 1.2 1.0 19 0.8 0.8 71 161 0.49 K-profile

Notes. The Nusselt number is quoted from z/d = 0.85 and Preff
OZ refers to the effective Prandtl number at z/d = 0 here and in all following tables.

The grid resolution in all runs is 2883.

3. Definitions of CZ and overshooting

To characterise the different layers, the nomenclature introduced
in Käpylä et al. (2017) is used, although with somewhat differing
definitions. The CZ is defined to be the part of the domain where
Fconv > 0, whereas in the overshoot zone (OZ) Fconv < 0. This
is motivated by the work of Deng & Xiong (2008), who used a
similar definition but employed Fenth instead of Fconv. A defini-
tion of the overshooting depth based on Fenth was also used in
Käpylä et al. (2017). However, because the kinetic energy flux
carries a substantial fraction of the energy, it is natural to include
it in the definition of the CZ. The bottom of the CZ is denoted
by zCZ.

The mean overshooting depth zOS is taken to be the posi-
tion where the horizontally averaged Fkin drops below 1% of
its value at zCZ. Various earlier studies have used a similar
definition (Hurlburt et al. 1986, 1994; Singh et al. 1995, 1998;
Brummell et al. 2002). In most of the previous studies the loca-
tion of the bottom of the CZ is assumed to be fixed by the initial
conditions. Here this assumption is relaxed and zCZ is computed
from the simulation data using the definition given above. The
values of zOS and zCZ are obtained by linear interpolation from
the grid points closest to the respective transitions. Furthermore,

zCZ and zOS are functions of time. The overshooting depth is
defined as

dos = 〈zCZ(t) − zOS(t)〉t, (33)

where 〈· · · 〉t denotes a time average over the statistically station-
ary part of the time series. Error estimates for dos are obtained
by dividing the time series into three equally long parts and con-
sidering their largest deviation from the time average over the
whole time series as the error.

The radiative zone (RZ) is defined as the region below
zOS, and the buoyancy zone (BZ) is where Fconv > 0 and
∂zs < 0. Finally, the Deardorff zone (DZ) is characterised by
a formally stable stratification with a positive vertical mean
entropy gradient (∂zs > 0) and Fconv > 0; see, Tremblay et al.
(2015). In this layer, the convective energy transport is domi-
nated by a non-local non-gradient contribution to the enthalpy
flux introduced by Deardorff (1961, 1966); see also Brandenburg
(2016) and Käpylä et al. (2017). Such layers have been reported
by various authors from simulations (e.g. Chan & Gigas 1992;
Roxburgh & Simmons 1993; Tremblay et al. 2015; Korre et al.
2017; Bekki et al. 2017; Karak et al. 2018; Nelson et al. 2018).
Furthermore, the union of OZ, DZ, and BZ is referred to as the
mixed zone (MZ).
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Table 2. Summary of the runs with a fixed step profile of K.

Run Fn RaRad [106] RaSGS [106] Preff
OZ Re ReOZ Peeff

OZ Nu ∆ρ dos/Hp K

S-1 5.0 × 10−5 1.5 1.3 0.7 17 1.3 1.0 2.5 150 0.71 Step
S0 2.5 × 10−5 1.9 1.1 0.8 17 1.1 0.9 2.5 174 0.61 Step
S1 1.8 × 10−5 2.9 1.0 0.9 19 1.0 0.9 2.5 135 0.54 Step
S2 8.9 × 10−6 4.2 0.9 0.9 19 0.9 0.8 2.5 145 0.50 Step
S3 4.5 × 10−6 6.2 0.9 0.9 18 0.9 0.8 2.5 150 0.47 Step
S4 1.8 × 10−6 11 0.9 1.0 18 0.8 0.8 2.5 156 0.42 Step
S5 9.0 × 10−7 18 0.9 1.0 17 0.8 0.7 2.5 161 0.39 Step
S6 4.5 × 10−7 29 0.9 1.0 17 0.7 0.7 2.5 165 0.35 Step
S7 1.8 × 10−7 52 0.9 1.0 17 0.6 0.6 2.5 169 0.33 Step
S-1h 5.0 × 10−5 2.8 4.9 0.6 37 3.0 1.8 2.5 151 0.71 Step
S0h 2.5 × 10−5 3.8 4.5 0.7 37 2.6 1.8 2.5 175 0.62 Step
S1h 1.8 × 10−5 6.1 4.2 0.8 42 2.3 1.8 2.5 138 0.52 Step
S2h 8.9 × 10−6 9.0 4.0 0.9 42 2.2 1.9 2.5 146 0.48 Step
S3h 4.5 × 10−6 13 3.7 0.9 41 2.0 1.8 2.5 153 0.44 Step
S4h 1.8 × 10−6 24 3.8 0.9 39 1.9 1.8 2.5 159 0.39 Step
S5h 9.0 × 10−7 39 3.9 1.0 38 1.7 1.7 2.5 162 0.37 Step
S6h 4.5 × 10−7 63 3.9 1.0 38 1.5 1.5 2.5 166 0.33 Step

Notes. The grid resolution was 2883 for all other runs except for S-1, S0, S-1h, and S0h, which have a deeper domain extending to z/d = −0.75
and a 3363 grid, and Run S7, which was run with a 1443 grid. All runs have (n′1, n

′
2, n

′
3) = (3.25, 0, 0).

Table 3. Summary of the runs with a double-step profile for K.

Run Fn RaRad [106] RaSGS [106] Preff
OZ Re ReOZ Peeff

OZ Nu ∆ρ dos/Hp K

DS0 1.0 × 10−4 4.8 – 3.7 17 1.6 6.2 25 23 0.68 2-Step
DS1 4.1 × 10−5 10 – 6.7 16 0.8 5.8 25 29 0.52 2-Step
DS2 2.1 × 10−5 18 – 10 16 0.6 6.6 25 33 0.44 2-Step
DS3 1.0 × 10−5 30 – 16 16 0.5 8.1 25 36 0.37 2-Step
DS4 4.2 × 10−6 57 – 27 16 0.4 10 25 39 0.28 2-Step
DS5 2.1 × 10−6 91 – 41 16 0.3 12 25 41 0.23 2-Step
DS5h 2.1 × 10−6 92 – 41 16 0.2 9.4 25 41 0.22 2-Step
DSS10 1.0 × 10−4 4.5 1.6 2.2 18 3.3 7.4 25 22 (0.76) 2-Step
DSS11 4.1 × 10−5 9.6 2.0 2.9 19 2.7 8.1 25 28 (0.78) 2-Step
DSS12 2.0 × 10−5 17 2.3 3.5 19 2.3 8.1 25 32 (0.77) 2-Step
DSS13 1.0 × 10−5 29 2.6 3.9 19 1.9 7.4 25 35 0.74 2-Step
DSS14 4.1 × 10−6 57 2.8 4.3 19 1.6 7.0 25 38 0.70 2-Step
DSS15 2.1 × 10−6 95 3.0 4.5 19 1.3 5.7 25 39 0.64 2–Step
DSS20 1.0 × 10−4 4.5 3.3 2.9 18 2.8 8.1 25 22 (0.74) 2-Step
DSS21 4.1 × 10−5 9.5 4.0 4.3 18 2.0 8.3 25 28 (0.73) 2-Step
DSS22 2.0 × 10−5 17 4.6 5.3 18 1.5 7.8 25 32 0.67 2-Step
DSS23 1.0 × 10−5 29 5.1 6.4 18 1.2 7.6 25 35 0.61 2-Step
DSS24 4.1 × 10−6 57 5.6 7.6 18 1.0 7.5 25 38 0.54 2-Step
DSS25 2.1 × 10−6 94 5.9 8.3 18 0.9 5.6 25 39 0.50 2-Step

Notes. The SGS diffusivity χ(1)
SGS = 0 in Set DS and thus RaSGS is not defined. In Set DSS1 (DSS2) Pr(1)

SGS = 5 (10). The grid resolution is 2883

in all runs except for DS5h, which was run with 5763 grid points. All runs have (n′1, n
′
2, n

′
3) = (2,−0.9, 1.5). Parentheses for values of dos/Hp for

Runs DSS10-2 and DSS20-1 indicate that the results are affected by the lower boundary.

4. Results

Four main sets of simulations, denoted as K, P, S, and DS were
conducted, see Tables 1–3. The sets are named after their heat
conductivity prescriptions: in Set K, the Kramers law is used
to compute the heat conductivity. In Set P, a static profile cor-
responding to the heat conductivity computed according to the
Kramers law in the initial state of the simulation is used. Set S

employs a static step profile of heat conductivity, K = K(z).
These three sets correspond to Runs K, P, and S of Käpylä et al.
(2017). Additionally, Sets Kh and Sh are the otherwise the same
as Sets K and S, but lower viscosity and SGS entropy diffusion
were used. These runs were branched off from corresponding
thermally saturated snapshots from runs in Sets K and S, respec-
tively. In Sets DS, DSS1, and DSS2 a double-step profile for
K, similar to that in Singh et al. (1998), was used. In Set DS
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Table 4. Summary of the runs with varying ν and χ(1)
SGS.

Run RaRad [107] RaSGS [107] Preff
OZ Re ReOZ Peeff

OZ Nu ∆ρ dos/Hp Grid

R1 18 0.005 1.0 4 0.1 0.1 87 150 0.45 2883

R2 44 0.028 1.0 9 0.3 0.3 92 155 0.50 2883

R3 93 0.11 1.0 19 0.8 0.8 94 158 0.51 2883

R4 221 0.53 1.0 40 2.0 1.9 97 161 0.50 2883

R5 798 5.2 0.9 122 7.0 6.2 102 163 0.49 5763

R6 1580 21 0.8 257 16 13 103 163 0.51 11523

R7 3310 85 0.7 523 37 34 105 166 0.52 11523

Notes. All runs in this set useFn = 9.1 × 10−7 and Kramers-based heat conductivity.

Fig. 1. Normalised vertical velocity ũz = uz/(gd)1/2 (colours) and streamlines of the flow from Runs R4 (left) and R7 (right).

χ(1)
SGS = 0, and in Set DSS1 (DSS2) the SGS diffusion is included

with Pr(1)
SGS = 5 (10). Runs DS5 and DS5h were the same except

for the grid resolution to study numerical convergence of the
results. Finally, in Set R the explicit diffusivities ν and χ(1)

SGS were
varied while all other parameters were kept fixed using Run K5
as a progenitor, see Table 4. Sets DS, DSS1, and DSS2 used the
P3 set-up, and the remaining sets were initialised with the P2I
set-up.

4.1. Basic characterisation of the solutions

Typical flow patterns for Runs R4 and R7 are shown in Fig. 1.
The flow structure observed in various studies of stratified non-
rotating convection is recovered with connected downflows near
the surface merging into isolated plumes at larger depths (e.g.
Stein & Nordlund 1989, 1998). The downflows are surrounded
by broader upflows. In the majority of the current simulations
the flows are at best mildly turbulent with Re ≈ 20 . . . 40 such
as in Run R4 in the left panel of Fig. 1. However, the qualitative
large-scale structure of convection does not change at higher res-
olutions and Rayleigh and Reynolds numbers, see the right panel
of Fig. 1 for Run R7.

Figure 2a shows the profiles of K(z) from representative runs
in each of the main sets K, P, S, and DS. The Kramers run K4
and the corresponding fixed profile model P4 have a smoothly
varying profile as a function of height with very small values

of K near the surface. In the piecewise polytropic run S4, the
profile of K is characterised by constant values in the upper
(z > 0) and lower (z < 0) layers (e.g. Hurlburt et al. 1986;
Nordlund et al. 1992), which can be characterised by the ratios
K2/K1 = K3/K1 = 4/17 ≈ 0.235. In Run DS5, K2/K1 = 2/85 ≈
0.0333 and the uppermost layer above z/d = 1 has another con-
stant value of K corresponding to K2/K1 = 5/6. However, the
transitions of K between the layers are smoothed over a distance
of 0.05d, due to which the value of K corresponding to n′3 = 1.5
is achieved only near the upper surface.

The vertical profiles of Pr(z) and Pr(1)
SGS are shown in Fig. 2b.

The strong variation of Pr as function of depth is to be contrasted
with the constant value of Pr(1)

SGS. Although Pr ∝ Fn, it is still
typically greater than unity at z/d = 0 in almost all cases, with
the exception of a few runs with the highest values of Fn (see
Tables 1–4). This is in stark contrast to the solar CZ, where Pr � 1
everywhere (e.g. Ossendrijver 2003). Numerical simulations with
Prandtl numbers far different from unity are challenging numeri-
cally and render parameter studies infeasible. Thus an enhanced
SGS diffusivity with Pr(1)

SGS of the order of unity was applied in
most of the current simulations. In most of the current simulations
the effective Prandtl number is dominated by the SGS diffusion.

Changing the input energy flux Fn refers to varying the
magnitude of K proportionally and thus χ ∝ Fn. In combi-
nation with ν ∝ F 1/3

n and the ML estimate −(Hp/cP)ds/dz
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Fig. 2. Horizontally averaged and normalised heat conductivity K̃ =

K(z)/Kbot (a) and Prandtl number Pr(z) (b) from Runs K4, P4, S4, and
DS5. The dashed black (red) line in the lower panel indicates Pr(1)

SGS = 1
(Pr(1)

SGS = 5).

= ∇−∇ad ∝ F
2/3
n (Vitense 1953), this involves changing RaRad ∝

F
−2/3
n . This is to be contrasted with the SGS Rayleigh num-

ber, where χ is replaced by χ(1)
SGS ∝ F

1/3
n , which leads to RaSGS

being independent ofFn. These scalings are in accordance with
the simulations, as can be seen from Fig. 3 for Sets Kh, DS,
and DSS1. As mentioned earlier, the supercriticality of convec-
tion is determined roughly by min(RaRad,RaSGS). In the current
simulations the SGS Rayleigh number is almost always smaller.
This also means that with RaSGS ≈ constant, the supercritical-
ity of convection is also constant, and it is eliminated as an
influence on the overshooting depth. For completeness, the flux-
based Rayleigh number (e.g. Brun & Browning 2017)

RaFlux = NuRaRad =
Ftotd4

ρχ2ν

(
−

1
cP

ds
dz

)
, (34)

can be seen to vary as RaFlux ∝ F
−2/3
n given the dependences

above. We note that NuRaSGS is independent ofFn.
Figure 4 shows the dependence of the rms velocity within

the CZ from all simulations except for those in Set R.
The simulation results are close to a F 1/3

n dependence, with
the coefficient of proportionality varying between 1.3 and
1.8. This is in agreement with ML estimates (e.g. Vitense
1953; Brandenburg et al. 2005; Brandenburg 2016) and earlier
numerical findings (Brandenburg et al. 2005; Karak et al. 2015;
Käpylä et al. 2019b).

Fig. 3. Rayleigh numbers RaSGS (black) and RaRad (red) as functions
of Fn from Set Kh. The purple (magenta) line shows RaRad (RaSGS)
from Set DS (DSS). The dotted lines show scalings expected from ML
arguments.

Fig. 4. Normalised rms velocity ũrms = urms/
√
gd in the CZ as a function

ofFn for the simulation sets indicated by the legend. The dotted line is
proportional toF 1/3

n . The inset shows ũrmsF
−1/3
n for the same runs. The

purple diamond denotes Run DS5h.

Results regarding the energy fluxes and force balance from
representative runs from Sets K, S, and DS are shown in Fig. 5.
The left panels show the contributions to the energy flux and
the superadiabatic temperature gradient ∇ − ∇ad. The fluxes for
Runs K4 and S4 in Fig. 5a and c are qualitatively similar to
those of Runs K and S of Käpylä et al. (2017), respectively. The
main difference to the latter is the treatment of the near sur-
face layers; cooling layer in the present runs as opposed to an
imposed entropy gradient in Käpylä et al. (2017), and the some-
what different values of Fn; 1.8 × 10−5 here versus 9 × 10−6 in
Käpylä et al. (2017). The subadiabatic Deardorff zone encom-
passes roughly a quarter of the MZ in Run K4, whereas in
Run S4, the DZ is almost absent. The runs in Set DS differ
from those in Set S in that convection transports almost all of
the energy due to the lower K2/K1 ratio. Assuming that the tem-
perature gradient in the final statistically saturated state is nearly
adiabatic, the fraction of convective transport can be estimated
from (cf. Brandenburg et al. 2005)

Fconv

Ftot
≈ 1 −

∇ad

∇rad
= 1 − Nu−1 = 1 − ∇ad(n′2 + 1). (35)
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Fig. 5. Panels a, c, and e: total (black dash-dotted lines), convective (black), enthalpy (blue), kinetic energy (light purple), radiative (dark purple),
and cooling (green) fluxes and the superadiabatic temperature gradient (red) from Runs K4, S4, and DS5, respectively. Panels b, d, and f: total
averaged vertical forces (solid lines) and the power of the forces (dashed) on the upflows (red) and downflows (blue) from the same runs. The
dotted lines in these panels show the corresponding viscous force and its power. The shaded areas indicate the BZ (darkest), DZ, and OZ (lightest)
and the thick black line at the horizontal axis denotes the MZ.

According to this expression, the convective flux transports 60%
(96%) in the runs in Set S (DS). This is confirmed by the numer-
ical results.

Figures 5b, d, and f show the horizontally averaged vertical
total and viscous forces, f z = ρDuz/Dt, and f visc = 2ν∂i(ρS iz),
respectively, and the resulting power of the forces (Pz = uz fz
and Pvisc = uz fvisc) separately for the upflows (↑) and the down-
flows (↓) from Runs K4, S4, and DS5. The force balance in
Run K4 (Fig. 5b), is very similar to the corresponding Run K
in Käpylä et al. (2017), see their Fig. 2b. The downflows appear
to adhere to the Schwarzschild criterion such that they are accel-
erated in the BZ and decelerated in the layers below. This is con-
trasted by the upflows that are accelerated in the stably stratified
OZ and DZ and in the lower part of the BZ. As demonstrated in
Käpylä et al. (2017), the upflows are not driven by the convec-
tive instability but are a result of matter displaced by the deeply

penetrating downflows. In Run S4 the downflows are deceler-
ated already in the lower part of the BZ whereas the force on
the upflows is qualitatively similar to that in Run K4. The force
balance in Run DS5 is qualitatively similar to that in Run S4
although the magnitude and details of the quantities differ. Inter-
estingly the sign of the total force in the stably stratified layer
near the surface is not reversed. The shallowness of the layer
is likely contributing to this. Another aspect is the (true) over-
shooting from the CZ below. It can, however, be concluded that
displacement of the matter due to the downflows is driving the
upflows in the OZ and DZ also in Runs S4 and DS5. However,
the superadiabatic temperature gradient has a local maximum at
the bottom of the BZ in these cases, see Figs. 5c and e. Thus it
is possible that the convective instability is contributing more to
the upward acceleration in these cases. The viscous force is small
in all cases and has a noticeable effect only in the near-surface
layers above z/d = 0.75.
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4.2. Dependence of overshooting on input flux

Reaching the solar value of Fn is currently not possible
due to the prohibitive time-step constraint and the long ther-
mal adjustment time involved (e.g. Brandenburg et al. 2000;
Kupka & Muthsam 2017). However, it is reasonable to assume
that the overshooting depth scales with a power law as a func-
tion of Fn (e.g. Schmitt et al. 1984; Zahn 1991). Thus it is in
principle possible to estimate the extent of overshooting in the
Sun provided that a sufficiently broad range of higher flux val-
ues are probed and their results are extrapolated to the solar case.
A few such studies can be found in the literature (e.g. Singh et al.
1998; Tian et al. 2009; Hotta 2017).

One of the most restrictive modelling choices in the past has
been the use of a static heat conduction profile that effectively
enforces the layer structure of the simulation. This can be seen
from Fig. 6a where the vertical coordinates of the bottoms of the
convection (zCZ) and overshoot (zOZ) zones are shown as func-
tions of Fn. The results for zCZ from Sets S and Sh show that
the interface between the CZ and OZ stays at the initial position
at z = 0 for all values of Fn. The runs in Sets DS, DSS1, and
DSS2 behave similarly, although the bottom of the CZ is shifted
downward from its initial position. For Sets K and Kh the depth
of the CZ is generally reduced in comparison to Sets S and Sh. In
these runs the depth of the CZ increases as Fn decreases. This
is contrasted by the results from Sets P where a Kramers-like,
but static, profile of K is used (see Fig. 2): here zCZ is practically
fixed in the current range ofFn.

Figure 6a shows that the location of the base of the OZ (zOZ)
increases monotonically as a function of Fn in all sets except
for K and Kh. In Set DSS1 (DSS2) the overshooting extends to
the lower boundary of the domain in the three (two) highest Fn
runs, rendering the results of these simulations unusable in the
following analysis. The depth of the overshoot zone, dos, as a
function of Fn is shown in Fig. 6b. The results for Sets K, Kh,
and P fall almost on top of each other. The data suggests two
power laws: F 0.08

n for Fn . 10−5 and F 0.19
n for Fn & 10−5;

see Table 5. These results suggest that the overshooting depth is
relatively insensitive to the choice of the heat conduction scheme
if the profile of K at the base of the CZ is smooth. Furthermore,
dos is consistently greater in Set Kh with higher Reynolds and
SGS Péclet numbers than in the corresponding runs in Set K.
This is because the current simulations have relatively modest
Reynolds and Péclet numbers that are not in a fully turbulent
regime. This aspect is studied in more detail in Sect. 4.3. At first
glance, the data of Set Sh appear to be more consistent with a
single power, and in Set S there appears to be a break around
Fn ≈ 10−5, such that the data points for lower values of Fn lie
below those of Set Sh. However, power-law fits for both full and
partial ranges are consistent with aF 0.12

n scaling within the error
estimates; see Table 5.

A similar set-up as in Singh et al. (1998) and Tian et al.
(2009) is adopted in Sets DS, DSS1, and DSS2. The results
of Set DS show a steep dependence of the overshooting on the
input flux (dos ∝ F

0.27
n ), and Sets DSS1 with dos ∝ F

0.07
n and

DSS2 with dos ∝ F
0.12
n are more in line with the other sets

of simulations. The overshooting depth for the higher resolu-
tion Run DS5h is statistically consistent with that of Run DS5,
although the overall velocities in these runs are somewhat lower.
This is in particular reflected by the values of ReOZ and Peeff

OZ
(seventh and eighth columns in Table 3). The fact that the
results do not change drastically with resolution and that there
is an apparently continuous transition as Pr(1)

SGS increases through
Sets DSS1 and DSS2 to DS are indicative that the latter set of

Fig. 6. Panel a: vertical (z) coordinates of the bottom of the CZ (zCZ,
solid lines) and OZ (zOZ, dashed). The dotted red line indicates the bot-
tom of the domain. Panel b: overshooting depth dos normalised by the
pressure scale height Hp as a function of Fn for Sets K (black), Kh
(grey), P (blue), S (red), Sh (green), DS (purple), DSS1 (cyan), and
DSS2 (orange). The purple diamond denotes Run DS5h. The dotted
lines show approximate power laws from fits to simulation data; see
Table 5. Panel c: comparison of Sets DS, DSS1, and DSS2 with the
studies of Singh et al. (1998) (red) and Tian et al. (2009) (blue).

runs is sufficiently well resolved numerically. Figure 6c shows
a comparison of the overshooting depths from Sets DS, DSS1,
and DSS2 with the studies of Singh et al. (1998, their Table 1)
and Tian et al. (2009, their Table 4). Both studies list the input
fluxes Fb and values of density and pressure at the bottom of the
domain (denoted here as ρb and pb). Thus the normalised flux
in both cases is computed from Fn = Fb/Fn, where Fn = ρbc3

s
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Table 5. Power-law exponents and standard mean errors from fitting
dos ∝ F

α
n .

Set Fn range α

K >10−5 0.194 ± 0.040
K <10−5 0.082 ± 0.011
Kh >10−5 0.184 ± 0.037
Kh <10−5 0.078 ± 0.018
P <10−5 0.085 ± 0.011
S Full 0.119 ± 0.030
S <10−5 0.119 ± 0.012
Sh Full 0.138 ± 0.038
Sh <10−5 0.121 ± 0.015
DS Full 0.274 ± 0.018
DSS1 <2 × 10−5 0.073 ± 0.022
DSS2 <4 × 10−5 0.124 ± 0.010

Notes. The ranges ofFn reflect the break of the power law aroundFn =
10−5 in Sets K, Kh, and P. The same range is used also for Set S and Sh,
for which fits to the full range are also shown.

= ρ−1/2
b (γpb)3/2 with c2

s = γpb/ρb and γ = 5/3 has been assumed.
The results of Singh et al. (1998) were obtained by a similar def-
inition as used in the present study based on kinetic energy flux
falling below a threshold fraction of its value at the base of the
CZ. Their results are consistent with a dos ∝ F

0.33
n scaling. On

the other hand, Tian et al. (2009) obtained a very shallow depen-
dence with this definition (dos ∝ F

0.05
n ) and a much steeper one

(dos ∝ F
0.42
n ) when using a criterion based on the enthalpy flux

falling below a threshold value of its absolute maximum in the
OZ. It is unclear why the results from the two definitions used by
Tian et al. (2009) deviate. Both definitions were tested with the
current data and the results were found to be in fair agreement.

The drastic change from a steep power law in Set DS to the
shallower power laws in Sets DSS1 and DSS2 is related to the
difference in the diffusion of temperature fluctuations. Figure 7a
shows that the effective Péclet numbers in OZ in all of these
sets are comparable. However, as is shown in Sect. 4.3, the over-
shooting depth is insensitive to the Péclet number in this parame-
ter range provided that the effective Prandtl number is not varied
at the same time. The only difference between Sets DS and DSS1
and DSS2 is that in Set DS, the SGS entropy diffusion is omit-
ted and thus the effective Rayleigh and Prandtl numbers vary as a
function ofFn, whereas in the latter two, they approach constant
values for low Fn, see Figs. 3 and 7b. Changing the effective
Prandtl number leads to a dramatic change in the way convection
transports energy in that the sound speed (temperature) fluctua-
tions are enhanced over the velocity fluctuations with increas-
ing Prandtl number, see Fig. 8a. This means that in Set DS the
temperature fluctuations become increasingly more important in
the enthalpy transport as Fn (Pr) decreases (increases). This
is immediately reflected in the overshooting depth as a smaller
velocity fluctuation is required to carry the same flux. Figure 8b
shows that in Set DSS1 the ratio of the temperature and veloc-
ity fluctuations remains practically constant as a function ofFn.
The break in the power law in Sets K and Kh can be under-
stood similarly by the decreasing effective Prandtl number asFn
increases.

To connect the current findings to earlier studies, it is
necessary to study the Prandtl number regimes explored by
Singh et al. (1998), Tian et al. (2009), and Hotta (2017). In the
two former studies a Smagorinsky viscosity νS was computed
from the flow and entropy diffusion according to χS = PrSνS

Fig. 7. Effective Péclet (panel a) and Prandtl (panel b) numbers at the
base of the OZ. The vertical dotted line shows the approximate position
of the break in the power laws in the overshooting depth in Fig. 6b.

with a constant SGS Prandtl number of PrS = 1
3 was used. While

this leads to the same average dependence of the diffusion coef-
ficients as in the present study2, the SGS entropy diffusion in
these studies was set explicitly to zero in radiative layers. This
means that while the effective Prandtl number in the CZ is fixed,
it increases in the overshoot layer as the flux is decreased. Thus
the sensitivity to the Prandtl number discussed above is likely to
explain the steep power laws found by Singh et al. (1998) and
Tian et al. (2009). On the other hand, Hotta (2017) used a slope-
limited diffusion method where the effective diffusion coeffi-
cients are also likely to be proportional to the gradients at small
(grid) scales, that is, νsl ∝ u′∆x and χsl ∝ s′∆x. The velocity
(entropy) fluctuations scale like F 1/3

n (F 2/3
n ) (cf. Käpylä et al.

2019b) and thus this would lead toF −1/3
n scaling for the effective

Prandtl number Prsl = νsl/χsl. Whether this simplistic picture of
the effective Prandtl number with slope-limited diffusion when
applied separately for the momentum and entropy equations is
correct remains to be tested with numerical experiments. How-
ever, if it is true, then the effective Prandtl number is increasing
with decreasing flux and is likely to contribute to the steep power
law reported by Hotta (2017).

Furthermore, the studies of Singh et al. (1998), Tian et al.
(2009), and Hotta (2017) all considered the bottom of the CZ to

2 This is due to νS = (Ck`)2
√

S2
∝ u′` with u′ ∝ F 1/3

n , Ck = const.
and ` ∝ ∆x const., and where ∆x is the grid spacing.
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Fig. 8. Ratio of the rms vertical velocity and sound speed fluctuations
from the runs in Set DS (panel a) and the runs in Set DSS (panel b).

be fixed and given by the initial non-convecting state. Although
all of these studies used a fixed profile for the heat conductivity,
which fixes zCZ, it does not necessarily stay at the same posi-
tion as in the initial state; compare, for example, the solid blue
and red and green curves in Fig. 6a. This is particularly clear
for Sets DS, DSS1, and DSS2 which are similar to the set-up of
Singh et al. (1998). However, it is hard to assess whether such a
systematic error is present in the results of Singh et al. (1998).
In the simulations of Hotta (2017) a similar issue is also possible
but it appears that this effect may be small (e.g. his Fig. 8).

Extrapolating from the current data of the Kramers runs
(Sets K and Kh) to solar conditions suggests that the overshoot-
ing depth for F �n is O(0.2Hp). This is in better agreement with
the constraints from helioseismology (e.g. Basu 1997) than the
estimates using the steeper power laws of the earlier numer-
ical studies (e.g. Hotta 2017). However, this estimate should
be considered as an upper limit because rotation and magnetic
fields, both of which reduce overshooting (e.g. Brummell et al.
2002; Ziegler & Rüdiger 2003; Käpylä et al. 2004), were omit-
ted in the present study. The current estimate is also of the same
order of magnitude as in early analytic models of overshoot-
ing (van Ballegooijen 1982; Schmitt et al. 1984; Pidatella & Stix
1986) and in two-dimensional anelastic convection models with
solar-like parameters (Rogers et al. 2006).

4.3. Dependence on Reynolds and Péclet numbers

In an earlier study, Hotta (2017) concluded that the overshoot-
ing depth depends strongly on the resolution of the simulations.

Fig. 9. Overshooting depth normalised by the pressure scale height at
zCZ as a function of Re for Set R. The inset shows dos/HP as a function
of Ma = urms/(gd)1/2.

The numerical models of Hotta (2017) use a numerical diffusion
scheme based on slope limiters where the effective Reynolds and
Péclet numbers depend on the grid spacing. Here the explicit vis-
cosity and entropy diffusion are varied to study this effect. Run K5
is taken as a reference run, and the diffusion coefficients were
varied within current computational limits in Set R. Run K5 is
referred to as Run R3 in Set R. The simulation strategy was such
that two branches of runs were performed by taking a thermally
saturated snapshot of Run K5 as a basis. In the low-Re branch the
grid resolution was kept fixed and the diffusivities were increased
(Runs R1 and R2). In the high-Re branch (Runs R4-7) the diffusiv-
ities were decreased, and if necessary, a snapshot from a previous
simulation was re-meshed to a higher grid resolution (Runs R5
and R6). These two branches were ran consecutively such that the
previous runs were first run to a thermally saturated state before
changing the diffusivities for the next run to avoid long transients.
The results for the normalised overshooting depth as a function of
Re = PeSGS are shown in Fig. 9.

The current results suggest that overshooting is roughly con-
stant as a function of Re. We note, however, that the data points
with the highest values of Re (Runs R6 and R7) in Fig. 9 could
not be run sufficiently long to establish that they are truly in a sta-
tistically stationary state. Thus the values of dos from these runs
should be considered as upper limits. In any case, these results
are at odds with those obtained by Hotta (2017), who found a
steeply declining trend as a function of Re. This, however, is
likely because Hotta (2017) modified the heat conductivity in the
radiative layer to speed up thermal relaxation (see Sect. 4.5), and
possibly exacerbated by the varying effective Prandtl number in
his models (Sect. 4.2).

The inset of Fig. 9 shows dos/Hp as a function of Ma which
quantifies the overall magnitude of the convective velocity. The
current data suggest that the overshooting depth is independent of
the overall velocity. This is at odds with Zahn (1991), for instance,
who derived a Ma3/2 dependence. However, the range of values
explored here is too narrow to draw definite conclusions.

4.4. Transition from the nearly adiabatic to the radiative zone

The superadiabatic temperature gradient from the runs in Set K
is shown in Fig. 10. The value of ∇ − ∇ad in the RZ is
close to that of the hydrostatic solution with ∇T = const.
in a polytropic atmosphere with adiabatic index n = 13/4,
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Fig. 10. Superadiabatic temperature gradient at the bottom of the CZ in
Set K. The normalised energy flux in each run is indicated in the legend.
The vertical dotted line indicates the position of the bottom of the CZ in
the initial state, and ∇(hs)

rad corresponds to the hydrostatic solution in the
case where ∇T = const.

Fig. 11. Depth of the transition δtrans from nearly adiabatic to radiative
zones as a function of input flux Fn normalised by the pressure scale
height at zCZ from Set K.

that is, ∇(hs)
rad − ∇ad=−17/85 ≈ −0.165 (see also Käpylä et al.

2019a). The transition from nearly adiabatic to the radiative
gradient becomes increasingly sharper as Fn decreases (e.g.
Käpylä et al. 2007). Furthermore, the temperature gradient in the
upper part of the OZ also approaches adiabatic as a function of
Fn, suggesting penetration in the nomenclature of Zahn (1991).

The CZ is characterised by ∇ ≈ ∇ad, whereas in the radia-
tive zone, ∇ ≈ ∇(hs)

rad . Thus a rough estimate of the width of
the transition between the zones and its dependence on Fn is
obtained by computing the vertical derivative of ∇ − ∇ad, taking
its maximum, and computing where the derivative drops below
a fixed fraction of the maximum. Here the threshold was set at
half the maximum value. The results for the computed depth
of the transition δtrans from Set K are shown as a function of
Fn in Fig. 11. The results indicate a power-law δtrans ∝ F

0.30
n

for Fn . 10−4. For higher values of Fn the approximation
∇ ≈ ∇ad is no longer accurate in the CZ and the results devi-
ate from the general trend. Extrapolating from δtrans ≈ 0.1Hp for
Fn = 1.9 × 10−7, a value of δtrans ≈ 7.9 × 10−3Hp is obtained
for the solar value of Fn ≈ 4 × 10−11. This corresponds to

Fig. 12. Profiles of K, normalised by Kbot, from Runs S7 (black) and
S7m (red). The bottom of the initially unstable layer is indicated by the
vertical dotted line at z = 0.

roughly 400 km and indicates a sharp transition between over-
shoot and radiative zones. This is similar to what Schmitt et al.
(1984) found based on a non-local ML model.

4.5. Modified heat conductivity in the radiative zone

The study of Hotta (2017) reached the lowest value ofFn in the
literature thus far, with Fn = 5 × 10−7. However, these results
were obtained by modifying the heat conductivity in the radiative
and overshoot layers while the simulations were running. This
was done to achieve a statistically stationary state without hav-
ing to run a full thermal diffusion time. This procedure is some-
times used in anelastic simulations in order to avoid having to
run a prohibitively long Kelvin–Helmholtz time (e.g. Brun et al.
2011, 2017). While this procedure can potentially shorten the
time to saturation considerably, it can have serious repercussions
for overshooting. To demonstrate this, a new run was branched
off from Run S7 in which the profile of K(z) in the OZ and RZ
was modified. The procedure entails computing the energy flux
from the non-relaxed run and modifying K such that the sum of
all the fluxes matches Ftot in the RZ and OZ (Hotta 2017), that
is,

K
′

=
Fenth + Fkin + Fvisc − Ftot

∂zT
· (36)

The original and modified profiles of K for Runs S7 and S7m are
shown in Fig. 12. It is important to note that this procedure alters
a crucial system parameter of the model and that the modifica-
tion can be applied at an arbitrary time in the non-relaxed phase
of the simulation.

What happens in practice is that in the early phases of the
simulations the cooling at the surface, in combination with weak
radiative diffusion in the CZ, drives efficient convection that
overshoots significantly into the radiative layer. This leads to
a nearly adiabatic temperature gradient and to a reduced radia-
tive flux in the upper part of the RZ. If Fn is low, the radiative
flux is not replenished rapidly enough and the initially vigorous
convection cannot be maintained. This leads to a long period of
slow evolution in which part of the heat coming from below is
deposited in the RZ, OZ, and DZ such that the temperature gra-
dient gradually steepens there to ultimately allow for the total
flux to be transmitted. In the standard scenario (Run S7), the
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Fig. 13. Time-averaged total (black
dash-dotted), convective (black),
enthalpy (blue), radiative (dark purple),
kinetic energy (light purple), and
cooling (green) fluxes from Runs S7
(solid) and S7m (dashed). The vertical
dotted lines indicate the bottoms of the
buoyancy (BZ) and Deardorff zones
(DZ). The bottom of the overshoot zone
(OZ) for Run S7 (S7m) is denoted by
the dashed (dot-dashed) vertical line.

heat conductivity is fixed and the temperature gradient steepens,
which means that the upper part of the RZ becomes less stiff,
allowing relatively deep overshooting, see Fig. 13. The situa-
tion is exactly the opposite in Run S7m: the temperature gradi-
ent remains shallow and the stratification is significantly stiffer
in comparison to the case where K was not altered.

Figure 13 also shows that the modification of the heat con-
ductivity has serious repercussions for the overshooting depth:
dos is reduced by roughly 30 per cent from 0.33Hp in Run K7
to 0.23Hp in Run K7m. This result demonstrates that changing
K during the run leads to a substantial underestimation of the
overshooting depth. This is particularly relevant for the higher
resolution cases where the modification of K presumably has
to be made at an earlier stage. This might explain the strongly
decreasing overshooting depth as a function of Fn in the study
of Hotta (2017).

5. Conclusions

The scaling of convective overshooting at the base of the CZ
was studied as a function of the imposed energy flux, Reynolds
number, and different heat conduction profiles and prescriptions.
Using heat conductivity based on Kramers opacity, or a simi-
lar smoothly varying, but fixed, profile leads to a dos ∝ F

0.08
n

dependence for Fn . 10−5. Furthermore, dos is consistent with
a constant as a function of the Reynolds and Péclet number in
the range Re = 9 . . . 523 in cases where Pr(1)

SGS = 1. A some-
what steeper power, F 0.12

n was found in cases with a fixed step
profile for the heat conduction. These results thus indicate a
much milder dependence on the imposed energy flux than pre-
vious studies in the literature (Singh et al. 1998; Hotta 2017).
Numerical experiments with set-ups where the SGS diffusion
was turned off led to a steep power law (dos ∝ F

0.27
n ) simi-

lar to the power laws reported earlier. Otherwise identical runs
with relatively weak SGS diffusion with Pr(1)

SGS = 5 and 10, on
the other hand, produced shallower dependences (dos ∝ F

0.07
n ,

and dos ∝ F
0.12
n , respectively). The cause for a steep power

law in the case without SGS entropy diffusion is that the effec-
tive Prandtl number increases proportional to Fn, causing the
temperature fluctuations to increase. In such cases a smaller
velocity fluctuation is needed to carry the same flux, which
leads to reduced overshooting. This is the most likely cause

for the steep power laws reported by Singh et al. (1998) and
Tian et al. (2009), where the effective Prandtl number in the
overshoot layer is likely much larger than unity. A similar argu-
ment can tentatively be made regarding the slope-limited diffu-
sion used by Hotta (2017), but this should be tested with further
experiments.

Furthermore, the current results indicate that modifying the
heat conductivity in the layers below the CZ (e.g. Brun et al.
2017; Hotta 2017) leads to a substantial underestimation of the
overshooting depth. The only way to extract reliable scaling of
the overshooting depth as a function ofFn currently is to run the
simulations self-consistently to a thermally relaxed state without
modifying the system parameters such as the heat conductivity.
The present study also demonstrates the limits of this approach
in that the runs with the lowest input flux require integration
times of the order of several months even at a relatively low
resolution of 2883. A more promising alternative to speeding
up thermal saturation is to alter the thermodynamic quantities
instead (e.g. Hurlburt et al. 1986; Anders et al. 2018). However,
even this method has its limitations, and the applicability of this
approach, for example, to rotating convection in spherical shells
remains to be demonstrated.

The current results suggest that the overshooting depth in
the Sun would be of the order of O(0.2),Hp which is some-
what higher than the canonical estimates of (0.05 . . . 0.1)Hp from
helioseismology. Furthermore, the transition from overshoot to
radiative zone is expected to be abrupt and occur over a depth of
roughly 400 km. However, the present models lack rotation and
magnetic fields, which have a significant effect on the convec-
tive flows in the deep parts of the solar CZ. Possibly the biggest
caveat is the unrealistically large SGS Prandtl number we used
in the current study. Set-ups where these constraints are relaxed
will be explored in future publications.
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