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Abstract
Reed–Xiaoli detector (RXD) is recognized as the benchmark algorithm for image anomaly detection; however, it presents
known limitations, namely the dependence over the image following a multivariate Gaussian model, the estimation and
inversion of a high-dimensional covariance matrix, and the inability to effectively include spatial awareness in its evaluation.
In this work, a novel graph-based solution to the image anomaly detection problem is proposed; leveraging the graph Fourier
transform, we are able to overcome some of RXD’s limitations while reducing computational cost at the same time. Tests
over both hyperspectral and medical images, using both synthetic and real anomalies, prove the proposed technique is able
to obtain significant gains over performance by other algorithms in the state of the art.

Keywords Anomaly detection · Graph Fourier transform · Graph-based image processing · Principal component analysis ·
Hyperspectral images · PET

1 Introduction

Anomaly detection is the task of spotting items that do not
conform to the expected pattern of the data. In the case of
images, it usually refers to the problem of spotting pixels
showing a peculiar spectral signature when compared to all
other pixels in an image. Image anomaly detection is consid-
ered one of the most interesting and crucial tasks for many
high-level image- and video-based applications, e.g., surveil-
lance, environmental monitoring, and medical analysis [16].

One of the most used and widely validated techniques for
anomaly detection is Reed–Xiaoli detector, often called RX
detector for short [56], which is the most known example of
covariance-based anomaly detectors. This class of detectors
has found wide adoption in many domains, from hyperspec-
tral [49] to medical images [65]; however, methods of this
type suffer from crucial drawbacks, most noticeably the need
for covariance estimation and inversion. Many situations
exist where the drawbacks of these state-of-the-art anomaly
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detectors lead to poor and unreliable results [67]. Moreover,
the operations required by those techniques are is computa-
tionally expensive [12]. For all these reasons, the research for
a fast and reliable image anomaly detection strategy able to
overcome the limitations of covariance-based anomaly detec-
tors deserves further efforts.

In this paper, we use graphs to tackle image anomaly
detection. Graphs are proved to be natural tools to represent
data in many domains, e.g., recommendation systems, social
networks, or protein interaction systems [18]. Recently, they
have found wide adoption also in computer vision and image
processing communities, thanks to their ability to intuitively
model relations between pixels. Graph-based approaches
have been proposed to this date to solve a wide variety of
image processing tasks, e.g., edge detection [6], gradient esti-
mation [55], and segmentation [9,59]. In particular, spectral
graph theory has been recently bridged with signal process-
ing, where the graph is used to model local relations between
signal samples [57,60]. As an example, graph-based signal
processing is emerging as a novel approach in the design of
energy compacting image transformations [27,28,39,64,70].

To this date, graph-based approaches have not been
proposed for image anomaly detection, although many tech-
niques for anomaly detection on generic graphs have been
explored in the literature [2]. Those techniques cannot be
straightforwardly extended to images since they usually
exploit anomalies in the topology of the graph to extract
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knowledge about the data [18]. On the other hand, in the
image case the graph topology is constrained to the pixel
grid, whereas different weights are assigned to edges con-
necting pixels depending on their similarity or correlation.

Our proposed approach uses an undirectedweighted graph
tomodel the expected behavior of the data and then computes
the distance of each pixel in the image from the model. We
propose to use a graph to model spectral or both spectral and
spatial correlation. The main contribution of this paper is a
novel anomaly detection approach which exploits spectral
graph theory to overcome one of the well-known limitations
of RX detector and other covariance-based anomaly detec-
tors, i.e., the need to estimate and invert a covariance matrix.
Estimation of the covariance may be very critical in the pres-
ence of a small sample size;moreover, inverting such amatrix
is also a complex, badly conditioned and unstable operation
[40]. Our novel anomaly detector estimates the statistic of
the background using a graph Laplacian matrix. Also, the
graph model used by our approach is abstract and flexible
enough to be tailored to any prior knowledge of the data
possibly available. The effectiveness of our methodological
contributions is shown in two use cases: a typical hyperspec-
tral anomaly detection experiment and a novel application
for tumor detection in 3D biomedical images.

The paper is organized as follows:Wewill first give a brief
overview of RX detector and the graph Fourier transform in
Sect. 2 and go over some related work in Sect. 3, and then we
will present our technique in Sect. 4; we will then evaluate
the performance of our technique and compare our results
with those yielded by algorithms in the state of the art both
visually and objectively in Sect. 5, and we will discuss these
results in Sect. 6; finally, conclusionswill be drawn in Sect. 7.

2 Background

Anomaly detection refers to a particular class of target detec-
tion problems, namely the ones where no prior information
about the target is available. In this scenario, supervised
approaches that try to find pixels which match reference
spectral characteristics (e.g., [24,42]) cannot usually be
employed. This extends also to supervised deep learning
or other data-driven approaches, which attempt to learn a
parametric model from a set of labeled data. Although deep
learning methods have found increasingly wide adoption
for many other tasks in image processing and computer
vision [15,35,71], their application to anomaly detection—
especially on hyperspectral and medical imaging—is stifled
by multiple factors: First, pixels have to be considered
anomalous according to intra-image metrics which are dif-
ficult to capture in a dataset; second, the amount of data
required to train the models is not often available in these
contexts [11,44]. For these reasons, classical unsupervised

approaches are preferable instead. These algorithms detect
anomalous or peculiar pixels showing high spectral distance
from their surrounding [20]. To this end, the typical strat-
egy is to extract knowledge of the background statistics from
the data and then measure the deviation of each examined
pixel from the learned knowledge according to some affinity
function.

2.1 Reed–Xiaoli detector

The best known and most widely employed algorithm for
anomaly detection is Reed–Xiaoli detector (RXD) by Reed
and Yu [56]. To this date, it is still used as a benchmark
algorithm for many anomaly detection applications [5,20,48,
51]. RXD assumes the background to be characterized by a
non-stationarymultivariateGaussianmodel, estimated by the
image mean and covariance. Then, it measures the squared
Mahalanobis distance [47] of each pixel from the estimated
background model. Pixels showing distance values over a set
threshold are assessed to be anomalous.

Formally, RXD works as follows. Consider an image I =
[x1x2 . . . xN ] consisting of N pixels,where the columnvector
xi = [xi1xi2 . . . xim]T represents the value of the i th pixel
over the m channels (or spectral bands) of I. The expected
behavior of background pixels can be captured by the mean
vector μ̂ and covariance matrix ̂C which are estimated as
follows:

μ̂ = 1

N

N
∑

i=1

xi , and ̂C = 1

N

N
∑

i=1

xixTi , (1)

where xi = (xi − μ̂).
Mean vector and covariance matrix are computed under

the assumption that vectors xi are observations of the same
random process; it is usually possible to make this assump-
tion as the anomaly is small enough to have a negligible
impact on the estimate [12].

Then, the generalized likelihood of a pixel x to be anoma-
lous with respect to the model ̂C is expressed in terms of the
square of the Mahalanobis distance [47], as follows:

δRXD(x) = xT ̂Q x, (2)

where ̂Q = ̂C−1, i.e., the inverse of the covariance matrix,
also known in the literature as the precision matrix.

Finally, a decision threshold η is usually employed to con-
firm or refuse the anomaly hypothesis. A common approach
is to set η adaptively as a percentage of δRXD dynamic range
as follows:

η = t · p max
i=1,...,N

(δRXD(xi )), (3)
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with t ∈ [0, 1]. Then, if δRXD(x) ≥ η, the pixel x is consid-
ered anomalous.

An interesting property of RXD has been observed by
Chang and Heinz in [14]. In that work, the authors demon-
strated how RXD can be considered an inverse operation of
the principal component analysis (PCA).

More precisely, let us assume that κ1 ≥ κ2 ≥ · · · ≥ κm
are the eigenvalues of the m × m covariance matrix ̂C
and {v1, v2, . . . , vm} is its set of unit eigenvectors with v j

corresponding to κ j . We can then form the matrix V =
[v1v2 . . . vm] with the j th column specified by v j . V can
be used to decorrelate the signal by diagonalizing ̂C into the

diagonal matrix K whose j th diagonal element is κ j , such
thatVT

̂CV = K andVT
̂QV = K−1. Then, we can compute

y = VT x, which is known as the Karhunen–Loève trans-
form (KLT). Data dimensionality reduction via PCA usually
involves the computation of y using just the first p � m
columns of V. As shown in [14], (2) can be expressed as a
function of y as follows:

δRXD(x) = xT ̂Q x

= (Vy)T ̂Q (Vy)

= yT (VT
̂QV) y

= yTK−1y

=
m

∑

j=1

κ−1
j y2j , (4)

where y j represents the j th element of the KLT vector y.
From this formulation, one can notice that RXD detects

targets with small energies that are represented by small
eigenvalues. This is because, according to (4), the smaller the
eigenvalue, the greater its contribution to the value of δRXD .
This is reasonable, since if an anomalous small target is
present in the image, it will not be visible in the principal
components, but it is rather going to appear in smaller com-
ponents [12]. However, when seeing RXD in this form, it
is quite evident that the last components, which are those
containing mostly noise, are actually weighted the most. To
improve the result of RXD, a value p � m can be determined
[38]. Then, the eigenvalues beyond the first (greater) p will
be considered to represent components containing only noise
and will be discarded. We then obtain a de-noised version of
RXD that can be expressed as follows:

δ
p
RXD(x) =

p
∑

j=1

κ−1
j y2j . (5)

Obviously, δmRXD = δRXD .
The issue of determining p was addressed in [13,38]

and is closely related to the problem of determining the
intrinsic dimensionality (ID) of the image signal. Empiri-

cally, p is usually set such that a desired percentage ψ ∈
[0, 1] of the original image cumulative energy content is
retained. The cumulative energy content of the first p prin-
cipal components of an image I = [x1x2 . . . xN ] can be
expressed in terms of the image’sKLT transformY = VT I =
[y1y2 . . . yN ] where I = [x1x2 . . . xN ] as

e(I, p) =
N

∑

i=1

p
∑

j=1

y2i j , (6)

where yi j is the j th element of the vector yi . We then choose
the smallest p ∈ [1,m], such that e(I, p)/e(I,m) ≤ ψ .
Commonly for dimensionality reduction applications ψ =
0.9, but for anomaly detection purposes that value might be
too low, given we do not want to risk to lose the anomaly. In
this case, ψ = 0.99 is usually more appropriate.

2.2 Graph Fourier transform

In recent years, the growing interest in graph-based sig-
nal processing [58] has stimulated the study of graph-based
transform approaches. These methodologies map the image
content onto a topological graph where nodes represent pixel
intensities and edges model relations between nodes, e.g.,
according to a criterion based on correlation or other simi-
larity measures. The Fourier transform can be generalized to
graphs obtaining the so-calledgraph Fourier transform (GFT)
[57].

Consider an undirected, weighted graph G = (V, E) com-
posed of a vertex set V of order n and an edge set E specified
by (a, b, wab), where a, b ∈ V , and wab ∈ R

+ is the
edge weight between vertices a and b. Thus, a weighted
graph can be described by its adjacency matrix W where
W(a, b) = wab. A graph signal is a mapping that assigns a
value to each vertex, denoted as s = [s1s2 . . . sn]T .

Typically, when computing theGFT a graph is constructed
to capture the inter-pixel correlation and is used to compute
the optimal decorrelating transform leveraging on spectral
graph theory [60]. From the adjacency (also called weight)
matrix W, the combinatorial graph Laplacian matrix L =
D − W can be computed, where D is the degree matrix:
a diagonal matrix whose ath diagonal element is equal to
the sum of the weights of all edges incident to the node a.
Formally,

D(a, b) =
{

∑n
k=1 wak if a = b,

0 otherwise.
(7)

In some scenarios, it is useful to normalize weights in the
Laplacian matrix; in those cases, the use of the symmetric
normalized Laplacian matrix Lsym is preferred. It is defined

123



   11 Page 4 of 16 F. Verdoja, M. Grangetto

as

Lsym = D− 1
2LD− 1

2 . (8)

Lsym has important properties, i.e., its eigenvalues are always
real, nonnegative, and bounded into the range [0, 2]; for these
reasons, the spectrum of a symmetric normalized Laplacian
relates well to other graph invariants for general graphs in a
way that other definitions fail to do [18].

Any Laplacian matrix L is a symmetric positive semi-
definitive matrix with eigendecomposition:

L = U�UT , (9)

where U is the matrix whose columns are the eigenvectors
of L and � is the diagonal matrix whose diagonal elements
are the corresponding eigenvalues. The matrix U is used to
compute the GFT of a signal s as:

s̃ = UT s. (10)

The inverse GFT is then given by

s = Ũs. (11)

When computing the GFT, the eigenvalues in � are usu-
ally sorted for increasing magnitude, the first eigenvalue
being equal to zero [57], i.e., 0 = λ1 ≤ λ2 ≤ · · · ≤ λm .
The eigenvectors in U are sorted accordingly.

3 Related work

Despite its popularity, RXD has recognized drawbacks that
undermine its performance in some applications. For a full
discussion over the limitations of RXD, we suggest [12,67];
however, they can be summarized in the following:

1. RXD involves a high-dimensional covariance matrix that
needs to be estimated and inverted, often under a small
sample size [5,40]. Those are unstable, highly complex,
and badly conditioned operations;

2. RXDoften suffers from high false positive rate (FPR) [5,
34,51];

3. RXD assumes that the background follows a multivariate
Gaussianmodel, but there are cases inwhich this assump-
tion might not be adequate, e.g., in the case of multiple
materials and textures [5,12,21,34];

4. RXD lacks spatial awareness: Every pixel is evaluated
individually extrapolated from its context [31].

To address these issues, recent works have iterated over
RXD’s idea, e.g., by considering subspace features [22,62],

by using kernels to go beyond the Gaussian assumption [21,
41], by applying dimensionality reduction [33], by improv-
ing how the background statistics are estimated [20,50], or by
exploiting sparsity and compress sensing theory [23,26,72].
In this work, we generalize RXD’s idea by looking at it from
the point of view of spectral graph theory. This not only
makes us able to avoid costly covariance matrix inversions,
but also allows us to incorporate spatial information and any
prior knowledge about the background model into the detec-
tor. Previouswork trying to including spatial awareness in the
detector is available in the literature; a noteworthy example is
whitening spatial correlation filtering (WSCF) [31], where
the authors propose to apply a whitening transformation
based on the eigendecomposition of the image covariance
matrix. On the whitened space, RXD is represented by
the Euclidean norm. Then, by using an approach based on
constrained energy minimization, WSCF spots anomalous
pixels by estimating consistency to their neighborhood in
the whitened space. We compare our proposed approach to
WSCF in the experimental section.

Although prior research targeting anomaly detection in
graphs exists, it mostly focuses on anomalies in a graph
structure, and not on graph signals [2,18]. For example, in
the context of behavioral monitoring and intelligence, the
structure of social graphs can be analyzed to spot subgraphs
expressing patterns deviating from the rest of the network
[52]. However, in images, the structure of the graph is fixed to
a grid, and the application of graph-based anomaly detection
algorithms coming from other domains is not straightfor-
ward; even in works where peculiarities in the graph signal
are under observation, structure is included as part of the
signal, as for example in [25] where a signal function of
the physical distance between wireless sensors is proposed.
The effectiveness of these approaches to images has not been
reported yet.

Our proposed graph-based approach is founded on two
recent findings: First, Zhang and Florêncio [70] have shown
that a Laplacian model can be used as an estimation of the
precision matrix Q of an image, under the assumption that
the image follows aGaussian Markov random field (GMRF)
model. This amounts to using a function of the partial corre-
lation between nodes as graph weights. Second, it has been
demonstrated how the GFT can be considered an approxi-
mation of the KLT for graph signals [39]. Recent literature
in spectral graph theory has exploited this relationship to
provide novel graph-based solutions to classical signal pro-
cessing problems, in particular for image compression where
the use of the GFT has been proposed as an alternative
to the discrete cosine transform (DCT) [17,27,28,39]. This
relationship is, however, never been explored in the context
of image anomaly detection, which motivated us to study it
in this work.
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4 Method

In thiswork,we exploit the analogy betweenKLT andGFT in
the framework of anomaly detection. In the GFT definition,
the role of the covariance matrix in the KLT is taken by the
graphLaplacian. It turns out thatL canbe exploited also in the
inverse problem of anomaly detection according to (4). We
here propose a novel algorithm for image anomaly detection,
whichwewill refer to asLaplacian anomaly detector (LAD).
LAD overcomes some of the known limitations of RXD
exposed in Sect. 2.1: It can be used to avoid problematic
covariance matrix estimate and inversion, and it is able to
include spatial information as well as a priori knowledge,
when available.

4.1 Construction of the graphmodel

Given an image I composed of N pixels and having m spec-
tral bands or channels, we first build an undirected graph
G = (V, E) to serve as the model for the background pix-
els in the image. The graph is used to model local relations
between pixel values and can be constructed to capture spec-
tral and spatial characteristics. Topology and weights of the
graph have to be chosen accordingly to the domain. We will
discuss some general construction strategies in Sects. 4.3
and 4.4. The chosen graph will be described by a weight
matrix W, from which a Laplacian matrix L will be com-
puted according to the procedure detailed in Sect. 2.2. The
use of the symmetric normalized Laplacian, constructed as in
(8), in place of the unnormalized combinatorial one is to be
preferred for the reasons expressed in Sect. 2.2. Also, Lsym

is proved to be preferable in similar domains, e.g., segmen-
tation and classification [7,29].

4.2 Graph-based anomaly detection

Given a pixel x, we define a corresponding graph signal s,
e.g., describing the spectral bands of x or its spatial neigh-
borhood, and compute the distance of x from the model as

δL AD(x) = sT L s

= (Ũs)T L (Ũs)

= s̃T (UTLU) s̃

= s̃T � s̃

=
m

∑

j=1

λ j s̃
2
j , (12)

where s̃ j represents the j th element of the GFT vector s̃,
and U and � refer to the eigenvector and eigenvalue matri-
ces used for the eigendecomposition of L in (9). Although
this formulation might look similar to the one of RXD given

in (4), some important differences have to be noted. First, the
model used is not the inverse of the covariance matrix ̂C−1,
but an arbitrary Laplacianmodel; this is a generalization over
RXD, because if the image follows a GMRF model, then a
Laplacian can be constructed to estimate the precisionmatrix
[70], but if this is not the case a Laplacian model can be com-
puted according to any knowledge of the domain. Second,
the Laplacian matrix can be used to capture both spatial and
spectral characteristics as we will detail in Sect. 4.4. Another
thing to notice is that in (12) each contribution s̃ j is multi-
plied by λ j , whereas in RXD each y j was instead divided by
the corresponding eigenvalue κ j .

As already discussed forRXD,we can also use a de-noised
version of theGFTwhere only the first smaller p � m eigen-
vectors are kept, removing the higher and noisier frequencies
and obtaining the following:

δ
p
L AD(x) =

p
∑

j=1

λ j s̃
2
j . (13)

The parameter p is determined accordingly to the percent-
age of retained cumulative energy, following the approach
presented in Sect. 2.1.

Finally, a decision threshold over δL AD is needed to deter-
mine if a pixel is anomalous or not. An approach similar to
the one described in Sect. 2.1 can be employed.

4.3 Spectral graphmodel

As already mentioned, the graph model is used to charac-
terize the typical behavior around the pixel being tested for
anomaly. As in the case of standard RXD, the graph can be
employed to model only the spectral relations: In this case,
the vertex setV consists ofm nodes, each representing one of
the spectral bands of I; then, we connect each pair of nodes
(bands) with an edge, obtaining a fully connected graph. An
example of this topology for a 3-band image is shown in

Fig. 1 Example of 3-band graph connectivity: the spectral components
are fully connected, while spatially pixels are 4-connected
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Fig. 1a. A weight is then assigned to each edge: If some a
priori knowledge about inter-band correlation is available, it
can be used to set weights accordingly; if this is not the case,
a possibility is to use the image data to estimate the weights.
Also, for each pixel x, the graph signal s will contain exactly
the value of that pixel over the m bands, after removing the
mean; thus, s = x.

Under the assumption that the image follows a GMRF
model, we might use partial correlation as weight, as pro-
posed by Zhang and Florêncio [70]. To this end, given the
precision matrix ̂Q = ̂C−1, estimated according to (1), we
can set the weight of the edge connecting nodes a and b as:

wab = − ̂Q(a, b)
√

̂Q(a, a) ̂Q(b, b)
. (14)

Note thatwaa = 0 as we do not include self-loops. However,
this approach still relies on the estimate and inversion of
the covariance matrix that, as we already discussed, might
be unreliable (especially in the presence of a small data
sample) as well as expensive to compute: Matrix inversion
requires O(m3) time [46]. Also, if the image does not follow
a GMRF model, this distance function might produce unre-
liable results, as for all other covariance-based methods. An
option to safeguard against this could be to use the graph con-
structed to evaluate the GMRF hypothesis with an approach
similar to the one proposed in [3]

Another possibility is to use a different weight function,
e.g., the Cauchy function [32], which has been proved to be
able to capture graph distances effectively for image signals
and is commonly used as graph weight in other applications
like image segmentation and compression [8,28]. We pro-
pose to set the weight of the edge connecting bands a and b,
according to the bandmean vector μ̂ = [μ1μ2 . . . μm]T esti-
mated as in (1), as

wab = 1

1 + (

μa−μb
α

)2 , (15)

where α is a scaling parameter. In this study, we decided to
set α = 1

m

∑m
i=1 μi , to normalize all values according to the

mean range of the bands. The advantages of this approach are
twofold: It avoids using unreliable correlation estimates and
does not require matrix inversion, thus reducing the compu-
tational cost significantly.

Although other approaches to estimate graph weights
might be devised, in this study we will limit the analysis
to these ones.

4.4 Integration of spatial information in the graph

One of the advantages of using a graph-based approach is
the flexibility of the model. For example, by augmenting the

graph topology to include edges connecting each node to
nodes describing the same band for the neighboring pixels,
as shown in Fig. 1b, one is able to include spatial information
in the model. We will refer to this spatially aware version of
LAD as LAD-S.

When considering the case of 4-connected nodes, the
resulting graph will be composed of 5m nodes; therefore,
the weight matrixW, as well as the corresponding Laplacian
matrix L, will be a 5m × 5m matrix. We can construct the
weight matrix as follows:

W(a, b) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

w′
ab if nodes a, b represent different

bands of the same pixel,

w′′
ab if nodes a, b belong to the same

band of 4-connected pixels,

0 otherwise,

(16)

where w′
ab and w′′

ab are some spectral and spatial correlation
measures, respectively.

Then, to compute the distance of a pixel x from themodel,
a graph signal s is constructed concatenating the vector cor-
responding to x and its 4-connected neighbors; also in this
case, the mean value μ̂ is subtracted. It follows that the vec-
tor s will have length 5m.

The spectral weights w′
ab can be estimated as proposed in

the previous section. The weightsw′′
ab can be used to enforce

a spatial prior: As an example in the following experimental
analysis, we will set uniform spatial weights w′′

ab = 1.

5 Experiments

To objectively evaluate LAD’s performance, we selected a
couple of scenarios in which the use of RXD has been pro-
posed. The first one is hyperspectral remote sensing, which
is one of the most common use cases for anomaly detec-
tion where the use of RXD is widely validated [49]; the
second one is the domain of 3D volumetric segmentation
of tumoral masses on positron emission tomography (PET)
images, where we successfully explored the use of RXD
in the past [10,63,65]. In these scenarios, we compare the
performance of the proposed technique with those pro-
duced by RXD and, in the hyperspectral domain, also with
random-selection-based anomaly detector (RSAD) [20] and
WSCF [31]. RSAD employs multiple random selections of
pixels to estimate the background statistics and then marks
a pixel as anomalous by merging the output of the differ-
ent runs by a majority voting approach. WSCF applies a
whitening transformation to the input based on the image
covariance matrix and then incorporates spatial information
in the anomaly measure. This latter algorithm is of partic-
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ular interest for our evaluation, to compare its performance
against our own spatially aware methodology.

5.1 Hyperspectral remote sensing

Hyperspectral images find wide adoption in remote sens-
ing applications, where hyperspectral sensors are typically
deployed on either aircraft or satellites. The data produced
by these sensors are a three-dimensional array or “cube” of
data with the width and length of the array corresponding
to spatial dimensions and the spectrum of each point as the
third dimension.

5.1.1 Dataset

Thedataset used in this study is composedof three hyperspec-
tral scenes collected by the 224-band AVIRIS sensor. As a
common practice [12], we discarded the 20 water absorption
bands, i.e., bands (108-112, 154-167, 224). The first scene
was collected over Salinas Valley, California, and is charac-
terized by high spatial resolution (3.7-meter pixels). The area
covered by this scene comprises 512 lines by 217 samples,
and it includes vegetables, bare soils, and vineyard fields.
A classification ground truth containing 16 classes is pro-
vided with this scene. A sample band of the image together
with the classification ground truth is shown in Fig. 2. The
other two scenes image two urban environments and come
with anomaly detection ground truth, and both comprise 100
lines by 100 samples. We will refer to them as Urban-A and
Urban-B. A sample band of these two scenes, together with
their corresponding ground truth, is shown in Fig. 3.

Fig. 2 The full 512 × 217 Salinas scene

To evaluate LAD, we tested it on both real and synthetic
anomalies. For the Salinas scene, we cropped a 200 × 150
portion of the scene and manually segmented a construction
which was visible in the cropped area: As the scene mostly
contains fields of various kinds, this human-made construc-
tion was a good anomalous candidate. This setup, which we
will call Field, is shown in Fig. 3m together with its ground
truth in Fig. 3n.

To obtain a synthetic anomaly, we used the target implant
method [61] on a different portion of the Salinas scene. The
150 × 126 binary mask image M shown in Fig. 3t has been
constructed bygenerating six squares having sidesmeasuring
from 1 to 6 pixels arranged in a line. The six squares have
been then copied in reverse order and arranged in another
line at close distance. The two lines have finally been rotated
by an angle of approximatively π/6. The pixels inside the
squares have a value of 1, while the rest of the pixels in M
have value 0. Then, we cropped a region I from the Salinas
scene, having the same dimension as the mask. We used it to
build the modified image I′ containing the implanted target
as follows:

I′(i, j) = M(i, j) · Φ(k) + (1 − M(i, j)) · I(i, j), (17)

where Φ is a function that, given a parameter k ∈ [1, 16],
returns a random pixel from the region of the Salinas scene
having class k according to the classification ground truth
shown inFig. 2b. In the followingdiscussion, for conciseness,
we will limit the analysis to two synthetic setups with k = 14
and k = 4, respectively. The two representative values have
been chosen since RXD achieves the best performance on the
former and the worst one on the latter. We will refer to them
as Impl-14 and Impl-4, respectively. A sample band from the
Impl-14 setup is shown in Fig. 3s.

Figure 4 shows the mean and standard deviation of the
intensity of eachband for the background, the anomaly region
in Impl-4 and Impl-14. As it can be noticed, the spectral
characteristics of the anomaly in Impl-4 are similar in shape
to those of the background, althoughwith reduced intensities.
The anomaly in Impl-14 presents a more different curve than
the others, instead.

5.1.2 Experimental results

We are interested in evaluating the detection accuracy of
LAD using the Laplacian model built over the partial corre-
lation weights (LQ) and the one built using Cauchy distance
(LC ). Also, we want to test both the spectral version of LAD
and its spatially aware variant LAD-S. The results will be
compared with those yielded by classic RXD, RSAD, and
WSCF. We compare our results against those yielded by
RXD, given its well-known status as benchmark algorithm
for anomaly detection. We want also to confirm with our
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Fig. 3 Hyperspectral test scenarios and algorithm outputs. LAD results have been obtained using LC

Fig. 4 Spectral characteristic curves for different regions of the image.
The line represents the mean intensity computed over all pixels in a
region, while the shaded area represents the standard deviation

experiments one of the known limitations of RXDenunciated
in Sect. 2.1, namely how the inclusion of spatial information
in RXD is detrimental to its performance, to demonstrate
how our approach overcomes this limitation. Another well-
known algorithm which aims at addressing this limitation is

WSCF, and for this reason we selected it for evaluation as
well. WSCF requires a parameter α to determine the amount
of spatial information included in themetric. In this study, we
set α = 0.2, as suggested in the original work [31]. RSAD
requires to select: the initial number of randomly selected
blocks N , which should be as small as possible but still
large enough so that 4N > b, where b is the number of
image bands; the number of random selections L; and the
percentile α. For these parameters, we chose the following
values in our experiments: N = 80, L = 40, and α = 0.001.
We implemented our method as well as all three benchmark
methods in MATLAB 2014b. All experiments were run on a
laptop equipped with an Intel® Core™ i7@2.20GHz CPU,
a NVIDIA GT435M GeForce GPU and 8GB of RAM 1.

Figure 3 shows the visual results by LAD (LC ) approach
compared to the ones yielded by RXD, RSAD, andWSCF on

1 The hyperspectral datasets and all algorithm implementations
used for the experiments presented in this work can be found at:
github.com/fverdoja/LAD-Laplacian-Anomaly-Detector.
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(a) (b) (c)

(e)(d)

Fig. 5 Receiver operating characteristic (ROC) curves for the hyperspectral testing scenarios

the all hyperspectral scenarios. It can be clearly noticed that
the lower number of false positives LAD is able to achieve
against all other algorithms.

Figure 5 shows the ROC curves for the hyperspectral
test cases, for all algorithms except RSAD. The approach
by virtue of which RSAD selects which pixels are anoma-
lous does not lend itself to be plotted in a ROC curve. The
scale of the FPR axis has been enhanced, as common in
anomaly detection studies [4,43,68], given the great differ-
ence in scale between the number of negative pixels and
positive ones. It can be noticed how in all scenarios except
Urban-A our approach outperforms both RXD and WSCF.
On Urban-A, all algorithms perform very similarly. Also,
worth noticing is that the inclusion of spatial information
yields limited improvements on the hyperspectral scenarios.
When comparing results obtained by LADusingLQ orLC , it
can be noticed how performance is often very similar. This is
a remarkable result, also considering thatLC creates a model
of the background without the need for matrix inversions, so
it proves to be both quicker and equally precise.

To further compare performance yielded by the different
approaches,wealsouse the standard spatial overlap index (SOI)

[73], also known as Dice similarity coefficient (DSC) [19],
which can be computed as follows:

SO I = 2(A ∩ B)

A + B
, (18)

where A and B are two binary masks (i.e., the ground truth
or region of interest (ROI) and the output of an automatic
algorithm); the intersection operator is used to indicate the
number of pixels/voxels having value 1 in both masks, while
the sum operator indicates the total number of pixels/voxels
having value 1 in the twomasks. SOI is also equivalent to the
statistical F1-score, which is the harmonic mean of precision
and sensitivity, and is usually defined in terms of Type I and
Type II errors as follows:

F1 = 2 · true positive
2 · true positive + false positive + false negative

.

(19)

The equality between (18) and (19) can be easily demon-
strated considering that A∩ B contains the true positive pix-
els/voxels and that if we consider that A = (true positive +
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Table 1 Experimental results in
hyperspectral setup (SOI)

Urban-A Urban-B Field Impl-14 Impl-4 Average

RXD 0.508 0.649 0.685 0.445 0.045 0.466

RSAD 0.078 0.310 0.042 0.450 0.022 0.180

WSCF 0.489 0.623 0.708 0.391 0.103 0.463

LAD (LQ ) 0.606 0.791 0.806 0.941 0.525 0.734

LAD-S (LQ) 0.576 0.664 0.818 0.898 0.540 0.699

LAD (LC ) 0.614 0.782 0.754 0.954 0.514 0.724

LAD-S (LC ) 0.467 0.721 0.697 0.919 0.409 0.643

Bold values indicates the best result

Table 2 Experimental results
after dimensionality reduction in
hyperspectral setup (SOI)

Urban-A Urban-B Field Impl-14 Impl-4 Average Gain (%)

RXDp 0.692 0.304 0.930 0.965 0.355 0.649 +39.19

LADp (LQ) 0.606 0.791 0.806 0.941 0.521 0.733 −0.11

LAD-Sp (LQ ) 0.603 0.659 0.817 0.928 0.579 0.717 +2.57

LADp (LC ) 0.606 0.776 0.789 0.951 0.535 0.731 +1.08

LAD-Sp (LC ) 0.462 0.725 0.706 0.945 0.423 0.652 +1.49

Bold values indicates the best result

(a) (b) (c)

Fig. 6 Energy and eigenvalue curves for the Impl-14 scenario

false positive) and B = (true positive+ false negative), then
also the denominator in (18) equals the one in (19). Clearly,
to compute the SOImetric one needs to select a threshold t to
identify the anomaly subset B. Many approaches [1,53,69]
have been proposed in the literature to deal with the problem
of choosing the optimal threshold. In this work, we select
the value of t yielding the highest SOI, i.e., striking the best
balance between TPR and FPR on the ROC curve in terms
of SOI. This choice allows us to compute a single-objective
metric to compare the analyzed methods. Alternatively, we
could also use the area under the curve (AUC), which mea-
sures the area under each ROC curve; we decided to avoid
such metric since it has been recently criticized for being
sensitive to noise [36] and for other significant problems it
shows in model comparison [37,45].

Table 1 shows all SOI results of our tests. It can be noticed
how all variants of our approach are able to outperformRXD,

RSAD, and WSCF. These results are consistent with those
presented by the ROC curves.

Finally, in Table 2we show results of the de-noised version
of both LAD and RXD, which we call LADp and RXDp,
respectively. In this case, the value of p has been chosen
according to the cumulative energy as described in Sect. 2.1,
setting ψ = 0.99. It can be noticed how RXD is able to
gain the most from dimensionality reduction. These results
can be explained considering the distribution of energy in the
eigenspace decomposition. For the Impl-14 scenario, in Fig. 6
we show the cumulative energy distribution in the different
eigenspaces togetherwith the corresponding eigenvaluesκ−1

j
and λ j (that are used toweigh the different contribution in (5)
and (13), respectively). It can be noticed that in the RXD case
(Fig. 6a) energy is better compacted into few eigenspaces
with respect to LAD (Fig. 6b, c). At the same time, it can be
observed that the distribution of κ−1

j in RXD dramatically
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Fig. 7 The three FDG-PET images of one of the sample patients; (1)
is the early scan (ES, 144× 144× 213 px), (2) and (3) are constructed
integrating the delayed scan in 3-min time windows (DS1 and DS2,
144 × 144 × 45 px). Only the area containing the tumor is acquired
in the delayed scan. These images, originally in grayscale, are here
displayed using a Fire lookup table

amplifies the last eigenspaces, i.e., the noise components,
according to (5). On the contrary, this phenomenon does not
affect LAD since the distribution of eigenvalues λ j is not
peaked on the last eigenspaces. It follows that the effect of
noise in (13) is mitigated by construction and the benefit of
dimensionality reduction is limited. Indeed, it can be noted
that results obtained by RXD after dimensionality reduction
are in line with those obtained by LAD in its simple form.
Being the eigendecomposition a costly operation, on a par
with matrix inversion, the use of LAD (LC ), which does not
require any matrix inversion or eigendecomposition, might
be preferable.

5.2 Application to 3D volumes: tumor segmentation
in PET sequences

PET data are volumetric medical images that are usually
employed to locate the tumoral area for proper oncologi-
cal treatment, e.g. by means of radiotherapy. From a PET
scan, one or more 3D images can be produced where the
intensity of a voxel represents the local concentration of the
tracer during the time window of the scan. In particular, fluo-
rodeoxyglucose positron emission tomography (FDG-PET)
is used to detect tissue metabolic activity by virtue of the
glucose uptake.

During normal cell replication, mutations in the DNA can
occur and lead to the birth of cancer cells. By their nature,
these cells lack the ability to stop their multiplication, rais-
ing cell density in their region and causing insufficient blood
supply. The resulting deficiency in oxygen (hypoxia) forces
these cells to rely mostly on their anaerobic metabolism,
i.e., glycolysis [54]. For this reason, glycolysis is an excel-
lent marker for detecting cancer cells; FDG-PET—in which
the tracer’s concentration indicates the glucose uptake in the
imaged area—turns out to be a suitable tool for recognizing

tumors, metastases, and lymph nodes all at once [30]. It fol-
lows that proper segmentation of tumors inmedical images is
crucial as oncological treatment plans rely on precise infor-
mation on the tumoral region to be effective [54]. Manual
segmentation by medical staff has been proven to be subjec-
tive, inaccurate, and time-consuming [66]; for this reason,
the need for automatic methods for tumor region segmenta-
tion is on the rise. PET images carry information about cells
metabolism and are therefore suitable for this task; however,
PET segmentation is still an open problemmainly because of
limited image resolution and strong presence of acquisition
noise [69].

In [10,63,65], we successfully explored the use of RXD
to identify the anomalous behavior of cancer cells over time
in sequences of three FDG-PET images acquired over a time
span of one hour. A quick visual overview of this setup is
shown in Fig. 7. The idea behind the use of RXD in this
scenario arises from the fact that cancer cells tend to acquire
glucose differently than normal cells, given their peculiar
reliance on anaerobic metabolism. For this reason, when
considering the values a voxel assumes over time, cancer’s
anomalous glucose uptake can be successfully spotted using
anomaly detection techniques, where the usual role of spec-
tral bands is taken by three PET images acquired over time.

To do this, we build a 4Dmatrix I, having the three spatial
dimensions as the first three dimensions and the time as the
fourth dimension. Being acquired at different times, with
the subject assuming slightly different positions, it is worth
recalling that the images need to be aligned using registration
algorithms as detailed in [65]. The resulting matrix I will
then have size 144×144×45×3. Then, for a generic voxel,
identified by its spatial coordinates, we define the vector x =
[x1x2x3]T as the vector containing that voxel’s intensities
over time. In other words, RXD can be employed in this case
if time takes the role of the spectral dimension.

5.2.1 Experimental results

In this study, we used a dataset comprising eight patients,
that has been made available by the Candiolo Cancer Insti-
tute (IRCCS-FPO) for research purposes.All the acquisitions
have been made using a Philips Gemini TF PET/CT. To this
end, we acknowledge the precious aid of nuclear medicine
physicians who have manually segmented the ROIs on the
PET images, setting up the ground truth for evaluating the
performance yielded by the proposed tools. We will refer to
this setup as Tumor.

Also in this scenario, we are interested in evaluating the
detection accuracy of LAD using both Laplacianmodels,LQ

and LC , and compare our results with those yielded by clas-
sic RXD. We cannot compare with WSCF in this domain
as its extension to 3D has not been proposed, and there-
fore the choice of the parameter α is non-trivial. A thing
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(a) (b) (c)

(d) (e) (f)

(h)(g)

Fig. 8 ROC curves for all patients in the Tumor testing scenario

to notice regarding this setup is that we are dealing with vox-
els and 3D volumes. For this reason, in LAD-S we will use
6-connectivity, which is the extension of 2D 4-connectivity
to 3D space.

To compare performance yielded by the different
approaches, we use SOI as presented in (18). Once again,
in this study we selected the value of t yielding the highest
SOI.

Figure 8 shows the ROC curves for all the eight patients
in the Tumor dataset, while Table 3 shows the average SOI
results of our tests over the patient dataset. The inclusion of
spatial information in the graph improves the SOI metric. In
this scenario, we do not present results after dimensional-
ity reduction because the spectral dimensions were already
very few. Also, in this scenario the use of LAD is able to
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Table 3 Experimental results in
Tumor setup (SOI)

Average

RXD 0.570

LAD (LQ ) 0.362

LAD-S (LQ) 0.592

LAD (LC ) 0.427

LAD-S (LC ) 0.560

Bold values indicates the best
result

obtain performance similar when not better than RXD in all
its variances.

6 Discussion

In the previous section, we conducted experiments in hyper-
spectral and medical domain. RXD’s limitations detailed in
Sect. 2 can be noticed in many of the presented experiments.
In particular, the high number of false negative can be eas-
ily noticed in Fig. 3, while the poor performance of RXD,
RSAD, and WSCF for the Impl-4 scenario can be imputed
to the fact that in that case the anomaly has a very similar
covariance matrix to the background as shown in Fig. 4; this
makes very difficult for covariance-based methods to find an
acceptable solution.

The results obtained by RSAD have been particularly
surprising. The algorithm has been able to achieve results
inline or even better than the other two covariance-based
approaches in a couple of scenarios, while obtaining very
poor performance in the others due to very high FPR. We
believe this behavior is caused by the assumption made by
RSAD while marking pixels as anomalous that the Maha-
lanobis distance follows a χ distribution. In the scenarios
used in this study, we observed that that was rarely the case.
When this assumption does not hold, the decision criterion
used by RSAD is probably not sufficient.

The proposed technique was able to outperform state-of-
the-art techniques in all scenarios, proving how the flexibility
of a graph model can actually enable better and more robust
background estimation aswell as successful inclusion of spa-
tial information.

Spatially aware variants of the proposed techniques were
able to achieve better performance in the Tumor scenarios,
while failing at improving the performance of the spectral-
only variants in the hyperspectral ones. The benefit of
including spatial information is more noticeable in the med-
ical scenario because in that case the spectral dimension
is reduced to only three bands, representing three different
acquisitions in time, as opposed to the 204 spectral bands of
the hyperspectral images. Also, we used a uniform correla-

tion as model for the spatial weights; a more refined model
might be more suited to better capture the spatial dynamics
of remote sensing, while the one used might just be more
fitting for medical imaging.

When comparing results obtained by LAD using LQ

orLC , it can be noticed howperformance is often very similar
on hyperspectral images, while in Tumor LC is able to obtain
consistently better results. This behavior is clearly due to the
fact that LQ depends on pairwise correlation estimates that
are particularly critical in the Tumor case, where the 3D vol-
umes are characterized by poor spatiotemporal resolution. In
this case, the use of graph prior based on LC turns out to be
more robust. An analysis of the ROCs validated this observa-
tion even further: For the hyperspectral case, the ROC curves
for LAD usingLQ orLC behave very similarly in both cases,
indicating that the two weight functions are able to capture
the same aspects of the data, while in the Tumor case, the
two ROC curves have a more varied behavior.

All these tests confirm that the use of our approach is
preferable to RXD, RSAD, and WSCF and that Laplacian
estimated using theCauchydistance is able to performaswell
as the one estimated using partial correlation. Once again,
this is remarkable as the former does not require any matrix
inversion, while the latter does.

7 Conclusions

We present Laplacian anomaly detector, a graph-based algo-
rithm aiming at detecting targets by virtue of a Laplacian
model of the image background. Two different approaches
to the graph construction are proposed. When comparing to
RXD, RSAD, andWSCF, one of the main advantages of our
technique is its ability to model the image content without
the need for matrix inversions. Both visual inspection and
objective results show how the proposed approach is able to
outperform the other benchmark methods. Future direction
might be devoted to evaluate LAD ability to detect anomalies
on generic non-image graphs.
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