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Electromagnetic Chirality,
Part I: Microscopic Perspective

Christophe Caloz, Fellow, IEEE, and Ari Sihvola, Fellow, IEEE

Abstract—This paper is the first part of a two-part paper, with
the second part being [1], presenting a bottom-up description of
electromagnetic chirality, which occurs in materials composed
of particles with structural handedness1. This part deals with the
microscopic perspective of chirality. First, it highlights the three
fundamental concepts related to chirality – mirror asymmetry,
polarization rotation and magnetodielectric coupling – and
points out the nontrivial interdependencies existing between
them. Then, it lists a number of assumptions that pertain to the
overall document. Next, it argues that metamaterials represent
the most promising technology for chiral applications, and dis-
cusses their geometrical parameters, dipolar responses and elec-
tromagnetic polarizabilities. The following part compares two
representative metaparticles that are complementarily related
to chirality, namely the planar Omega particle and the twisted
Omega, or helix, particle, shows that only the latter is mirror-
asymmetric, and hence chiral, deduces from the mirror asym-
metry criterion that chirality requires a voluminal geometry,
and infers the magnetoelectric properties of the planar Omega
and helix particles from their geometry. Finally, it recalls how to
convert the microscopic dipole moments and polarizabilies into
macroscopic polarization densities and susceptibilities to obtain
a medium representation of a (meta)material structure. Upon
this basis, the second part of the paper presents a macroscopic
perspective of electromagnetic chirality and chiral materials.

Index Terms—Chirality, optical activity, chiral media, materi-
als and metamaterials, mirror asymmetry, polarization rotation,
magnetoelectric coupling, bianisotropy, Tellegen and Pasteur
media, polarizability and susceptibility dyadic tensors, spatial
dispersion or nonlocality, parity conditions, temporal dispersion
or nonlocality, circular birefringence and circular dichroism,
reciprocal and nonreciprocal gyrotropy.

I. INTRODUCTION

The term chirality comes from the Greek word χείρ,
which means hand. It is the geometric property according
to which an object is mirror-asymmetric or, equivalently,
different from its image in a mirror, irrespectively to ori-
entation. The etymology and definition of chirality may
be understood by considering Fig. 1. The (mirror-plane)
image of the right (resp. left) hand is not superimposable
with the right (resp. left) hand itself, but rather with the
left (resp. right) hand. So, the human hands are chiral

1Recent papers use the terminology “chiral” to simply designate a wave
that is circularly polarized and related effects [2], [3], particularly in the
near-field and evanescent regimes with chirality parameter defined as C =
(ε0/2)E ·∇×E+1/(2µ0)B ·∇×B or C =−(ωε0/2)Im

{
E∗ ·B

}
[4], [5]. Although

the geometrical locus formed by the tip of the electric (or magnetic) field
vector of a circularly polarized wave indeed forms (in both space and time)
a spiral, which is inherently a chiral shape, mere circular polarization does
not correspond to what has been called ‘chiral’ in the past 200 years or so.
For this reason, we find this terminology – according to which, incidentally,
chirality would be all over the place in papers and books and antennas and
optics – quite confusing, and we exclude it from this paper, where the term
‘chiral’ exclusively refers, as mentioned here, to phenomena occurring in
“materials composed of particles with structural handedness.”

[sic], with right or left handedness, and the right and left
hands are called the enantiomers (from the Greek, έναντι:
opposite, µέρoς: other) of each other. The fact that hands
are certainly the most common chiral things that we deal
with on a daily basis justifies the etymology. However, many
other things are chiral, such as amino-acids – see Fig. 2
– and tris(bipyridine)ruthenium(II) chloride (red crystalline
salt) in chemistry, DNA and sugars in biochemistry, sea
snails and ammonite fossils in biology, screws and helical
antennas in engineering, and fusilli pasta and twisted pastry
in food!

RH-o
LH-o

RH-i
LH-i

Fig. 1. Human hands and their reflection in a mirror. RH-o and LH-o
are the original right hand (RH) and left hand (LH), while RH-i and LH-i
are their images in the mirror, with the correspondence RH-o↔LH-i and
LH-o↔RH-i. The non-superimposability may be specifically understood
as follows. RH-i is finger-to-finger aligned with RH-o, but it shows its
palm whereas RH-o shows its back. Flipping RH-i brings about back-to-
back translational symmetry, but loses finger-to-finger symmetry. So, RH-i
and RH-o are fundamentally different, irrespectively to their orientation in
space. The same naturally applies to the pair (LH-o, LH-i). (Photograph:
Raphaël Caloz)

(a) (b)

Fig. 2. Chirality in a generic amino acid (–NH2: amine, –COOH: carboxyl,
–R: rest of the molecule). (a) Left-handed (LH) enantiomer: with thumb
along the C→H axis, it takes the left hand for the fingers to point from
COOH to NH2 through R. (b) Right-handed (RH) enantiomer: with thumb
along the C→H axis, it takes the right hand for the fingers to point from
COOH to NH2 through R. (Picture: Wikimedia Commons)
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A medium made of chiral molecules or particles is called
a chiral medium. Such a medium has the remarkable prop-
erty of rotating the polarization of electromagnetic waves
propagating through it. This phenomenon of polarization
rotation, also called optical activity, was first observed more
than 200 years ago with light passing through ‘translucent’
substances by Arago in 1811 [6] and through quartz by
Biot shortly later [7], and it was explained by Fresnel in
terms of circular birefringence in 1821-22 [8]. It was further
studied by Pasteur in salts of solutions of racemic mixtures2

of tartrates near the middle of the XIXth century [9]. In 1898,
Bose reported the first microwave observation of chiral
polarization rotation, in twisted jute (fiber produced by
some plants) structures [10], and, about twenty years later,
Lindman introduced wire spirals as more practical artificial
chiral particles [11]. In the course of the XXth century,
it has been established that optical activity results from
coupling between the electric and magnetic responses, or
magnetoelectric coupling, of chiral particles, and different
related form of electromagnetic constitutive relations have
been proposed [12], [13], [14], [15], [16]. Towards the end
of the century appeared the first textbooks on chiral and
biisotropic media [17], [18].

Until the turn of the current century, chiral media had
been mostly restricted to theoretical electromagnetic stud-
ies [17], [18], [19]. The advent of modern metamaterials
(e.g. [20]) and, even more, metasurfaces (e.g. [21]) has
dramatically changed the situation, and chiral media, along
with their bianisotropic extension [19], have now become a
practical reality that is poised to revolutionize microwave,
terahertz and photonics technologies.

Chirality involves a number of concepts that are some-
times misunderstood and confused. These concepts include
Pasteur and Tellegen biisotropy [18], biisotropy and bian-
isotropy [19], circular birefringence and circular dichro-
ism [22], reciprocal and nonreciprocal polarization rota-
tion [23], temporal and spatial electromagnetic symme-
try [24], and temporal and spatial dispersion or nonlocal-
ity [24], [25]. This paper presents a global, intuitive and
yet rigorous, first-principle description of chiral media and
metamaterials. It is intended to serve as a self-consistent
study document, as well as to dissipate misunderstandings
and confusions, and hence help further research in the field.

The rest of this first part of the paper is organized as
follows. Section II highlights the three fundamental con-
cepts related to chirality – mirror asymmetry, polarization
rotation and magnetodielectric coupling – and points out
the nontrivial interdependencies existing between them.
Section III lists a number of assumptions that pertain
to the overall paper. Section IV argues that metamate-
rials represent the most promising technology for chiral
applications, and discusses their geometrical parameters,
dipolar responses and electromagnetic polarizabilities. Sec-
tion V compares two representative metaparticles that are
complementarily related to chirality, namely the planar
Omega particle and the twisted Omega, or helix, particle

2A racemic mixture is a mixture with an equal number of LH and RH
particles, whose antagonistic chiral effects cancel out at the macroscopic
scale.

and infers their magnetoelectric properties of from their
geometry. As a transition to the second part [1], Sec. VI
recalls how to convert the microscopic dipole moments
and polarizabilies into macroscopic polarization densities
and susceptibilities to obtain a medium representation of
a metamaterial structure. Finally, Sec. VII enumerates the
main conclusions of this part.

II. PRELIMINARY COMMENT: THE CHIRAL TRINITY

Section I has pointed out that chirality is intimately
related to the concepts of mirror asymmetry, polarization
rotation and magnetoelectric coupling. Mirror asymmetry
is today’s geometrical definition of chirality, polarization
rotation [or optical activity, or gyrotropy (Greek γυ̃%oς:
circle and τ%oπoς: turn)] is the fundamental chiral effect
on light observed two centuries ago by Arago and Biot, and
magnetoelectric coupling (or, generally, bianisotropy) has
been found to be a fundamental electromagnetic feature of
chiral media in the course of the past century.

However, these concepts are not systematically inter-
dependent, and it is of crucial importance to distinguish
the relations existing between them. These relations are
represented in Fig. 3, and will be demonstrated throughout
the paper. They are the following:

• Mirror asymmetry is a necessary and sufficient condi-
tions for chirality (Ê). This requires no proof since the
former is the definition of the latter, and the two may
thus be considered as merged together3.

• Mirror asymmetry implies both polarization rotation
(Á) and magnetoelectric coupling (Â), but neither
polarization rotation (Ã) nor electromagnetic coupling
(Ä) implies mirror asymmetry.

• Polarization rotation does not imply magnetoelectric
coupling (Å), and magnetolectric coupling does not
imply polarization rotation (Æ).

III. GLOBAL ASSUMPTIONS

The following assumptions hold throughout the overall
(two-part) paper:

1) All the media are linear and time-invariant (LTI).
2) They are excited by waves with harmonic time depen-

dence, and steady-state conditions are assumed.
3) Due to 1) and 2), the electromagnetic responses of

the media, and hence all the fields involved, have the
same time dependence, and may thus be generally
written versus space (r) and time (t ) in the elliptical
polarization form

F (r, t ) = F1 cos[ωt −φ(r)]+F2 sin[ωt −φ(r)], (1)

where F1 and F2 are real perpendicular vectors, with
circular polarization if |F1| = |F2|, and where ω is the
temporal angular frequency (ω = 2π f , f : frequency)
and φ(r) is the spatial phase.

4) As implicitly assumed in 3), scalar and vector quan-
tities are denoted by regular and bold characters,

3Note that a racemic mixture (see Footnote 2) is macroscopically mirror-
symmetric, and hence achiral, while being microscopically (at the level of
its individual constituent particles) mirror-asymmetric, and hence chiral.
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CHIRALITY

Mirror
Asymmetry

Polarization
Rotation

Magneto-
Electric
Coupling

➊
➁ ➂

➃ ➄

➅

➆

Fig. 3. The chiral trinity with implication relations between the three
fundamentally related concepts of mirror asymmetry, polarization rotation
and magnetoelectric coupling. The arrows indicate implications and the
barred arrows indicate nonimplications.

respectively, while tensors are denoted by a double
overline, as for instance χ.

5) Given 3), we use the customary phasor notation,
which conveniently allows to drop the time depen-
dence in most calculations. The phasor corresponding
to (1) is the auxiliary complex vector

F(r) = (F1 + i F2)eiφ(r). (2)

6) The field (1) is then retrieved from (2) via the opera-
tion

F (r, t ) = Re
{

F(r)e−iωt
}

, (3)

where the physical field and its phasor are distin-
guished by calligraphic and regular characters, respec-
tively.

7) The complex harmonic time dependence e−iωt in (3)
corresponds to the convention that is generally
adopted in the physics community [19], [24]. The
engineering community rather uses the equivalent
convention e+ jωt [26], [27], where j = −i . We choose
here the former convention because it is more com-
mon in the literature on complex media.

8) If the medium is isotropic, it is convenient to select
a coordinate system that coincides with the direction
of propagation, k̂. Here, assuming k̂ = ẑ, we therefore
choose r̂ = ẑ. The corresponding phasor has the plane-
wave form

F(z) = (F1 + i F2)e±iβz , (4)

which is related to (2) by φ(r) = φ(z) = ±βz (β =
k = 2π/λ, λ: wavelength). The corresponding complex
spacetime function is ei (±βz−ωt ), and the phase ve-
locity is found by monitoring a wave point of fixed
phase – i.e., ∂(±βz −ωt )/∂t = ±β∂z/∂t −ω = 0 – as
vp = ∂z/∂t = ±ω/β ≷ 0 (β > 0), indicating that the
positive and negative signs in (4) correspond to wave

propagation in the +z (forward) and −z (backward)
directions, respectively. Note that the choice of the
plane-wave form in (4) is not restrictive since any
wave in an LTI medium can be decomposed in a
spectrum of plane waves from Fourier theory [28].

9) The sourceless time-harmonic Maxwell-Faraday and
Maxwell-Ampère equations for the chosen e−iωt time
dependence are

∇×E = iωB, (5a)

∇×H =−iωD, (5b)

where E (V/m), H (A/m), D (C/m2 = As/m2) and B
(Wb/m2 = Vs/m2) are the usual electric field, mag-
netic field, electric flux density (or displacement field),
and magnetic flux density (or magnetic induction
field), respectively, and J (A/m2) is the electric current
density.

IV. METAMATERIAL IMPLEMENTATION

A. Motivation and Definition

Although chiral molecules and substances, such as amino
acids and sugars [18], [29], are abundant in nature, they
are generally not amenable to electromagnetic applications,
due to their chemical instability, high loss and/or restricted
spectrum. Artificial chirality, in the form of metamaterials,
is a much more promising avenue in this regard, since one
can engineer chiral metamaterials with high robustness, low
loss, arbitrary operation frequency and tailorable proper-
ties (e.g. [30], [31], [32], [33]).

A metamaterial is a medium constituted of a 1D, 2D
or 3D subwavelength-lattice array of scattering particles –
or ‘metaparticles’ – whose key properties are due more to
the geometry and orientation of these particles than to the
molecular-scale nature of the materials that compose them.
Figure 4 shows an example of a 3D chiral metamaterial
constituted of multiturn-helix-shaped metaparticles.

a

p

p
p

ℓ

Fig. 4. Example of a 3D chiral metamaterial with significant dimensional
parameters. Here the lattice is periodic with a cubic unit cell of dimension
p, and it is made of multiturn-helix metaparticles of external size a and
unfolded (resonant, ∼λres/2) length `, with a ¿ ` [Eq. (8)].
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B. Dimensional Constraints

The subwavelength-lattice array condition is necessary
for the structure to be homogeneizable, and hence to really
operate as a medium, without spurious diffraction and with
well-defined constitutive parameters. Denoting the lattice
feature (or period in the most common case of a periodic –
crystal-like – structure) p, and the size of the metaparticle
a, one must thus satisfy the relation

|k|a É |k|p ¿ 2π or a É p ¿λ. (6)

At the same time, to interact with an incoming wave, and
hence transform that wave according to specifications, the
metaparticle must be operated close to its resonance, which
occurs at the frequency where its resonant size, `, is about
half the wavelength4, i.e.,

`≈λres/2. (7)

Note that in the case of a metamaterial, one invariably uses
this halfwavelength (or first or lowest) resonance (m = 1 in
`≈ mλres/2), because higher resonances would imply larger
metaparticle electric sizes, which opposes the fundamental
homogeneizable medium requirement (6).

The conditions (6) and (7) are clearly antagonistic, since
a and ` are both related to the size of the metaparticle.
Fortunately, the ‘external size’, which we define as the size
of the smallest box fully containing the particle, i.e., here a,
can be made substantially smaller than the resonant size, `,
by folding an initially simple (e.g. straight or single-looped)
structure of dimension ` upon itself in the three directions
of space, as illustrated in Fig. 4, and by leveraging reactive
(inductive and capacitive) loading, which ultimately leads
to the viable and typical metamaterial regime

a É p ¿ `≈λres/2 <λres,0, (8)

where λ represents the wavelength of the wave in the
possibly dielectric medium that embeds or surrounds (e.g.
supporting substrate) the particle and λ0 represents the
wavelength of the wave in free space (λ < λ0). Figure 4
illustrates Eq. (6), with λ=λ0 if the particles stand in free-
space, and λ<λ0 if they include material loads or are sup-
ported by a dielectric matrix frame. Typical metamaterials
involve parameters in the order of a ∈ [λ0/15−λ0/4] and
p =∈ [λ0/12−λ0/4] [20].

C. Metaparticle Selection

As regular materials owe their macroscopic properties
to their constitutive atoms and molecules, metamaterials
owe their macroscopic properties to their metaparticles.
Since they are deeply subwavelength, these metaparticles
are restricted to dipolar responses5, characterized by the
electric dipole moment pe (Asm) and by the magnetic

4The exact resonance length may somewhat deviate from half the
wavelength due to reactive loading effects caused by the folding of the
particle onto itself (e.g. see Fig. 4)

5In general, a multipole expansion is required for modeling the scatter-
ing from an object [24]. However, the multipoles of order larger than the
dipoles have a negligible effect when the object is deeply subwavelength,
as is the case for a metaparticle, according to (8).

dipole moments pm (Vsm), which are respectively defined
as [24], [25]

pe =
ˆ

V
r′ρ(r′)dr′, (9a)

pm =µ0m = µ0

2

ˆ
V

r′× J(r′)dr′, (9b)

where ρ(r) and J(r) are the spatial distributions of the
electric charge density and current density, respectively, and
where the volume integration corresponds to the structure
of the particle. Note that we have here redefined the usual
magnetic dipole moment m [24] as pm =µ0m for symmetry
in the forthcoming chiral relations. In a simple artificial-
dielectric metamaterial, the electric dipolar response (pe)
is exclusively due to the electric excitation (E), and we
denote it here pee, while the magnetic dipolar response
(pm) is exclusively due to the magnetic excitation (H),
and we denote it here pmm. The best particle for (pee)
is a straight conducting wire or a straight dielectric rod,
according to Maxwell-Faraday law, in the microwave and
optical regimes, respectively, while the best particle for
(pmm) is a looped conducting wire or a looped dielectric
rod, according to Maxwell-Ampère law. A combined pee–
pmm particle leads then generally to a Lorentz-dispersive
composite positive/negative-index metamaterial [34], with
negative index [35] below the electric and magnetic plasma
frequencies and positive index above [20], as will be shown
in [1].

However, as mentioned in Sec. I and as will be seen later,
chirality is fundamentally related to a magnetoelectric re-
sponse within the chiral particle. The most natural strategy
to realize such a coupled response is to structurally merge
the aforementioned straight and looped elements into a
‘single-block’ particle, so that conduction or displacement
current continuity in the resulting block adds pem to pee and
pme to pmm. Such a single-block straight-looped metaparti-
cle could look like the particles that are shown in Fig. 5, with
straight and looped sections of respective lengths 2d and
s, summing up to the unfolded length ` and interrelated
from (7) as

`= 2d + s ≈ λres

2
, (10a)

i.e., s ≈ λres

2
−2d or d ≈ λres

4
− s

2
. (10b)

Equation (10b) reveals that the straight- and looped-section
lengths are antagonistic to each other, an observation that
will be seen in [1] to be of great importance in the response
and design of chiral metamaterials.

D. Metaparticle Polarizabilities

As the atoms and molecules in regular materials, the
metaparticles in a metamaterial may be conveniently char-
acterized in terms of polarizabilities [24], [36]. In the case of
a general metamaterial, involving anisotropy and magneto-
electric coupling, such characterization may be expressed in
terms of the electric dipole moments and magnetic dipole
moments induced by the electric and magnetic fields as(

pee pem

pme pmm

)
=

(
αee ·Eloc αem ·Hloc

αme ·Eloc αmm ·Hloc

)
(11)
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(a) (b)

xx

yy
zz

d

d

d

d

ss

ℓ

ℓ

Fig. 5. Two metaparticles with merged straight and looped sections,
that are complementarily related to chirality. (a) Planar Omega particle.
(b) Twisted Omega or helix particle (single-turn version of the helix in
Fig. 4).

where αee, αem, αme and αmm are the electric-to-electric,
magnetic-to-electric, electric-to-magnetic and magnetic-to-
magnetic 3×3 coupling dyadic tensors, respectively, which
are measured in Asm2/V, sm2, sm2 and Vsm2/A (see Ap-
pendix A), and where Eloc and Hloc are the local excitation
fields. Figure 6 details the notation used in this paper for
the components of the polarizability tensors in a Cartesian
coordinate system. The local excitation fields are the dif-
ference between the global excitation fields and the fields
produced by the polarization of the neighboring particles
in a dense medium [24], [29], and reduce to the excitation
fields, E and H, in a sufficiently dilute medium. The paper
assumes that the dilute-medium approximation is valid,
until the final design guidelines at the end of [1], which
does not represents a significant restriction for qualitative
description.

polarizability
symbol

response
component

excitation
component

response
field

excitation
field

u,v = x, y,z

a,b = e,m

Fig. 6. Notation for the components of the polarizability dyadic tensors
in Eq. (11), and susceptibility dyadic tensors to appear farther, in a
Cartesian coordinate system. Here, the excitation fields are considered
to be E and H, and the responses are the vectorial dipole moments pe
and pm corresponding respectively to the response fields D and B in
the medium formed by these moments (see Sec. VI). The polarizability
may be most efficiently read out as “u-directed a response due to v-
directed b excitation.” For instance, α

x y
em is the polarizability component

corresponding to the x-directed electric response due to a y-directed
magnetic excitation, or to the polarization px

e,Hy
.

V. TWO METAPARTICLE STUDY CASES

A. Mirror-Symmetry Test

According to the rationale in Sec. IV-C, the planar and
twisted straight/looped-section metaparticles, which are
respectively shown in Figs. 5(a) and 5(b), are both potential
candidates for chiral particles, because they both involve
magnetoelectric coupling, as we shall show in Secs. V-C

and V-D. However, as we shall see, such coupling is only
a necessary condition for chirality, the absolute (necessary
and sufficient condition) criterion being mirror asymmetry
(Sec. II) according to the definition of Sec. I. Let us then
apply the mirror test, depicted in Fig. 7, to the two meta-
particles.

(a) (b)

xx

yy

zz

Fig. 7. Mirror reflections of the two particles in Fig. 5. (a) Planar Omega
particle [Fig. 5(a)] (lying here in the xz plane), which is mirror-symmetric
and hence not chiral. (b) Twisted Omega or helix particle [Fig. 5(b)]
(extending in the 3 directions space), which is mirror-asymmetric, and
hence chiral. The original particle in the left top is RH, whereas its three
images are LH.

Let us start with the planar Omega particle [Fig. 5(a)],
tested in Fig. 7(a). Upon reflection in the x, y and z
directions, this particle transforms into images that are
exactly identical to itself. The z-direction image is flipped
in space, but can be flipped back, without any structural
change, to perfectly superimpose with the original particle,
and is hence indeed also identical to it. So, the particle
is identical to any of its mirror images. Therefore, it is
not chiral or, equivalently, has no handedness. It should
therefore not induce any polarization rotation, as shall be
verified in Sec. V-C.

How about the twisted Omega or helix particle [Fig. 5(b)],
tested Fig. 7(b)? This particle differs from its planar coun-
terpart only by the 90◦ twist of the loop section with respect
to the straight section. However, this twist, which assigns
it a voluminality, plays a determinant role in the mirror
test: the three images are now different from the original
particle; they are LH whereas the original one is RH. So,
the twisted Omega particle, as the human hand (Fig. 1), is
chiral, and we shall see in Sec. V-D that it possesses the
consequently expected polarization rotation property6.

Despite the fact that the planar Omega particle is not
chiral, we shall still analyze it in the sequel of this section,
as its comparison with the twisted Omega or helix particle
is instructive for a deep understanding of chirality.

6If the z-mirrored helix particle were next y-mirrored, it would naturally
flip handedness again, and hence retrieve the original RH handedness.
However, such a double-reflection operation (z →−z followed by y →−y)
does not correspond to a reflection in the x y direction but to a rotation
of 180◦ about the x axis. In contrast, yet an additional reflection along x
would yield again, as a single reflection, the reverse (LH) handedness. This
is because a triple reflection along x, y and z (z →−z, y →−y , x →−x)
is equivalent to a single reflection in the x y z direction (r →−r).
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B. Volume Necessary (but Insufficient) Condition

Comparing Fig. 5(b) with Fig. 5(a) shows that the RH helix
particle is obtained by twisting the planar particle about the
z axis in the clockwise direction, as a key in a lock to open
a door, whereas the LH helix particle is obtained by twisting
the planar particle about the z axis in the counterclockwise
direction, as to close a door. So, the voluminal twist has
imparted handedness, and hence chirality, to the particle.

Such ‘handedness-ization’ would not have been possible
without transforming the initially planar structure into a vo-
luminal one. Indeed, a volume-less, purely planar structure,
such as the planar Omega particle, looks indeed identical
from its two sides, and the existence of nonplanarity or
volume, as in the helix particle or the hand (Fig. 1), is clearly
necessary for handedness7, that allows handedness. So, a
particle must necessarily include a volume, or thickness, or
depth, to be chiral. Moreover, the smallest dimension of this
volume must be a significant fraction of the wavelength for
a significant chiral effect, since either the electric dipole
from the wire section or the magnetic dipole from loop
section could otherwise be to weak in regard of the required
amount of magnetoelectricity.

However, three-dimensionality is only a necessary con-
dition – and not a sufficient condition! – for chirality. An
obvious proof of the latter insufficiency is the case of a
spherical particle. Transforming the planar Omega particle
into a volume particle by adding to it untwisted looped
sections about the x axis (e.g. in the xz plane) also does
not make the particle different from its mirror image and
hence chiral.

C. Planar Omega Particle (Achiral)

The pee,em and pme,mm dipolar responses of the planar
Omega particle, which is now known Sec. V-A to be achiral
from, are depicted in Fig. 8, where the particle lies in the
xz plane with its straight section directed along x. Let us
separately examine the responses to the electric part (top
of the figure) and magnetic part (bottom of the figure) of
the electromagnetic field excitation to separately determine
the electric-response and magnetic-response polarizability
pairs (αee,αem) and (αme,αmm).

An x-directed electric field excitation induces an x-
directed electric dipole moment px

e,Ex
in the straight section

of the particle, which corresponds to the electric-to-electric
polarizability αxx

ee . The current associated with this dipole
moment must then flow in the loop section, due to current
continuity, and this occurs in the same (upward in the
figure) direction given the subwavelength, λ/2-dimension
of the unfolded particle [Eq. (8)]. This looped current gives
rise to the y-directed magnetic dipole moment p y

m,Ex
, which

corresponds to the electric-to-magnetic polarizability α
y x
me.

Due to symmetry and due to the subwavelength size of the
loop, scattering from the z-oriented parts of this (looped)
current cancels out, and hence does not produce any αzx

ee ;
in contrast, scattering from its x-oriented parts does not

7If the hand had no thickness, it would reduce to its mere projection,
and hence have neither a palm nor a back. It would therefore look identical
from both sides, and have thus no handedness!
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Fig. 8. Electromagnetic response of the planar Omega particle (achiral)
to plane-wave excitation. The top and bottom represent the response to
the electric and magnetic parts, respectively, of the electromagnetic field
excitation. Only the polarization case corresponding to nonzero polariz-
abilities (polarization Ex –Hy ) is shown here. Using (10), one may evaluate
the length of each of the straight sections, d , and the circumference of
the loop, s to d ≈λ/10 and s ≈ 3λ/10.

cancel out, due to the asymmetry induced by the gap, and
therefore slightly contribute as αxx

ee .
The response to the magnetic field is found by a sym-

metric reasoning. A y-directed magnetic field excitation
induces a y-directed magnetic dipole moment p−y

m,Hy
in

the direction opposing the incident field (Lenz law) in the
looped section of the particle, which corresponds to the
magnetic-to-magnetic polarizability α

y y
mm. Due to the same

symmetry reason as before, the associated looped current
produces a small α

x y
em response but no α

z y
em response. The

looped current must then flow along the straight sections,
due to current continuity, and this occurs in the same
(downward in the figure) direction given the subwavelength,
λ/2-dimension of the unfolded particle. This straight cur-
rent gives rise to the x-directed electric dipole moment
p−x

e,Hy
, which corresponds to the main part of the magnetic-

to-electric polarizability α
x y
em.

Note that the polarizabilities α
y x
me and α

x y
em must have the

same magnitude since they involve the same geometrical
parts without involving any nonreciprocity [23]. However,
they are oppositely directed. Therefore,

α
y x
me =−α

x y
em. (12a)

Upon considering the other two Cartesian orientations of
the particle in Fig. 8, as further discussed later, this relation
generalizes to the tensorial relation

¯̄αme =− ¯̄αT
em, (12b)

where the superscript T denotes the transpose operation.
Equation (12b) is an expression of the Onsager microscopic
reversibility principle [37], [38] applied here to a meta-
particle: in the absence of an external time-reversal anti-
symmetric influence, such as for instance a magnetic field
or an electric current [24], any process is microscopically
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reversible, and hence reciprocal, with the magnetodielectric
reciprocity condition (12b) [23]).

One may easily verify that the Ex –Hy polarization con-
sidered in Fig. 8 is the only one that produces nonzero
polarizabilities, assuming that the conductor forming the
particle has a deeply-subwavelength, and hence negligible,
diameter8. The global susceptibility tensors of the planar
Omega particle in Fig. 8 are then [39]

(
αee αem

αme αmm

)
=



αxx
ee 0 0
0 0 0
0 0 0

0 α
x y
em 0

0 0 0
0 0 0


 0 0 0
−α

x y
em 0 0

0 0 0

0 0 0
0 α

y y
mm 0

0 0 0



 . (13)

The tensor (13) can be modified by transforming the
‘monoatomic’ metaparticle of Fig. 8(a) into a ‘biiatomic’
metaparticle or ‘triatomic’ metaparticle, obtained by adding
copies of the initial particle (here in the xz or zx plane) in
the other two or three planes. This can be done in a diver-
sity of ways. In each plane, the planar Omega particle can
take one out of 4 distinct orientations: the straight section
can be directed along the two perpendicular directions of
the plane and for each of these orientations the looped
section may point to two opposite directions. This may
be best seen by using proper labeling. For instance, the
particle of Fig. 8(a) may be labeled (zx, x,+z), indicating
that it is lying in the zx plane, with straight section in the
x direction and looped section pointing towards the +z
direction, and the same plane supports also the three other
orientations (zx, x,−z), (zx, z,+x) and (zx, z,−x). There are
then 41 = 4 possibilities for a monoatomic particle, 42 = 16
possibilities for a biatomic particle, and 43 = 64 possibilities
for a triatomic particle.

The triatomic particle formed by to the cyclic
permutations of the particle in Fig. 5(a), i.e.,
[(zx, x,+z),(x y, y,+x),(y z, z,+y)], can be easily found, by
the same permutations, to correspond to the metaparticle
tensors (

αee αem

αme αmm

)
=

 αeeI αemI P

αmeI
T

P αmmI

 , (14)

where I and I P are the symmetric and post-permutated unit

tensors I = x̂x̂+ ŷŷ+ ẑẑ and I P = x̂ŷ+ ŷẑ+ ẑx̂, respectively. In
such a metaparticle, the direct (ee and mm) tensors have
reduced to scalar, but the cross (em and me) tensors have
not, so that the overall response is still anisotropic.

8If the diameter measures a substantial fraction of the wavelength, small
responses would also exist in the other directions, leading to extra tensorial
components. One could then approximate the different sections by straight
and looped ellipsoids, and specifically prolate spheroids with large (needle-
type) axis ratio. For instance, if the aspect ratio is 10 : 1, the polarizability of
a straight needle reads α=V ε0(εr−1)/[1+K (εr−1)] =V ε0/K , assuming that
it is perfectly conducting (εr → i∞), where V is the volume of the needle, ε0
the free-space permittivity, and K the depolarization factor in the direction
considered. For an x-oriented needle, the depolarization factors are found
to be Kx = 0.02 and Ky = Kz = 0.49 [29]. Hence there exists polarizability
components perpendicular to the needle axis, but they are 0.49/0.02 =
24.5 smaller than that along the axis, and may thus be neglected. So, for
sections with a length-to-diameter ratio of more than 10, such effects can
be safely ignored.

The most ‘symmetric’ nontrivial medium that can be
obtained with the the planar Omega particle is in fact
the hexatomic medium with the particles (zx, x,+z) and

(y z, y,+z) providing the components ẑ× I [see Eq. (13) for

(zx, x,+z)], (x y, y,+x) and (zx, z,+x) providing x̂× I , and

(x y, x,+y) and (y z, z,+y) providing ŷ×I . The corresponding
polarizability tensors may be written(

αee αem

αme αmm

)
=

(
αeeI αemI A

αmeI A αmmI

)
, (15)

where I A is the (6-component) antisymmetric tensor I A =
r × I . However, such a metaparticle involves 2 particles
per plane, which tends to conflict with the dimensional
constraint (8).

Note that allowing more than one planar Omega par-
ticle per plane may also wash out the magnetoelectric
coupling effects of the resulting multiatomic metaparticle.
For instance, if the z y plane were allowed to support the
(zx, x,−z) particle in addition to the (zx, x,+z) particle in
Fig. 8, then the responses α

y x
me and α

x y
em would disappear

due to cancelation of the scattering from the two parti-
cles. The hexaomic metaparticle obtained by adding the
two complementary cancelling pairs would lead then to a
magnetoelectic-less structure.

How about polarization rotation? We have seen above
that, for the polarization in Fig. 8, the electric response of
the metaparticle is fully parallel to the electric excitation
(pee‖E and pem‖E) and the magnetic response is fully
parallel to the magnetic excitation (pme‖H and pmm‖H),
despite coupling, as also clearly apparent in (13), (14)
and (15). This means that the particle does not induce
any rotation for this polarization; it only induces a phase
shift, φx , corresponding to its interaction with the wave.
However, the problem is actually more subtle. Consider now
the polarization E‖ŷ in Fig. 8. In this case, the particle does
essentially not interact with the wave and is hence invisible
to it; so, there is again no rotation, and φy = 0. But this
phase birefringence (different phase responses for different
polarizations) of the particle actually alters the polarization
direction of obliquely polarized waves, since it differently
affects their x and y components. However, this effect is a
waveplate-type polarization modification [40]9 rather than
the polarization rotation or gyrotropic effect occurring in a
chiral medium.

In summary, we have found that the planar Omega
particle in Fig. 8 has the following properties:

9With the phase birefringence (φx ,φy ) = (φx ,0), a linearly polarized
oblique incident wave E i = Re{(x̂+ ŷ)e−iωt } = cos(ωt )(x̂+ ŷ) is transmitted
across the particle as Et = Re{Ete−iωt } = Re{(eiφx x̂+ ŷ)e−iωt } = cos(ωt −
φx )x̂+ cos(ωt )ŷ, which corresponds to an elliptically polarized wave; in
the particular case φx = π/2, we have Et = Re{(i x̂+ ŷ)e−iωt } = sin(ωt )x̂+
cos(ωt )ŷ, which corresponds to a quarter-wave plate, where the incident
linear polarization is transformed into circular polarization (and vice-
versa). The reader may easily verify that the other particular case φx = π
(still with φx = 0) corresponds to a half-wave plate, where the incident
linear polarization is transformed into a perpendicular linear polarization
while an incident circular polarization is transformed into a circular
polarization of the opposite handedness.
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1) It indeed involves magnetoelectric coupling, as pre-
dicted in Sec. IV-C, since αem,αme 6= 0, which is
the reason it was called pseudo-chiral in [39], and
αme =−αem;

2) Despite such coupling, it is strictly achiral, by defini-
tion, since it is identical to its mirror image, as shown
in Sec. V-A (proof of Ä in Fig. 3);

3) It cannot reduce to an isotropic particle upon adding
copies in the other two directions of space.

4) As expected from its achiral nature (Sec. I) and de-
spite its magnetoelectric coupling, it does not involve
polarization rotation (proof of Æ in Fig. 3), and his
hence not gyrotropic.

D. Twisted Omega or Helix Particle (Chiral)

The pee,em and pme,mm dipolar responses of the twisted
Omega or helix particle, which is now known from Sec. V-A
to be chiral, are depicted in Fig. 9, where the straight
section is directed along x, while the loop section lies in
the y z plane. Let us again separately examine the responses
to the electric part (top of the figure) and magnetic part
(bottom of the figure) of the electromagnetic field excitation
to separately determine the electric-response and magnetic-
response polarizability pairs (αee,αem) and (αme,αmm).

·(−i )

·(−i )

·(−i )

x

x

y

y

z

z

L

L

NL

NL

E

E

E

E

E

H

H

H

H

k

k

k

k

px
e,Ex

→αxx
ee

px
m,Ex

→αxx
me

p−x
m,Hx

→αxx
mm

p−x
e,Hx

→αxx
em

Fig. 9. Electromagnetic response of the twisted Omega or helix (here RH)
particle (chiral) to plane-wave excitation. The top and bottom represent
the responses to the electric and magnetic parts, respectively, of the
electromagnetic field excitation. Only the polarization cases corresponding
to nonzero polarizabilities are shown (polarizations Ex –Hy and −Ey –Hx ).
The dimensional comment in the caption of Fig. 8 also holds here.

An x-directed electric field excitation induces again an
x-directed electric dipole moment px

e,Ex
on the straight

section of the particle, corresponding to αxx
ee , and the

current associated with this dipole moment again flows in
the loop section from current continuity. However, given
the 90◦ twist of the loop, this current now gives rise
to the x-directed magnetic dipole moment px

m,Ex
, which

corresponds to αxx
me. Note in passing the if the angle of

the loop twist were not exactly 90◦ – e.g. 60◦ – then the
induced magnetic moment would be tilted, which would
introduce parasitic off-axis contributions to the response.

Moreover, an x-directed magnetic field excitation (different
form the y-directed one at the bottom of Fig. 8) induces
an x-directed magnetic dipole moment p−x

m,Hx
in the looped

section of the particle, corresponding to αxx
mm, plus, from

current continuity, the x-directed electric dipole moment
p−x

e,Hy
, corresponding to αxx

em. Again, the cross polarizations
are opposite, i.e.,

αxx
me =−αxx

em, (16a)

generalizing as (12a) to

¯̄αme =− ¯̄αT
em. (16b)

In addition, the looped current produces the responses
α

y x
ee and α

y x
em (without αzx

ee and αzx
em) due to the gap

asymmetry; however, these responses are negligibly small
as the y z plane projection of the gap is very small and
may even reach zero, and we therefore henceforth consider
them negligible.

So, the four main susceptibilities identified above corre-
spond to the dyadic component xx. The helix metaparticle
in Fig. 9 has thus the polarizability tensors

(
αee αem

αme αmm

)
=



αxx
ee 0 0
0 0 0
0 0 0

αxx
em 0 0
0 0 0
0 0 0


−αxx

em 0 0
0 0 0
0 0 0

αxx
mm 0 0
0 0 0
0 0 0



 , (17)

and the ‘triatomic’ metaparticle formed by adding copies of
that particle in the y and z directions, as shown in Fig. 10,
has the polarizability tensors(

αee αem

αme αmm

)
=

(
αeeI αemI

−αemI αmmI

)
, (18)

which have this time reduced to scalars and are thus
isotropic. Remarkably, and in contrast with the 64 possi-
bilities of the straight Omega particle, this arrangement the
helix particle is unique10! In this sense, the helix particle
is much more symmetric and fundamental than the planar
Omega particle.

In fact, magnetoelectricity automatically follows from
mirror asymmetry. Mirror asymmetry implies some struc-
tural voluminal twist, as in the helical particle studied
here, and such a twist necessarily leads to magnetoelectric
coupling since it brings about current continuity between
noncoplanar straight and loop parts. In fact, even just the
(voluminal) twisted loop part of the particle in Fig. 9 with-
out the vertical parts involves magnetoelectric coupling,
despite a very low strength due to the smallness of the
vertical (electrical dipole) projections of the loop. Thus,
mirror asymmetry implies magnetoelectric coupling (proof
of Â in Fig. 3).

10This, of course, assumes only one type of handedness, either RH
or LH. If we allow both LH and RH particles, we have 23 = 8 possible
combinations (2 handednesses in each of the 3 directions of space).
However, 6 of these combinations lead to different signs in different
directions, which breaks biisotropy. The arrangement of Fig. 10 – and its
LH counterpart whose χ has the opposite sign – are the only ones yielding
purely scalar polarizabilities, or biisotropy.
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x

y

z

Fig. 10. ‘Triatomic’ (RH) metaparticle from by the combination of (RH)
helical metaparticles (Fig. 9) oriented in the three directions of space.

Let us now see how chirality implies polarization rotation.
Indeed, we have now, along with pee‖E and pmm‖H, that
pme ⊥ H and pem ⊥ E (Fig. 9), indicating that part of the
electromagnetic field has been rotated by 90◦, correspond-
ing to the expected polarization rotation. Specifically, the
initially +y-directed field H (top of the figure) has rotated
towards the +x direction into px

m,Ex
, while the initially

−y-directed field E (bottom of the figure) has rotated
towards the −x direction into p−x

e,Hx
. The electromagnetic

field has therefore rotated about the z axis in the direction
corresponding to the left-hand with the thumb pointing in
the propagation direction (+z)11. In other words, the field
phasors associated with the cross coupling terms have ro-
tated by the angle of −π/2 (y to x direction) or, equivalently,
have been multiplied by the factor e−iπ/2 =−i , and therefore
the cross coupling polarizabilities are in quadrature with
their direct coupling counterparts. A LH particle naturally
leads to rotation in the opposite direction.

In contrast to the planar Omega particle (Fig. 8), the
twisted Omega or helix particle involves two different po-
larization states in its nonzero polarizabilities. Specifically,
in Fig. 9, the polarization (Ex , Hy ) involves αxx

ee and αxx
me,

while the polarization (−Ey , Hx ) involves αxx
mm and αxx

em. In
the case of a circularly polarized exciting wave, these two
states are separated by the time interval T /4 (T = ω/(2π):
time period) of the harmonic wave, which correspond to a
factor e−iπ/2 =−i in phasor notation.

These observations indicate mirror asymmetry necessar-
ily induces polarization rotation (proof of Á in Fig. 3).

In summary, we have found that the twisted Omega or
helix particle in Fig. 8 has the following properties:

1) It indeed involves magnetoelectric coupling, as pre-
dicted in Sec. IV-C, since αem,αme 6= 0, and αme =
−αem;

2) It is chiral, by definition, since it is different to its
mirror image, as shown in Sec. V-A and allowed by its
volume configuration (Sec. V-B);

3) It reduces to an isotropic particle upon adding copies
in the other two directions of space, corresponding to
a purely diagonal polarizability response.

11In contrast to the planar Omega particle, the twisted Omega particle
alters all the linear polarization states in a similar fashion, since the
rotation effect is found for the two orthogonal polarizations in Fig. 9.

4) As expected from its chiral nature (Sec. I), it induces
polarization rotation, i.e., it is gyrotropic.

5) The polarizability pairs (αxx
ee ,αxx

me) and (αxx
mm,αxx

em) are
in a quadrature relationship.

Analytical formulas for the polarizabilities of the helix
particle in terms of its geometrical parameters are given
in [41]. Alternative chiral particles may be inferred from
the voluminal twist requirement noted in this section.
It is important to note that the voluminality condition
disqualifies all purely planar particles; even twisted purely
planar particles, such as swastika crosses, are achiral12.
However, chiral particles may take alternative shapes, such
as their multiturn-helix, or spring, version in Fig. 4, the
square-loop version of the helix in Fig. 5 – possibly in
quasi-planar configuration with twist voluminality provided
by conducting vias or swastika-type with twist voluminality
provided by displacement current (see Appendix B) – or
more complex structures looking like the amino acids
represented in Fig. 2.

VI. MICROSCOPIC-TO-MACROSCOPIC SCALES CONVERSION

Section IV-D has shown that metaparticles can be char-
acterized by polarizability tensors, according to the re-
lation (11), and Secs V-C and V-D have shown how to
determine the structure of these tensors for the planar
Omega particle and for the twisted Omega or helix particle,
respectively. Arranging copies of such particles in the three
dimensions of space, either randomly or according to a
crystal-like lattice, and under the dimensional constraints
outlined in Sec. IV-B, forms a metamaterial, as described
in Sec. IV-A. This section outlines the conversion from the
microscopic scale of the metaparticles to the macroscopic
scale of the corresponding metamaterial.

As previously mentioned, we assume here dilute meta-
materials, i.e. metamaterials with relatively low metaparticle
density, and hence negligible inter-particle coupling. This
assumption is often not valid, particularly in metama-
terials leveraging tight inter-particle coupling for broad
operational bandwidth [34]. However, it is acceptable to
understand the essence of chirality, and it may be relaxed
by including interaction tensors [42] and overcome by full-
wave analysis, as will be seen in [1].

Under the aforementioned assumption of negligible
inter-particle interaction, the microscopic electric and mag-
netic dipole moments pee,em and pme,mm can be simply
averaged in space and orientation to provide the corre-
sponding macroscopic electric and magnetic polarization
densities, Pe (As/m2) and Pm =µ0M (Vs/m2), where M is the
usual magnetization [24], [29], [36], from which the medium
properties follow. This leads here to the relations

Pe = N〈pe〉 = N
(〈pee〉+〈pem〉)= N

(
〈αee ·E〉+〈αem ·H〉

)
= N

(
〈αee〉 ·E+〈αem〉 ·H

)
, (19a)

12Such structures have a kind of handedness, corresponding to the
direction of the bends, but this is a weak form of handedness since it
depends on the observation direction, so that the particles are identical to
their mirror image and hence do not support gyrotropy (see Appendix B).
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Pm = N〈pm〉 = N
(〈pem〉+〈pmm〉)= N

(
〈αme ·E〉+〈αmm ·H〉

)
= N

(
〈αme〉 ·E+〈αmm〉 ·H

)
, (19b)

where the 〈·〉 symbol represents the averaging operation, N
(1/m3) denotes the particle density, and the other quantities
were defined in Secs. IV-C and IV-D. Consistently with
the negligible inter-particle coupling assumption, we have
dropped the subscript ‘loc’ that appeared in (11) (see
Sec. IV-D) in the second equalities, and considered the
metaparticles to be aligned according to a lattice with well-
defined coordinate system in the third equalities.

The particle average densities of polarizabilities in (19)
are related to the medium susceptibilities, χab , as

N 〈αab〉 = cabχab , (20a)

with the normalizing factors

cee = ε0, cem = cem =p
ε0µ0, cmm =µ0, (20b)

where ε0 = 8.854 · 10−12 As/Vm and µ0 = 4π · 10−7 Vs/Am
are the free-space permittivity and permeability, respec-
tively [24], [29], [36]. Substituting (20) into (19) transforms
these relations into

Pe = ε0χee ·E+p
ε0µ0 χem ·H, (21a)

Pm =p
ε0µ0 χme ·E+µ0χmm ·H, (21b)

where χee, χem, χme and χmm are the (unitless) electric-
to-electric, magnetic-to-electric, electric-to-magnetic and
magnetic-to-magnetic susceptibility dyadic tensors, respec-
tively, whose notation follows the conventions in Fig. 6.

VII. CONCLUSIONS

In the first part of this two-part paper, we have presented
a microscopic description of electromagnetic chirality and
materials. The main conclusions and results of this part
may be summarized as follows:

1) Chirality is a geometric property according to which
an object is mirror-asymmetric or, equivalently, dif-
ferent from its image in a mirror, irrespectively to
orientation.

2) As a consequence of 1), a chiral particle must have
a volume; a purely planar particle is always mirror
symmetric, and therefore never chiral. In addition, the
particle must include some structural twisting. Volu-
mic twisting is a necessary and sufficient condition
for chirality.

3) A (biisotropic) chiral material or metamaterial is a
medium constituted of chiral particles or metaparti-
cles oriented in the three directions of space (e.g. the
triatomic chiral particle in Fig. 10). Such a medium
induces polarization rotation (irrespectively to the
polarization of the incident wave), associated with
magnetoelectric coupling (coupling between the elec-
tric and magnetic responses).

4) According to 1) and 3), chirality is intimately related
to the concepts of mirror asymmetry, polarization ro-
tation and magnetoelectric coupling. However, these
concepts are not trivially interdependent:

• According to 1), mirror asymmetry is a necessary
and sufficient condition for chirality.

• Mirror asymmetry implies polarization rotation
and magnetoelectric coupling, but neither po-
larization rotation nor magnetoelectric coupling
implies mirror asymmetry.

• Polarization rotation and magnetoelectric cou-
pling do not imply each other.

5) In a (reciprocal) magnetoelectric particle, the electric-
to-magnetic and magnetic-to-electric responses are
always opposite to each other.

6) A planar – and hence achiral – particle involving
magnetoelectric coupling, such as the planar Omega
particle studied in the paper, cannot be combined to
form an isotropic medium; the resulting medium is
necessarily bianisotropic (and achiral). In contrast, a
chiral particle, such as the helix particle studied in the
paper, can, assuming a triatomic metaparticle with a
copy of the basic chiral particle in each of the three
directions of space (or a random arrangement of such
copies).

7) What is conventionally called a ‘chiral medium’ in the
chiral community is the isotropic (or biisotropic) chi-
ral medium, but a chiral medium (with mirror asym-
metry, and hence magnetoelectric coupling and polar-
ization rotation) can of course also be anisotropic, i.e.
birefringently anisotropic, with chiral particles only
along one or two directions of space.

The concepts and results of this first part will be naturally
extended in the second part of the paper, which will
deal with the macroscopic description and properties of
electromagnetic chirality and materials [43].
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APPENDIX A
UNITS OF THE POLARIZABILITIES

The units of the polarizabilities in the dipole moment
expressions (11) may be found as[

αee

]
=

[
pee

Eloc

]
= Asm

V/m
= Asm2

V
, (22a)

[
αem

]
=

[
pem

Hloc

]
= Asm

A/m
= sm2, (22b)

[
αme

]
=

[
pme

Eloc

]
= Vsm

V/m
= sm2, (22c)

[
αmm

]
=

[
pmm

Hloc

]
= Vsm

A/m
= Vsm2

A
. (22d)

APPENDIX B
PLANAR-TECHNOLOGY METAPARTICLES

Chiral metaparticles may be implemented in planar
or quasi-planar technology. The voluminality condition
(Sec. V-B) is then provided by stacking structural – typically
conducting – layers in a dielectric substrate configuration
with the layers being interconnected either by conduction
currents or displacement currents.

Figure 11 shows a planar-technology chiral metaparticle
of the first kind, where the connections between the planar
structural layers are realized by conduction currents flowing
along vertical (x-direction in the figure) metalized via holes.
Such particles are essentially ‘planarized’ versions of the
helix metaparticles in Figs. 4 and 5(b), and are hence
essentially explained by Sec. IV. They may then be randomly
or triatomically (i.e., using a unit cell of the type shown in
Fig. 10) arranged in three-dimensional space. Although their
structure is quasi-planar, the resulting chiral metamaterial
is really three-dimensional.

(a) (b)

x

y z

E
Fig. 11. Planar-technology helix-type chiral (LH) metaparticles for three-
dimensional chiral metamaterials. (a) Five-layer structure. (b) Two-layer
structure.

Figure 12 shows a planar-technology chiral metaparticle
of the second kind, where the connections between the pla-
nar structural layers are realized by displacement currents,
as will be shown next. The mirror test of Fig. 1 reveals that
the particle of Fig. 12(a) is not chiral, unless the dimensions
of the top and bottom half crosses are different, whereas
the particles in Figs. 12(b), (c) and (d) are all (always) chiral.

The swastika-type particles Figs. 12(b), (c) and (d) can
be periodically arranged along the plane of the crosses
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(a) (b)

(c) (d)

x

y z

E

Fig. 12. Swastika-cross two-layer planar metaparticles for chiral metasur-
faces. (a) Same-’handedness’ π/2-rotated half crosses (achiral for identi-
cal dimensions). (b) Opposite-’handedness’ aligned half crosses (chiral).
(c) Opposite-’handedness’ π/2-rotated half crosses (chiral). (d) Pair π/2-
rotated full crosses (chiral).

(y z plane in the figure) to form chiral metasurfaces that
rotate perpendicularly incident waves. This is shown for
the best of the three particles, that Fig. 12(d), in Fig. 13.
We see that this particle is essentially equivalent to the
twisted Omega or helix particle, and hence also results from
the presence of a twisted helix. Due to its π/2 rotational
symmetry, this structure exhibits exactly the same response
for field polarization in the perpendicular (z in the figure)
direction.

(a) (b)

(c) (d)

x

y z

E

pE

mE

Fig. 13. Response of the swastika metaparticle in Fig. 12(d) (here RH).
(a) Polarization and propagation direction of the incident wave. (b) Current
induced in the structure from direct excitation (full arrows), conducting
current continuity (simple arrows) and displacement current continuity
(double arrows). (c) Electric dipole moment (4 side contributions not
shown, for simplicity) response (pE, corresponding to α

y y
ee and χ

y y
ee ) and

magnetic dipole moment response (mE, corresponding to α
y y
me and χ

y y
me).

(d) Equivalent twisted Omega or helix particle [Figs. 5(b) and 9] for this
polarization.

The metaparticles of Figs. 12(b) and (c) are much less

efficient, in terms of chirality, than that of Fig. 12(d), which
is in fact a combination of them. The particle of Fig. 12(b)
includes a proper current loop in the z direction for z-
polarized waves but fails to provide the required loop for
y-polarized waves, while the particle of Fig. 12(c) offers only
weak and distorted oblique loops.


