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A review on non-classical continuum mechanics with applications in marine 
engineering 

Abstract. Marine structures are advanced material and structural assemblies that span over 
different length scales. The classical structural design approach is to separate these length 
scales. The used structural models are based on classical continuum mechanics. There are 
multiple situations where the classical theory breaks down. Non-classical effects tend arise 
when the size of the smallest repeating unit of a periodic structure is of the same order as 
the full structure itself. The aim of the present paper is to discuss representative problems 
from different length scales of ship structural design.  

Keywords: beam theory; plate theory; homogenization; ship structures; finite element 
method; optimization 

1. Introduction 

Modern marine structures are optimized, advanced material and structural assemblies that bridge 
over numerous length scales. The relative density of a hull girder of a cargo ship can be of the 
order r /rsteel = 10-2, which means that the construction materials are effectively positioned to form 
a lightweight structure. These thin-walled structures are exposed to random physical 
environments with load effects arising from waves, wind and ice and the operational life can be 
decades, requiring the assessment of numerous load cases during the design process by using 
quasi-static or dynamic structural analyses. Nowadays there is also an expectation for adequate 
strength against human-caused load effects such as collisions and groundings, and fires and 
explosions involving time-consuming non-linear structural assessments. Typically, these 
structural assessments are performed via finite element analyses. The constraints for design 
optimization are often technical but, increasingly, also economical, societal and experiential. This 
sets challenges and opportunities for the structural design, making maritime applications a fruitful 
venue to exploit and develop further the theories and computational approaches developed in 
different areas of engineering. This paper focuses on the structural assessment of ships.  

The classical ship structural design approach is to consider the length scales for the 
primary (i.e. hull girder), secondary (i.e. bulkhead spacing) and tertiary (i.e. panel) responses 
separately, see Figure 1 (Hughes, 1988). This multi-scale structural modelling accounts for 
displacement compatibility and (stress resultant) equilibrium in the coupling between the 
consecutive length scales. Usually the structural models at larger length scales are based on 
classical continuum mechanics, e.g. Euler-Bernoulli beam modelling of the ship hull girder. The 
classical beam kinematics are assumed to be valid (e.g. curvature) and the resulting stress 
resultants (e.g. bending moment) are balanced by loads arising from the environment. The relation 
between the curvature and bending moment can be non-linear, with sources of non-linearity 
arising from buckling, plasticity or fracture of the structural elements (e.g. Caldwell, 1965; Smith, 
1977; Dow et al, 1981; Paik et al., 1996; Gordo and Guedes Soares, 1996; Hughes and Paik, 2010; 
Körgesaar and Romanoff, 2013; Körgesaar et al., 2014,2016; Reinaldo Goncalves et al., 2016), 
see Figure 2.  

 



 

Figure 1. Structural responses on primary (hull-girder), secondary (double bottom of cargo-hold) 
and tertiary (e.g. deck plating) length scales in ship structures. Modified from Varsta et al. (2018). 

 

Figure 2. Modelling of bending strain and stress of hull girder by using Euler-Bernoulli theory 
and different extents of beam modelling to account the effects of structural discontinuities. 
Modified from Bleich (1952) and Hughes and Paik (2010). 
 

As mentioned, the used structural theories are based on classical continuum mechanics 
and there are numerous challenges that have been tackled based on “engineering judgement”. 
First of all, classical continuum mechanics assumes that any two consecutive length scales are far 
apart. In a classical continuum, the stress at a point is defined fully if we know the strain at that 
point along with the constitutive (generally non-linear) behaviour. This is not true in ship 



structures. When modelling a large ship structure, the material point is often, in fact, a unit cell 
(or Representative Volume Element, RVE) that describes the smallest repeating unit of a larger 
structural element. Moreover, often the unit cell kinematics and the interaction between 
neighbouring unit cells cannot be modelled accurately using a classical approach. Thus, the 
engineering remedy has been to model, for example, the zone of interest for collapse analysis 
together with surrounding structure, see Figure 2. This enables proper modelling of higher-order 
effects in the zone of interest. 

However, the problem is to define the extent of the surrounding structure. For instance, 
in bulk-carriers and tankers following Euler-Bernoulli beam kinematics, so-called three-, two- or 
one-cargo hold models are used, see Figure 2. The main motivation for this is to ensure proper 
structural behaviour at the middle cargo hold where the failure needs to be accurately modelled. 
As the boundary reactions interact with the process-zone of failure, the extent of the model cannot 
be uniquely defined for all ship types with different structural elements present (e.g. a very stiff 
double bottom). Another challenge is large, multi-deck passenger ships, see Figure 2, where the 
deviation of strain from linear distribution can occur due to weak shear or vertical coupling 
between the decks (e.g. Bleich, 1952; Naar et al., 2004; Naar, 2006; Melk, 2011). Similar 
interactions can also be found at the smaller length scales, i.e. between secondary and tertiary, 
which affect the structural modelling and the accuracy of the predicted results.  

It should also be noted that as material technology develops, our materials become more 
structured, which basically adds structural length scales to our designs (Fleck et al, 2010). Each 
added length scale makes the numerical analysis based on finite element analyses more costly as 
the mesh size is set by the smallest structural scale. A grand challenge is the modelling of damage 
through all these length scales accurately and the structural models utilised have an effect on this 
process (Körgesaar and Romanoff, 2013; Körgesaar et al., 2014,2016; Reinaldo Goncalves et al., 
2016; Jelovica and Romanoff, 2018; Karttunen et al., 2019a,b). As most of structural models (e.g. 
beams, plates and shells) are based classical continuum mechanics, we cannot accurately predict 
the impact of these new materials on our full designs, except by using costly 3-D finite element 
models. Thus, there is a need for better methods.  

In non-classical continuum mechanics, one of the main ideas is to relax the assumption 
that consecutive length scales are far apart which makes the application of these theories 
interesting in ship structural design. The separate length scales are essentially bridged by non-
local material models that have intrinsic length scales in them (in the broad sense, "non-local" 
refers to all constitutive models that involve a characteristic length). There are numerous 
continuum theories developed around this idea as reviewed by Srinivasa and Reddy (2017). 
Figure 3 shows some examples on the experiments of non-classical continuum mechanics at 
different length-scales with applications on MEMS (e.g. McFarland & Colton, 2005), biological 
tissue (e.g. Yang et al, 1982), atomistic simulations of fracture (e.g. Gallo, 2019) and bending of 
web-core sandwich beams (Romanoff and Reddy, 2014). Based on the non-classical theories, 
much better performing structural theories with both analytical and finite element solutions have 
been formulated for applications where the size of the microstructure is of the same order as that 
of the macrostructure.  

This paper presents an overview on the present and prospective applications of non-
classical continuum mechanics theories in marine engineering. This is done in order to bridge the 
two scientific communities of solid mechanics and naval architects with aim to create mutual 
benefits. Naval architects need better tools to handle the complex problems they face daily when 
developing new designs utilizing better materials. For the solid mechanics community, the 
problems provide an opportunity to see the newly developed theories applied to practice and to 
develop something new. Although the paper focuses on maritime applications, the problems 
presented can also be found in other applications of thin-walled structures in civil, aeronautical 
and mechanical engineering. 



 

Figure 3. Examples of experiments performed close to the continuum limit; atomistic simulations 
of fracture (Gallo, 2019), biological tissue (Yang and Lakes, 1982), and bending of web-core 
sandwich beams (Romanoff and Reddy, 2014). 

2. Modelling the response of periodic structures – the trade-off 

Any structure with discrete geometry can be analysed in its discrete form using a mesh (e.g. 
analytical frame mesh, finite element mesh) or in homogenized (averaged) form in which the 
discreteness is not modelled explicitly, see Figure 4.  

 

Figure 4. Discrete solution for a discrete web-core beam by use of discontinuity functions and 
classical Euler-Bernoulli beam theory locally at the microstructure (Romanoff and Varsta, 2007).  



While the discrete form leads to large computational models with high accuracy for both 
global and detailed responses, the homogenized solution produces smooth, averaged, responses 
with low computational cost, and often lower accuracy. In practice, the homogenized approach 
leads to a computational (finite element) mesh as well but the mesh will not be as dense as for the 
fully discrete approach. As an example of this paradigm, the following simple beam example is 
shown. 

The accurate discrete solution to periodic beam bending (Figure 4) can be derived based 
on discontinuity functions. Romanoff and Varsta (2007) split the behaviour of a web-core beam 
into two parts, i.e., the local response due to local bending of the face sheets and the web-plates 
bending around their own neutral axes without mid-plane elongation for the face plate deflection, 
and the global response due to the mid-plane (membrane) stretching/compression of the two face 
plates to opposite directions. Euler-Bernoulli beam theory was assumed to be valid at the level of 
web and face plates. The local response results mainly in a local deformation wave-length with a 
period equal to the web-plate spacing (s), lmicro=s, whereas the global deformation produces a 
wave-length with a period equal to the beam length (L), lmacro=L. In case of weak rotation coupling 
between the webs and face plates, the deformation length-scale between these two extremes 
activates. It was shown by Romanoff and Varsta (2007) that the global and local deflections are  
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where H denotes the Heaviside-operator with its 1st and 2nd derivatives being Dirac’s delta 

and unit doublet function, respectively. Symbols q, F and M denote the pressure applied at face i 
and the external and internal forces and moments located at the web-plates with superscripts t and 
b denoting the top and bottom faces, see Figure 4. These equations can be solved by setting the 
deflections and slopes equal at the location of web-plates and at the boundaries of the beam and 
this results 3 equations per location (Romanoff and Varsta, 2007). In this solution it is important 
to notice the following Strong Conditions: 

 
1. The displacement continuity of global deflection, wg, is satisfied between 

deflection, w, and slopes, dwg/dx, at the location of the webs. The curvature, 
d2wg/dx2, is constant between the webs and a step is made once moving from one 
unit cell to another. Thus, the global bending moments and curvatures are 
piecewise continuous.  

2. In the same way, the local behaviour, wf,i, is smooth in terms of deflections and 
slopes at the locations of the web-plates. The higher-order derivatives are 
piecewise constant (M), linear (F) or parabolic (q) with steps at the locations of 
webs.  

 
It has been shown by Romanoff and Varsta (2007) that by adding the piecewise global 

and local bending moments results in the bending moment diagram of the entire beam, see Figure 
5a. This proves that the stress resultants of the beam are in equilibrium with the loading of the 
beam.  

 



 

Figure 5. A) Discrete local (Mb) and global (Mm) solution for a discrete web-core beam by use of 
discontinuity functions (Romanoff and Varsta, 2007); B) periodic top surface stresses computed 
by 3D-FEA, and by using Homogenized Beam (HB) approach (Romanoff et al., 2007a); C&D 
simulated and experimentally measured strains and their averages from top surface of foam filled 
beams with different grades of Divinycell and different unit cell lengths (Romanoff, 2014).  
 

We could approximate locally this accurate solution by Taylor series expansion around 
point a, by writing 
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thus, the accurate description in the close neighbourhood is obtained including only few 

terms to the series, but the solution over the entire beam would require as many unknows to be 
solved as in case of the accurate solution so this method does not introduce any computational 
savings.  

An alternative to the described method is homogenization, i.e., working with averaged 
responses. In homogenization, the idea is to use, for example, an equivalent single-layer (ESL) 
structural model for which the equivalent stiffnesses are determined from unit cell (RVE) analyses 
(for beams see Romanoff et al., 2007 and for plates Romanoff and Varsta, 2007). In 
homogenization, the focus is on the periodic response, i.e. condition f(x)=f(x+lmicro), which states 
that the function values are equal at the edges of the unit cell. If in addition to this, the function is 
odd within the unit cell, the volume average of the function will be zero. This way we can get rid 
of the solution of microfluctuations in the response analysis, which accelerates the solution 
considerably. If localization is carried out based on correct kinematics, the stresses can be 
recovered with very good accuracy, see Figure 5B and for example Romanoff et al. (2007). These 
assumptions are feasible for for both empty and filled web-core panels as shown by Romanoff 
(2014); see Figures 5A,C,D. Therefore, this logic can be applied for example to the displacement 
of the face sheet in Eq. (1) by splitting the local response into two parts, and forming 
Approximating Conditions, i.e.  



1. Constant slope within the unit cell and undeforming face plate. Thus, the 
response is simply the slope times the distance. This allows the modelling of 
deformation through an equivalent shear angle used for example in First-Order 
Shear Deformation theory.  

2. Varying periodic, odd, slope within the unit cell, i.e. f(x)=f(x+lmicro). This secures 
the fact that the function itself and the derivatives of different order result in zero 
average if the local response is mathematically described by odd functions with 
respect to mid-point of unit cell. 

 

 

Figure 6. Continuum modelling of a periodic beam with microrotation 𝜓 provided by the 
micropolar theory of elasticity that describes the local bending of the face sheets. 

 
If the Approximating conditions are valid, the approximation for the homogenized 

deflection can be written as:  
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where the first term gives the classical solution. The additional terms can be used to 
enhance the solution and compensate for some of the broken strong and approximating conditions 
given above.  

Figure 6 shows that at the location of the kink in the shear force, the shear-induced 
warping deformation changes sign and, for example, a compensating microrotation provided by 
the non-classical micropolar continuum theory, is needed to ensure the compatibility for the local 
face deflections (see for example Karttunen et al., 2018,2019a,b). Depending on the type of 
additional variables or gradients used, various non-classical continuum, and structural, theories 
can be derived to model structures like the one shown in Figure 6, as summarized by Srinivasa 
and Reddy (2017). Also, the finite elements can be derived (e.g. Karttunen et al., 2016).  

In conclusion, as demonstrated by the example above, there is always a trade-off between 



accuracy and computational efficiency in engineering. With non-local models, we can include 
additional information in homogenized continuum descriptions that lead to computationally 
efficient models, and this way we can also get also closer to the accurate discrete cases in terms 
of displacements, stresses and eigenvalue vibrations and buckling (e.g. Romanoff et al., 2007, 
Karttunen et al. 2018, 2019, Reinaldo Goncalves, 2019). This is important as homogenization 
based on stiffness only solves only partially the engineering problem, but with these required 
extensions we can enrich the solution to account also the micro-fluctuations and interactions 
between micro- and macroscales.  

3. Selected examples of length scale interaction in ship structural design 

3.1 Design process overview, focus on optimization 

Ship structural design is governed by the definition of environmental and accidental loads, 
definition of structural response for these loads and by the checking of the strength against limit 
states of yielding, serviceability, ultimate strength and accidental limit state (Hughes 1988; 
Hughes and Paik, 2010). A successful design process is a result of the idealizations made in load, 
response and strength modelling. A numerical design process example is given in Raikunen et al. 
(2019) and Figure 7 where finite elements are coupled with evolutionary optimization algortihm.  

Figure 7. Optimization of a large passenger ship by using beam and shell elements based on 
classical continuum mechanics (Raikunen et al. 2019). 
  

The problem with this classical process is that the non-local effects are excluded from the 
beam and shell element formulations used to assess the structural response and, thus, the 
deformations of the periodic structures may not be modelled in sufficient detail. During 
optimization, we may visit any regions of design space in which response and strength predictions 
are false due to assumptions in beam and plate element formulations. Such an example is shown 
in Figure 8, where two optimal solutions (alternatives are due to different constraint relaxation) 
are compared with each other and in relation to the linear Euler-Bernoulli beam theory. It can be 
seen that the normal stress distribution of the hull girder is different for different optimal designs 
and the stresses arising from classical solution significantly overestimate the load due to hull-
girder bending at most decks. Due to this reason, the optimization must be performed with 3-D 



FEA in passenger ships, while in tanker and bulk carriers beam theory can be used. The reasons 
are explained in the next section, where some selected examples from different length scales 
where these problems may emerge are shown. We start from the smallest of length scales, tertiary, 
where the investigations have been already performed and published.   

 
Figure 8. Comparison of the load-carrying mechanism of two optimal design in relation to the 
classical Euler-Bernoulli beam theory (modified from Raikunen et al, 2019). 

3.2 Tertiary and emerging length scale: Strength of panels, girders, frames 

Ship structures are assemblies of beams, plates and shells. Plates are used mainly to carry global 
loads in membrane action, while stiffeners (beams) are used to reduce the bending actions arising 
from local pressures from cargo and environment. The most commonly used structures are single-
sided stiffened panels, while also composite laminates and sandwich structures are used, but to a 
lesser extent. The orthotropic plate theory and offset beams are often used in the modelling. When 
properly formulated, a single plate model can handle different materials, structural topologies and 
the combination of these within a finite element framework as shown in the previous example. In 
ultra-lightweight structures, the volume fractions for structural materials become very low. This 
means that the microstructure of the material or structural unit becomes visible at the macroscopic 



length scale.   
Karttunen et al. (2019) and Jelovica et al. (2018) have shown that sandwich plates with 

high orthotropy ratio in shear, DQx/DQy, have an ever-decreasing eigenvalue buckling strength in 
the weak direction when classical continuum models are used. The same is found in biaxial 
buckling, while in strong direction, the classical models predict the lowest buckling eigenmodes 
accurately. In turn, when a micropolar plate formulation (Karttunen et al. 2019) is utilised, the 
plate model predicts correct buckling loads, see the red 2-D curve in Figure 9 which follows the 
3-D solution. The challenge with this buckling case is that the differential equations based on 
classical continuum mechanics lose their ellipticity with high orthotropy ratio, see Romanoff et 
al. (2019) for details. Due to this 2-D solutions tend to produce false results when compared to 3-
D finite element analyses. When numerical solutions are considered, an additional mistake is 
introduced as the eigenvalues become mesh-size dependent. Thus, as the case demonstrates, there 
is a need for a micropolar plate element that can model the size-dependency in all relevant regions 
of the design space.  

 

 

Figure 9. Modelling error for bifurcation buckling of a square plate. Top. Case description and 
mesh-size dependency of the finite element solution based on classical continuum mechanics. 
Bottom. The modelling error of a classical solution (black) in comparison to an improved 
micropolar solution (red) and 3-D FEA (blue). (Modified from Jelovica and Romanoff, 2018 and 
Karttunen et al. 2019). 



3.3 Secondary length scale: Strength assessment of main structural elements 

The secondary length scale corresponds to the intermediate scale between the primary (hull-
girder) and tertiary (panels) length-scales. It is also the reason for the deviation of the through-
thickness stress distribution from the classical Euler-Bernoulli theory as seen in Figure 8. 
Examples of this are the side shells of passenger ships that act as vertical shear-walls between the 
decks. Traditionally, these have been full of holes for windows. In continuum sense, the windows 
are modelled at the centre of the shear wall meaning that the in-plane stretch and shear are 
decoupled and do not introduce bending to the shear wall. In recent years, however, the openings 
have increased in size and they have been positioned off-centre due to introduction of balconies 
into cruise ships. In these ships, the structural element size is defined by the positioning of the 
decks, while the opening is typically non-symmetric with respect to the vertical centre of the 
element. This introduces in-plane membrane-bending coupling to the equilibrium equations that 
current membrane elements are uncapable of treating, see Figure 10 and Kaldoja (2017). Thus, 
there is an urgent need for membrane elements that possess this coupling. Such element could be 
based on the work performed at masonry structures (see for example De Bellis and Addessi, 2011; 
Yvonnet et al., 2020). 
 

 

Figure 10. Different 2-D plane stress problems in hull girder modelling: A) different continuity 
conditions in the side shell of a cruise ship and B) occurrence of couple stresses in asymmetric 
side-shell openings due to balconies undergoing in-plane stretch and modelled with single plane 
stress finite element (modified from Kaldoja, 2017). 



3.4 Primary length scale: Hull girder strength assessment 

When ships operate under wave actions, they deform as a whole. The behaviour can be described 
with classical beam theories based on assumptions of Euler-Bernoulli, Timoshenko or Vlasov if 
the ship hull girder is able to fulfil the stiffness requirements required by different kinematic 
assumptions. For slender closed-cell primary structures such as tankers and bulk carriers, the 
Euler-Bernoulli beam theory based on classical continuum mechanics is sufficient. In case of 
container ships with large deck openings, the shear stiffness is reduced and instead the theories 
of Timoshenko or Vlasov give better results. However, as the previous examples from Figures 8 
and 10 show, there is a need for non-local formulations in passenger ships due to their complex 
geometry.  
 The selected demonstration case, based on 3-D FEA, shows the effect of adding shear-
weak superstructure of equal length to the hull girder of a ship. Figure 11 shows the behaviour of 
the hull girder alone in 4-point bending. It is clear that the top-fibre normal stress and the vertical 
shear stress at neutral axis, follow the distributions of classical shear and bending moments. 
Figure 12 shows the situation after the superstructure is added to the top of the hull girder.  

 

Figure 11. Classical continuum mechanics and hull girder bending in 4-point bending with 
resulting normal stress in decks and shear stress in neutral axis. (modified from Melk, 2011). 



 

Figure 12. Deviation from classical continuum mechanics in case of a passenger ship (modified 
from Melk, 2011). 
 Figure 12 shows that the normal stress at the hull deviates from the classical bending 
moment diagram when superstructure is included to the structural model. It also shows that the 
response of shear weak superstructure does not follow the classical shear force diagram. The 
deviation is largest at the interface between the superstructure and hull and also close to the step 
in the shear force diagram, where the shear angle changes rapidly. These effects can only be 
modelled if the shear strain can be divided into symmetric and antisymmetric parts (e.g. Karttunen 
et al., 2018, 2019a,b) as in the micropolar continuum mechanics and if the microrotation along 
beam height can vary. Thus, there is a need for microrotation correction factor for Timoshenko 
beam, which could analogous to shear-correction factor, model the distribution of micropolar 
moments over the thickness of the beam. The alternative could be layer wise formulation for the 
beam. The first steps on development of such element have been presented in Naar et al. (2004) 
for linear and in Naar (2006) for non-linear case, where the asymmetric shear is modelled by use 
of shear and vertical springs between classical Timoshenko beams representing the decks of the 
ships.  

Conclusions  

Modern marine structures are highly-optimized, advanced material and structural assemblies that 
bridge over numerous length scales. They are exposed to random environments and need to be 
designed with computational approaches for adequate safety against failure. The classical 
structural design approach is to consider the length scales for primary (i.e. hull girder), secondary 
(i.e. bulkhead spacing) and tertiary (i.e. panel) responses separately. In essence, the behaviour at 
all these scales is similar to that seen in architected lattice materials. Usually, the structural models 
at the larger length scales are based on classical continuum mechanics, in which the asymptotic 
approach to decoupled length scale interaction is assumed. However, there are multiple situations 
where this assumption is violated. 

The present paper gave an overview the representative problems from different length 
scales of ship structural design. We showed a representative case from each length scale seen in 



ships where non-classical continuum mechanics can make a significant improvement to the ship 
structural design. It is clear that there is an urgent need especially for micropolar beam, plate and 
shell elements that can be used to assess the structural response of different structural and material 
alternatives during optimisation without a fear of modelling error. It is also clear that the 
micropolar elements should be able to model the coupling between in-plane stretching and 
bending, coupling between global and micropolar moments and shear, and non-uniform 
distribution of micropolar moments over the thickness of the structure. Incorporation of these 
effects to micropolar finite elements would have a great impact on structural design of advanced 
marine structures.  

Although the paper focused on maritime applications, the problems presented can be 
found also from other applications of thin-walled structures such as civil engineering, aeronautical 
engineering and mechanical engineering. 
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