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Abstract

This paper presents a methodology to support the selection of optimal portfolios of pre-
ventive safety measures for time-dependent accident scenarios. This methodology captures10

the dynamics of accident scenarios through Dynamic Bayesian Networks which represent
the temporal evolution of component failures that can lead to system failure. An optimiza-
tion model is presented to determine all Pareto optimal portfolios for which the residual
risk of the system at different time stages is minimized, subject to budget and technical
constraints on the set of feasible portfolios. The resulting portfolios are then analyzed15

to support the optimal selection of preventive safety measures. We also develop a com-
putationally efficient algorithm for solving the multi-objective optimization model. The
method is illustrated by revisiting the accident scenario of a vapor cloud ignition which oc-
curred at Universal Form Clamp in Bellwood (Illinois, U.S.) on 14 June 2006. Results are
presented for different cost levels of implementing the preventive safety measures, which20

provides additional management insights.

Keywords: Risk analysis, Preventive safety measures, Dynamic Bayesian Networks,
Portfolio optimization.
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1 Introduction25

The selection of measures to reduce the risk of industrial accidents is a crucial decision in safety
management. Generally, this task is often addressed through an iterative procedure based on
Risk Importance Measures [1] which provide information about how changes in the reliability
of individual components impact the risk of the system. Preventive safety measures are then
selected to mitigate the failure of those components whose impact on the risk of the system is30

greatest. The procedure is iterated until the budget for preventive safety measures is depleted
or the risk is reduced to acceptable levels.
In a recent paper [2], we showed that this iterative procedure does not necessarily lead to the
optimal selection of preventive safety measures; rather, Portfolio Decision Analysis (PDA) [3]
is needed to optimize the allocation of resources to the system. We therefore proposed a PDA35

methodology which employs Bayesian Networks (BNs) [4] to represent sequences of events that
can cause accidents. The resulting BN models help assess the residual risk of the system and
can be used to identify the optimal portfolios of preventive safety measures that minimize
such risk. Thus, this approach responds to the need for intuitive and computationally efficient
methodologies for risk analysis [5, 6, 7]. Specifically, BNs make it possible (i) to circumvent the40

limitations of binary representation of failure processes by encoding multi-state events, (ii) to
extend the concepts of AND/OR gates to gain more flexibility in modelling the accident sce-
narios and (iii) to combine expert judgments and quantitative knowledge for risk estimation.
Yet, our earlier methodology does not account for the time-dependent interactions of failure
events [8]. As a result, it is not applicable to the modelling of accident scenarios which depend45

on the order, timing and magnitude of component failures [9, 10, 11].
In this paper, we extend the PDA methodology to time-dependent accident scenarios by explic-
itly modeling the dynamic evolution of component failures in process systems. For this purpose
we use Dynamic Bayesian Networks (DBNs), which generalize BNs by connecting nodes over
multiple time stages [12]. DBNs have been successfully applied in various fields, including50

networked information systems [13], medical science [14], simulation analysis [15] and also re-
liability engineering. For instance, Boudali et al. [16] investigate discrete-time BNs for process
systems and illustrate their potential in the risk assessment and safety analysis of complex
process systems. Barua et al. [17] propose a risk assessment methodology for process systems
based on a DBN that captures the changes of the failure states over time. However, neither55

one of these approaches supports the selection of preventive safety measures.
Khakzad et al. [18] employ discrete-time BNs to allocate safety systems optimally in process
facilities. Their approach targets the riskiness of individual accident scenarios by comparing the
impacts of alternative measures before the most effective ones are selected. However, the anal-
ysis of individual accident scenarios can be very demanding in complex systems, because the60

number of such scenarios can be large. Furthermore, Khakzad et al. do not consider the impact
of combinations of preventive safety measures on the system; instead, they identify the most
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critical failures for designing preventive safety measures. Still, the resulting sequential decisions
may not lead to the optimal resource allocation. By contrast, we propose an optimization model
for computing all optimal portfolios of preventive safety measures for time-dependent accident65

scenarios. Preventive safety measures are installed at the outset of the accident scenario, thus
they are not selected dynamically based on the evolving states of the system components.
In the previous paper [2], the optimization model was built for static systems. In this pa-
per, the methodology is extended to time-dependent accident scenarios by modelling Dynamic
Bayesian Networks. Furthermore, the optimization algorithm is updated for the multi-objective70

optimization. In particular, Pareto-optimal portfolios are selected through the non-dominance
condition. We also discuss several approaches to select the optimal solution among the set of
non-dominated portfolios.
The rest of the paper is structured as follows. Section 2 presents the portfolio optimization
model in the context of DBNs. It also presents the procedure for risk assessment through mul-75

tiple time stages and the algorithm for computing the optimal allocation of preventive safety
measures. Section 3 revisits an earlier case study on the accident scenario of a vapor cloud
ignition [19] and analyzes the portfolios of preventive safety measures based on the dominance
condition over multiple time stages. Section 4 discusses the potential and limitations of the
proposed methodology. Finally, Section 5 concludes the paper and outlines extensions for future80

research.

2 Problem formulation

The formulation of a DBN for reliability engineering is based on a detailed analysis of the
accident scenarios, which often builds on the development of Fault Trees and Event Trees [20].
Formally, a DBN is a directed acyclic graph, which consists of a sequence of BNs for the time85

stages T = {0, 1, ..., T }. In this paper, DBNs are built to represent accident scenarios in time-
dependent systems where failure events evolve over multiple time stages. Figure 1 shows an
example of a DBN which consists of:

- chance nodes V C , indicated by circles and representing random events occurring during
the accident scenarios;90

- target nodes V T , indicated by hexagons and representing the outcomes of the accident
scenarios;

- arcs E, indicated by directed edges and representing the causal dependencies among the
nodes that define the accident scenarios.
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Figure 1: Example of a Dynamic Bayesian Network.

In particular, node V i(τ) encodes the possible states of the failure event i at time τ ∈ T. In95

Figure 1, the sets of chance and target nodes are

V C = {V j(τ), V `(τ), V h(τ), V k(τ)} ∀τ ∈ T = {0, 1, 2}, (1)

V T = {V t(0), V t(1), V t(2)}. (2)

The directed arcs in the set E(τ) show causal dependencies among failure events, both at the
same time stage τ and at previous time stages τ − δ ∈ T where δ ∈ {0, 1, 2, ..., τ} indicates the
temporal delay in the causal dependence. The set of nodes V i

−(τ) that affect event i at time τ100

includes the immediate predecessors of node V i(τ) such that

V i
−(τ) = {V j(τ − δ)|[V j(τ − δ)→ V i(τ)] ∈ E(τ), 0 ≤ δ ≤ τ}}. (3)

where [V j(τ − δ) → V i(τ)] shows that the state of event j at time τ − δ affects the state of
event i at time τ . It is not required that i 6= j, so the event i at time τ − δ can affect the same
event or other events at time τ . For instance, in Figure 1 the event k at time τ = 0 affects the
events k and ` at time τ = 1, thus105

V `
−(1) = {V `(0), V k(0)}. (4)

The set of all nodes V can be partitioned into the set of leaf nodes V L and its complement set
of dependent nodes V D as

V L = {V i(τ) ∈ V |V i
−(τ) = ∅, τ ∈ T}, (5)

V D = {V i(τ) ∈ V |V i
−(τ) 6= ∅, τ ∈ T}. (6)

The residual risk of the system is evaluated at one or multiple safety target nodes which rep-
resent the final outcomes of the accident scenarios on safety, asset operation and environment.110

In Figure 1, the target node represents the event t through the time stages τ ∈ T.
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2.1 Probability model

Each system component can be in different failure states, which possibly cause a sequence
of cascading failures leading to system failure. The probability distribution of the random
variable X i(τ) describes the uncertainty in the state of the failure event i at time τ . The115

realization of the random variable X i(τ) belongs to the discrete set of states Si(τ) with different
contributions to the system risk [21]. Thus, it is possible to define a probability distribution
PsXi(τ) = P[X

i(τ) = s] across the failure states s ∈ Si(τ) such that∑
s∈Si(τ)

PsXi(τ) = 1, ∀i such that V i(τ) ∈ V L. (7)

The deployment of preventive safety measures on a subset of nodes V A ⊆ V can mitigate the
system risk by affecting the occurrence probability of the failure events in the accident scenario.120

Formally, the set of alternative preventive safety measures is Ai = {1, ..., |Ai|} for the event i,
where the operator | · | indicates the cardinality of the set. The binary variable zia represents
the choice on preventive safety measure a ∈ Ai such that zia = 1 if the measure is installed for
all time stages τ ∈ T, and 0 otherwise. No preventive safety measures are available for nodes
V i(τ) 6∈ V A: this is modelled by Ai = ∅ so that |Ai| = 0. Thus, the binary vector z defines125

the portfolio of preventive safety measures as the concatenation of vectors zi = [zi1, ..., z
i
|Ai|] for

all failure events. Without losing generality, we assume that the preventive safety measures
for the failure event i are mutually exclusive. This implies that at most one preventive safety
measure can be selected from set Ai so that∑

a∈Ai

zia ≤ 1, ∀i such that V i(τ) ∈ V A. (8)

Synergies between preventive safety measures can be modelled though logical constraints. Pre-130

ventive safety measures are implemented at the outset of the accident scenarios, affecting the
probability distributions at any later time stage. Specifically, the deployment of a preventive
safety measure a ∈ Ai affects the probability distribution of event i at time τ by reducing the
failure probability PsXi(τ) to P

s
Xi

a(τ)
for each time τ ∈ T. Then, the marginal probability of the

realization s ∈ Si(τ) is135

Qs
Xi(τ)(z) =

∑
a∈Ai

[PsXi
a(τ)

zia] + PsXi(τ)

∏
a∈Ai

[1− zia], ∀i such that V i(τ) ∈ V L. (9)

The Bayesian model computes the probabilities of cascading failure events through the law
of total probability. Specifically, the total probability of the realization s ∈ Si(τ) at node
V i(τ) ∈ V D depends on the states of its predecessors. To model this relationship, let Si−(τ) be
the Cartesian product of the sets of states of the predecessors such that

Si−(τ) = ×
{(j,δ)|V j(τ−δ)∈V i

−(τ)}
0≤δ≤τ

Sj(τ − δ). (10)
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The notation Ps
Xi(τ)|xi

−(τ)
refers to the probability of the state s ∈ Si(τ) of the event i, condi-140

tioned on the realization of states xi−(τ) ∈ Si−(τ) of its predecessors. Similarly, the notation
Ps
Xi

a(τ)|xi
−(τ)

is the conditional probability of the state s ∈ Si(τ) for the realization xi−(τ) and
the deployment of the preventive safety measure a ∈ Ai. Thus, the conditional probability of
state s ∈ Si(τ) at dependent nodes V i(τ) ∈ V D is

Qs
Xi(τ)|xi

−(τ)(z) =
∑
a∈Ai

[PsXi
a(τ)|xi

−(τ) z
i
a] + PsXi(τ)|xi

−(τ)

∏
a∈Ai

[1− zia]. (11)

Based on the conditional independence of the predecessors [22], the total probability of the145

realization s ∈ Si(τ) can be expressed recursively as

Qs
Xi(τ)(z) =

∑
xi
−(τ)∈Si−(τ)

Qs
Xi(τ)|xi

−(τ)(z)
∏

{(j,δ)|V j(τ−δ)∈V i
−(τ)}

0≤δ≤τ

Qxj(τ−δ)
Xj(τ−δ)(z). (12)

The first summation is taken over all possible realizations xi−(τ) ∈ Si−(τ) of the states of the
predecessors, whereas xj(τ − δ) is the element of xi−(τ) which corresponds to event j at time
τ − δ. The total probability is a multiplicative function of the portfolio z of preventive safety
measures that have been applied along the scenarios leading to the system failure.150

The portfolio z of preventive safety measures is evaluated by the expected disutility at safety
target nodes V T over multiple time stages. The disutility usXt represents the severity of the
state s ∈ St(τ) of the failure event t at target node V T . Then, the expected disutility resulting
from portfolio z is

UXt(τ)(z) =
∑

s∈St(τ)

Qs
Xt(τ)(z) · usXt . (13)

Specifically, the disutilities are quantified such that usXt = 0 if state s ∈ St(τ) does not involve155

any harmful consequences and usXt = 100 if state s ∈ St(τ) is the consequence of highest sever-
ity. If |St(τ)| > 2, the other intermediate states can be assigned disutilities in the range (0, 100)
by expert judgments relative to the most and least severe states whose disutilities are equal to 0

and 100, respectively. Estimates for such disutilities can be elicited through trade-off weighing
approaches SWING [23] or SMARTS [24].160

2.2 Dominance structure

Recommendations for selecting the optimal portfolio of preventive safety measures are generated
by minimizing the expected disutility throughout the time stages τ ∈ T. In particular, the
multi-objective optimization model limits the set of feasible portfolios through linear and non-165

linear constraints. LetM be the size of the binary vector z, then the set ZF of feasible portfolios
can be defined by a set of L linear inequalities whose coefficients are in the matrix H ∈ RL×M

and vector b ∈ RL, so that
ZF = {z ∈ {0, 1}M |H z ≤ b}, (14)
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where ≤ holds componentwise. Among the feasibility constraints, the overall cost (based on
the cost cia of deployment of the preventive safety measure a ∈ Ai) of the portfolio must not170

exceed the budget constraint B, thus ∑
{i|V i(τ)∈V A}

∑
a∈Ai

zia c
i
a ≤ B. (15)

It is possible to specify additional constraints to represent the properties of the system. For
instance, if the preventive safety measures for mitigating the occurrence of the failure events i
and j are mutually exclusive, then ∑

a∈Ai

zia +
∑
a∈Aj

zja ≤ 1. (16)

Conversely, if at least one preventive safety measure must be applied, the corresponding con-175

straint is ∑
a∈Ai

zia +
∑
a∈Aj

zja ≥ 1. (17)

If there are components to which specific regulatory limits apply, it is possible to introduce
additional constraints to ensure that the total probability of the failure states does not exceed
an acceptable threshold εsXt so that

Qs
Xt(τ)(z) ≤ εsXt , ∀τ ∈ T. (18)

The values of εsXt are usually provided by regulatory offices: the constraints must be respected180

for the risk to be acceptable.
The set of non-dominated portfolios of preventive safety measures consists of those feasible
portfolios for which there exists no other feasible portfolio which would decrease the residual
risk of the system at some time stage without increasing it at any other time stage. This set
includes all Pareto-optimal solutions defined by the dominance condition185

z∗ � z ⇔

{
UXt(τ)(z

∗) ≤ UXt(τ)(z) for all τ ∈ T
UXt(τ)(z

∗) < UXt(τ)(z) for some τ ∈ T
, (19)

for any pair of feasible portfolios. Thus, the multi-objective optimization model determines the
set of non-dominated portfolios of preventive safety measures

ZND = {z∗ ∈ ZF |@ z ∈ ZF such that z � z∗}. (20)

Generally, the set of non-dominated portfolios can include multiple solutions of which one must
be selected and deployed. For this purpose, we propose three possible procedures:

(i) The decision maker(s) can focus on Pareto-optimal solutions for specific time stages,190

depending on whether the accident scenarios have immediate or delayed impacts. For
instance, the decision-maker(s) can disregard late time stages if the accident leads to
harmful consequences very rapidly.
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(ii) The decision maker(s) can select the Pareto-optimal solution ZE that minimizes the over-195

all cost of deployment such that

ZE = arg min
z∗∈ZND

∑
{i|V i(τ)∈V A}

zia c
i
a (21)

(iii) The decision-maker(s) can select specific preventive safety measures among the Pareto-
optimal solutions by computing the core index of each measure. Based on Liesiö et al.
[25, 26], the core index CI(a) is the fraction of non-dominated portfolios that include the
measure a ∈ Ai. In these portfolios, the binary variable zia is equal to 1 so that200

CI(a) =
|{z∗ ∈ ZND|zia = 1}|

|ZND|
. (22)

The core index values help identify preventive safety measures that can be surely selected
or rejected. If the core index of a preventive safety measure is 1, then that measure belongs
to all non-dominated portfolios; on the other hand, if the core index is 0, the preventive
safety measure is not included in any non-dominated portfolio. Decisions concerning
safety measures whose core index values are in the open interval (0, 1) can be taken based205

on further technical considerations, such as the installation time of these measures.

(iv) The definition of the optimal strategy can also be defined based on the minimum Euclidean
distance of the expected disutilities from the origin of the axes, which represents an ideal
point of the system risk through the time stages. Thus, the decision maker(s) can select
the portfolio ZL such that210

ZL = arg min
z∗∈ZND

‖[UXt(0)(z
∗),UXt(1)(z

∗), ...,UXt(T )(z
∗)]‖. (23)

However, this selection does not consider the time stages explicitly, thus it does not
account for the variations of the risk over the time stages.

2.3 Optimization algorithm

We develop an implicit enumeration algorithm for computing the set of non-dominated port-
folios of preventive safety measures that minimize the residual risk of the system throughout215

the time stages. The algorithm is an adaptation of the one proposed by Liesiö [28] for solving
a multi-objective optimization problem.
The set Z∗ includes potential non-dominated portfolios, which is initially empty. This set is
updated at every iteration of the algorithm. If it is feasible not to deploy any preventive safety
measure, the portfolio z = [0, ..., 0] is included in the set Z∗ as a potential non-dominated220

solution.
The algorithm enumerates the portfolios starting from z = [0, ..., 0] through two main itera-
tions: Forward-loop and Backtrack step. The Forward-loop sets zm = 1 in an increasing order of
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the index m. If the resulting portfolio z ∈ ZF is not dominated by any z∗ ∈ Z∗, the algorithm
updates the set Z∗ by including the portfolio z and removing any portfolio z∗ ∈ Z∗ that is225

dominated by z.
The Forward-loop can only increment the values zm+1, ..., zM . If the portfolio z is unfeasible
and cannot be made feasible by setting zr = 1 for some indexes r ∈ {m + 1, ...,M}, there
is no need to continue the Forward-loop because it would generate unfeasible portfolios only.
This fathoming condition avoids the enumeration of all 2M possible portfolios. Alternatively,230

the Forward-loop terminates when m reaches M , whereafter the algorithm backtracks. The
Backtrack step sets zM = 0, detects the greatest index m such that zm = 1 and sets zm = 0. If
such an index does not exist, the algorithm terminates; otherwise the Forward-loop is repeated.
At termination, the set Z∗ consists of the set of non-dominated portfolios ZND.
The pseudocode is presented in Algorithm 1. It has been coded in C++ programming language235

and linked to GeNIe Modeler, a development environment for reasoning in graphical probabilis-
tic models.
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Initialization: z = [0, ..., 0]; m← 1; Z∗ ← ∅;
if z ∈ ZF then

Z∗ ← z;
end
while m > 0 do

Forward-loop:
while m ≤M do

zm ← 1;
if z ∈ ZF and z∗ � z ∀z∗ ∈ Z∗ then

Z∗ ← z ∪ {z∗ ∈ Z∗|z � z∗};
end
if

∑m
j=1 zj H

`
j +

∑M
j=m+1min{0, H`

j} > b` for any ` = 1, ...,L then
Break Forward-loop;

end
m← m+ 1;

end
Backtrack step:
zM ← 0;
m← max [{j|zj = 1} ∪ {0}];
if m > 0 then

zm ← 0;
m← m+ 1;

end
end
ZND ← Z∗;
Algorithm 1: The implicit enumeration algorithm for multi-objective optimization.

3 Case study240

We illustrate our methodology by revisiting the accident scenario of a vapor cloud ignition oc-
curred at Universal Form Clamp in Bellwood (Illinois, U.S.) on 14 June 2006. In this accident,
a flammable vapor cloud of heptane and mineral spirits overflowed from an open top mixing
and heating tank. The vapor cloud ignited when it came into contact with unknown ignition
sources. The accident led to one death, two injuries and a significant business interruption.245

In this system, the heat is provided to the tank by steam coils, whereas a temperature sensor
and a pneumatic unit are installed on the tank to control operations. In addition, an operator
checks the temperature with an infrared thermometer and is expected to intervene in case of
emergency. Finally, the exhaust ventilation system is installed on top of the tank to control

10



possible vapor emissions. Figure 2 illustrates the process system.250

Figure 2: Mixing tank mechanical system [29].

According to the full-scale investigation conducted by the Chemical Safety Board [29], a mal-
function of the temperature control system allowed the steam valves to be open so long that
the mixture heated to its boiling point, thus generating a high volume of vapor. Because the
local ventilation system failed due to a broken fan belt, the vapor cloud spilled from the tank255

and finally ignited when exposed to an unknown ignition source. It was also found that the
ventilation system would not have had enough capacity to collect such a high volume of vapor,
even if it had been working. Following the accident investigation, Khakzad et al. [19] developed
the Fault Tree and Event Tree in Figure 3 to model the accident scenarios and investigate the
effectiveness of the preventive safety measures. In addition, they converted the Fault Tree and260

11



Event Tree to a Bayesian Network.

Figure 3: Fault Tree and Event Tree for the accident scenarios of a mixing tank mechanical
system [19].

In this case study, we extend the Bayesian Network to a DBN in order to consider the temporal
evolution of some events (immediate/delayed ignition) and the performance of the detection
systems Sprinkler and Alarm. Figure 4 shows our probability model based on a DBN, where the265

node Consq represents the safety target. Depending on the success or failure of the preventive
safety measures, the accident scenarios lead to nine possible outcomes of increasing severity. In
particular, the state Safe represents the outcome following the non-occurrence of the system
failure (Vapor=Controlled), while the other outcomes follow from malfunctions of some system
components.270
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Specifically, the Bayesian model considers T = 5 time stages for the failure events following the
Top Event Vapor due to the rapid dynamics of the accident scenario in case of vapor overflow.
In Figure 4, the temporal delay δ is specified by the squared number over the respective arc.
If no squared number is associated to the arc, there is no delay. For instance, the squared275

number δ = 1 on the arc connecting Sprinkler to Ignition indicates the causal dependence of
Ignition=Spark at time τ to the event Sprinkler=Activation at time τ − 1. Figure 5 shows the
causal dependence of Sprinkler and Ignition throughout multiple time stages. Time depen-
dence represents the possible occurrence of delayed ignitions, overcoming the limitations of the
model of Khakzad et al. in which delayed ignitions are considered only as possible outcomes of280

accident scenarios.

Figure 5: Causal dependence of Ignition to Sprinkler throughout multiple time stages.

Because the vapor cloud is not toxic, any fatalities or injuries can be attributed to the vapor
ignition. The activation of Sprinkler and Alarm are influenced by Ignition=Spark or Va-
por=Overflow, as shown by the causal dependence represented by the arcs. Specifically, the ac-285

tivation of Sprinkler and Alarm occur if vapor is ignited (Vapor=Overflow and Ignition=Spark)
with failure probabilities equal to 0.04 and 0.0013, respectively. However, Sprinkler and Alarm
can also be activated by a specific amount of vapor concentration in the air even if the vapor is
not ignited (Vapor=Overflow and Ignition=No_spark). The activation of Sprinkler and Alarm
for a vapor concentration occur with failure probabilities equal to 0.3 and 0.225, respectively.290

For more details on the definition of the probabilistic model, please refer to our Data in Brief
article [30].
Preventive safety measures reduce the expected disutility of the negative outcomes at the safety
target Consq. Our Data in Brief article [30] reports the 18 preventive safety measures, including
illustrative costs and updated failure probability of the components. The optimization model295

determines the entire set of non-dominated portfolios of preventive safety measures which min-
imize the expected disutility of the safety target Consq throughout multiple time stages. The
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optimization algorithm has been run for different budget constraints.
Figure 6 shows the minimum expected disutility of the accident scenarios for each time stage.
For multiple non-dominated portfolios at a given budget level B (horizontal axis in Figure 6),300

the graph shows the minimum value of expected disutility of the safety target. At the budget
level B = 0, the graph shows the expected disutility for no preventive safety measure to the
system. By increasing the budget, the Pareto-optimal portfolios of preventive safety measures
further reduce the residual risk of the system, as evaluated by the expected disutility of safety
target Consq.305

The possibility of immediate ignition is the underlying cause for the expected disutility at time
τ = 0. At time stage τ = 1, the activation of Sprinkler decreases the probability of ignition and
consequently the expected disutility. Finally, the expected disutility of the later time stages
increases due to the possibility of delayed ignition. Figure 6 also provides additional risk man-
agement insights, for instance for defining the requisite budget to meet safety targets and for310

assessing how increases in the budget reduce the system risk [31].
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Figure 6: Minimum expected disutility of safety target Consq.

For the budget constraint at B = 600 ke, the optimization model provides the three non-
dominated portfolios in Table 1.
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Table 1: Non-dominated portfolios for budget constraint at B = 600 ke.

Component z1 z2 z3

P_unit Duplication Duplication Duplication
M_valve Synergy Synergy Synergy
A_valve Synergy Sensor Calibration test
Belt Condition monitoring Condition monitoring Condition monitoring

Ignition Hypoxic air technology Hypoxic air technology Hypoxic air technology
Sprinkler Quick response Quick response Quick response
Alarm Semi conductor sensor Catalyic gas sensor Electrochemical cells

The analysis of the core indexes in Figure 7 recommends to deploy the preventive safety mea-315

sures Duplication, Synergy, Condition monitoring, Hypoxic air technology and Quick response,
whereas the selection of preventive safety measures on A_valve and Alarm may require further
analysis.
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Figure 7: Core index analysis of preventive safety measures.

Because there are only few non-dominated portfolios, the solutions can be analyzed individually320

to select the optimal allocation of risk management resources. The overall cost of the first two
non-dominated portfolios is 590 ke and 600 ke for the third one. Thus, portfolios z1 and z2
are the Pareto-optimal solutions that minimize the overall cost. In addition, Figure 8 shows
that portfolio z1 dominates the other two solutions at time stages τ ≥ 1, but the zoomed frame
at the initial time stage τ = 0 highlights a higher expected disutility of 0.13% and 0.45% in325
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comparison to portfolios z2 and z3, respectively. If such increases are significant, then portfolio
z1 is recommended as the optimal allocation for the system.

Figure 8: Expected disutility of non-dominated portfolios by setting B = 600 ke.

4 Discussion

The case study illustrates the main advantages of employing Portfolio Decision Analysis to select330

the optimal allocation of preventive safety measures for the system. The proposed methodology
does not target the failure of the individual components; instead, it determines non-dominated
portfolios that minimize the residual risk of the system throughout multiple time stages. This
approach helps overcome the limitations of sequential decisions in the selection of preventive
safety measures for the system, which could lead to suboptimal solutions.335

The optimization algorithm is computationally efficient in generating Pareto-optimal solutions.
Specifically, in the case study the computation of all non-dominated portfolios from the initial
set of 218 possible alternatives took approximately one minute on a regular laptop (Intel Core
i5 CPU @ 2.3 GHz). Nonetheless, the algorithm may require a long computational time when
the number of possible measures is large (over 40). In this case, it is possible to decompose340

the optimization problem into sub-problems for subsystems. The optimization algorithm has
been linked to GeNIe Modeler to compute the occurrence probability of the safety targets at
each time stage. The computational time depends on the constraints limiting the set of feasi-
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ble portfolios. For instance, relaxing the budget constraint increases the computational time,
because the set of feasible solutions is larger. However, the fathoming condition improves the345

algorithm efficiency by avoiding the enumeration of all portfolios.
In addition, GeNIe Modeler makes it possible to revise the probabilistic model through changes
of the nodes and/or arcs of the DBN. The code accounts for preventive safety measures that
involve the introduction/removal of components or dependencies between them. Specifically,
changes due to the introduction/removal of components makes it necessary to introduce/remove350

the respective nodes and to elicit/revise the corresponding probability tables. By contrast,
changes in dependencies modify the dimensions and parameters of the conditional probability
tables. Furthermore, the model can handle multiple states for each failure event. This represen-
tation makes the model more realistic, even if it increases the effort of eliciting the conditional
probability tables.355

Thanks to this comprehensive representation, the optimization model makes it possible to iden-
tify optimal choices between a single reliable component and a combination of less reliable ones.
For multiple non-dominated portfolios, the core indexes support the selection/rejection of some
preventive safety measures. However, the final selection calls for a detailed analysis of the al-
ternative non-dominated portfolios according to case-specific criteria. For instance, in the case360

study the experts could be interested in the portfolio for minimizing the expected disutility
at the initial time stages to prevent the ignition and allow people to escape the factory. In
other situations, it could be optimal to choose the portfolio for which the safety target can be
respected as long as possible to provide time for intervening and limiting the severity of the
accident scenario.365

One limitation of this methodology is the need to specify the preventive safety measures in
advance, including information about their costs and impacts on the reliability of system com-
ponents. Because this can be difficult in practice, future research will focus on extending this
methodology to include incomplete information in the parameters of the preventive safety mea-
sures. In this respect, credal networks [33] can be employed to accommodate the imprecision370

through intervals of lower and upper bounds. Then, the optimization would provide solutions
that are robust to changes in the model parameters.

5 Conclusions

In this paper, we have extended our earlier methodology for static systems [2] to time-dependent
accident scenarios through Dynamic Bayesian Networks. The methodology employs Portfolio375

Decision Analysis to support the selection of preventive safety measures through multi-objective
optimization. We have proposed several approaches for selecting the final decision from the set
of non-dominated portfolio. We have also demonstrated the viability of the methodology by
analyzing the accident scenarios of a vapor cloud ignition which occurred at Universal Form
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Clamp in Bellwood (Illinois, U.S.) on 14 June 2006.380

The PDA methodology can be employed especially in the design phase of process systems to
choose the optimal combination of preventive safety measures that minimizes the residual risk
at different time stages. Moreover, the improved availability of sensors for condition monitoring
of industrial systems makes it is possible to update the required probability distributions of
component states with the aim of gaining further improvements in system safety. In particu-385

lar, additional preventive safety measures can then be selected based on new observations on
component reliability.
One possible extension of the proposed methodology is to optimize the implementation and
deployment of preventive safety measures which are activated or deactivated dynamically de-
pending on the specific states of the system components. Such extensions can built through390

advances in dynamic optimization and contingent portfolio programming [34].
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