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A Service-Oriented Programming Approach for
Dynamic Distributed Manufacturing Systems
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Kevin I-Kai Wang , Member, IEEE, and Valeriy Vyatkin , Senior Member, IEEE

Abstract—Dynamic reconfigurability and adaptability are
crucial features of the future manufacturing systems that
must be supported by adequate software technologies.
Currently, they are typically achieved as add-ons to existing
software tools and run-time systems, which are not based
on any formal foundation such as formal model of com-
putation (MoC). This paper presents the new programming
paradigm of service oriented SystemJ (SOSJ), which tar-
gets dynamic distributed software systems suited for future
manufacturing applications. SOSJ is built on a merger and
the synergies of two programming concepts of service
oriented architecture, to support dynamic software system
composition, and SystemJ programming language based
on a formal MoC, which targets correct by construction
design of static distributed software systems. The resulting
programming paradigm allows the design and implementa-
tion of dynamic distributed software systems.

Index Terms—Dynamic distributed software systems,
manufacturing, reconfigurability, service oriented
architecture (SOA).

I. INTRODUCTION

INDUSTRY 4.0 promotes a new breed of manufacturing
systems comprising automated industrial machines extended

with additional sensors and actuators in sensor and/or actuator
nodes (SANs). Industrial machines and SANs are governed
by software behaviors executed on embedded computers, in-
terconnected via industrial networks or high-level dedicated
protocols [1]. These manufacturing systems may require dy-
namic adaptation and reconfiguration during runtime (e.g., addi-
tion or removal of machines/SANs, reconfiguration of existing
machines/SANs) to accommodate the continuously changing
demand in production or due to failures. Equally important is
safe and correct operation of all individual software behaviors
as well as their composition that support complex production
processes. The correctness and formal verifiability of underlying
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software design is of the utmost importance and one of key
challenges in manufacturing systems.

Currently, there are many programming approaches used to
design manufacturing systems. The IEC 61131-3 [2] and IEC
61499 [3] are the most well known. However, both standards
lack formal model of computation (MoC). There have been
efforts to introduce formal MoC into these standards such as
[4], [5], but they lack mechanisms to handle dynamic changes.
Attempts to introduce dynamic adaptations into IEC 61499
(such as [6] and [7]) and IEC 61131 (such as [8]) exist, however
only partial/limited reconfiguration is enabled. Other program-
ming technologies such as the multiagent systems (MAS) (e.g.,
JADE [9], JIAC [10]) and the service oriented architecture
(SOA) (such as device profile for web services (DPWS) [11],
Arrowhead [12]) are used in the context of dynamic systems.
While MAS-based approaches are increasingly used for control
in industrial automation [13], they need heavy run-time systems
and lack formal foundations needed to design correct-by-design
software behaviors. Similarly, despite increased interest in
using SOA in manufacturing applications, they lack formal
underpinnings or MoCs.

The formal MoC-based approach of SystemJ [14] enables
the design of safe, correct-by-construction concurrent software
behaviors and their use in distributed manufacturing systems.
However, it is only suited for static distributed systems, where
software behaviors are specified at the design time and do
not change during system operation [15]. In this paper, a new
programming approach called service oriented SystemJ (SOSJ)
is presented in the context of dynamic distributed manufacturing
systems. Compared to the state of the art, the novelty of this
approach lies in the combination and synergy of the distinctive
features of SystemJ and SOA. This paper for the first time
presents a complete description of the integral SOSJ framework
for dynamic distributed systems design and a comprehensive
performance evaluation and comparison between SOSJ and a
SOA-only based framework WS4D JMEDS [16] in handling
SOA features. The paper focuses on the features that handle
dynamicity of correct-by-construction software behaviors.

The rest of this paper is organized as follows. Section
II describes a motivating example and identifies some key
requirements of dynamic distributed manufacturing systems.
Section III briefly introduces the SystemJ language. Section
IV describes the SOSJ and how the SOA-based features in
SOSJ can be used in dynamic manufacturing systems context.
Section V presents performance benchmarks and comparisons
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Fig. 1. Physical layout of the motivating example (left), physical setup
of the production line A–H (top right), industrial robot R1 (middle right).

with a SOA-only WS4D JMEDS. Finally, Section VI concludes
this paper.

II. MOTIVATING EXAMPLE

An example of dynamic manufacturing system (factory) is
illustrated in Fig. 1. The figure also shows a few snapshots
of the physical setup of some parts of the example in our
lab. The factory has a manufacturing shop floor, which utilize
stationary SANs, e.g., S1, S2, and S3 to monitor the surrounding
environment for security purposes and control the lighting and
air conditioning systems to maintain the ambient conditions
needed for production. There are multiple mobile SANs, e.g.,
MS1 and MS2, each equipped with sensors and mounted on an
autonomous vehicle, which roam to perform security and safety
checks.

The factory has industrial production stations which perform
automated bottle capping and storage. Bottles are loaded onto
the conveyor belt, which is equipped with photo eye sensors/PE
sensors in different positions), by either of the loader stations (at
point B or point A). The bottles are transported to get capped by
the capping station at point G, and then stored by a storing station
at H. If the conveyor CB4 or diverter D1 is not operational, the
robot IR1 takes the responsibility to move bottle from C to
F. If IR1 is also not operational, the conveyor CB2 can take
over the transportation of bottles from C to F via D and E. A
master controller MC allows human operator to monitor the
production process, while Gateway H1 enables accessibility of
all elements through internet. Typical manufacturing facilities
have other sections, such as offices, logistics, and warehouses,
where SANs are also be deployed for specific purposes.

Based on the motivating example, the programming
framework should be capable of satisfying the following
requirements:

1) Concurrency: The programming framework should
be able to handle different types of concurrency in
distributed setting. Software behaviors associated with
different machines/stations and SANs naturally operate
asynchronously with each other, while each of these
behaviors may be composed of multiple mutually
synchronous concurrent behaviors. This requirement is

Fig. 2. Graphical illustration of SystemJ system/program.

directly supported by the mechanisms of the SystemJ
language.

2) Reactivity and Determinism: Typically, software behav-
iors need to respond to many incoming events from the
environment and repeatedly, thus being reactive. Also,
reactions on the same sequences of input events should
be deterministic, particularly important to safety-critical
applications. This requirement is directly supported by
the mechanisms of the SystemJ language.

3) Dynamicity: In the presented example, dynamic changes
in presence of software behaviors is common due to,
e.g., addition/removal of machines, failures, and the
mobility of SANs. Thus, the underlying programming
framework should support handling dynamic changes in
terms of presence of software behaviors and enable their
composition as the changes in the system happen. This
requirement is supported by SOA features incorporated
into the framework.

4) Functional Correctness: All operations should be per-
formed correctly to support production process. The pro-
gramming framework ideally should be based on formal
foundations to allow the design of correct-by-design and
verifiable software behaviors. This requirement can be
satisfied by underpinning programming framework by
a formal MoC. This requirement is supported by un-
derpinning SOA-based features implemented by formal
mechanisms of the SystemJ language.

These requirements have been the main guideline when
defining the SOSJ framework.

III. BRIEF INTRODUCTION TO SYSTEMJ

SystemJ is a system-level programming language amenable
for designing concurrent and distributed systems. It is based
on globally asynchronous locally synchronous (GALS) MoC
[17], which guarantees determinism and functional correctness
within individual formally verifiable software behaviors. Fig. 2
shows a graphical representation of a SystemJ program, where
mutually synchronous behaviors called reactions are grouped
into mutually asynchronous behaviors called clock domains
(CDs). Reactions can contain child reactions, thus allowing
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TABLE I
SYSTEMJ KERNEL STATEMENTS

hierarchical composition of synchronous concurrent behaviors.
CDs in a SystemJ program advance at their own speeds defined
by independent logical clock (ticks) with detailed descriptions
described in [14]. While any CD must run on the same
computer/machine, CDs belonging to the same program can be
deployed on any sufficient number of machines connected by
any type of interconnect (e.g., networked machines, distributed
setting).

SystemJ has its own syntax and statements (see Table I) for
writing a GALS program and in addition allows the use of
object-oriented features of Java language. Interactions between
CDs and the program’s environment (anything outside SystemJ
program, e.g., another program or physical world) and each
with the other are facilitated by signal and channel abstract
mechanisms, which can carry data encapsulated in any Java
objects. Channels and signals are mapped onto various physical
interfaces and communication methods, which are handled by
the SystemJ runtime system (RTS), refraining the need for
programmers to deal with implementations of physical inter-
faces/communication methods. One or more CDs handled by
the same RTS and executed on the same Java virtual machine
(JVM) belong to the same SystemJ subsystem (SS). A SystemJ
program can be partitioned to a number of subsystems residing
on different computing machines. CDs residing in different
subsystems communicate through the channels where all data
is exchanged through physical interfaces/mediums referred to
as links (can be implemented as, e.g., shared memory, TCP/IP,
controller area network, etc.). The example of a program shown
in Fig. 2 comprises four subsystems (SS1–SS4), deployed and
distributed across three different machines (M1–M3), with links
connecting pairs of subsystems.

IV. SOA + SYSTEMJ = SOSJ

While suited to design distributed systems, SystemJ lacks the
support to handle dynamic changes in the number of software
behaviors of the same program. Meanwhile, SOA paradigm
introduces loose coupling, allowing for dynamic management of
software behaviors. This section describes a combination of the

SOA and SystemJ that creates a new programming framework
called SOSJ [18], which supports dynamic changes of the
number of functionally correct software behaviors that can act
as the providers and consumers of different types of services
(physical, logical, or data services).

SOSJ MoC is a “dynamic” GALS MoC. Although not fully
formally defined, we present an informal introduction into this
MoC. The SystemJ GALS MoC is for static software systems
which have fixed number of software behaviors (CDs) defined
at compile time. SOSJ MoC is an extension of SystemJ’s MoC,
where new CDs can enter and/or exit a software system at any
feasible point in time (at the boundary of the logical ticks
of CDs in any subsystem). Whenever a number of CDs in
the system changes, the system enters its new “global state,”
which is represented with the list and number of all CDs and
interconnecting channels in the system. However, between this
state and the next state (represented with different set of CDs in
the system), the system is considered static, thus theory related
to static GALS systems is applicable to the system until it stays
in the same state.

A. Software Behaviors: SOA and SystemJ Perspective

The SOA paradigm refers to software behaviors as service
entities, while in SystemJ, CD is a software behavior composed
from one or more synchronous reactions. Thus, a reaction may
take different roles, of service consumer, or provider, or both.
Since the synchronous reaction [19] guarantees determinism of
execution and is driven by logical clock of the CD it belongs to,
it cannot be considered an exact equivalent of service entity of
the SOA paradigm. However, the reaction as a service provider
and/or consumer inherits all benefits of synchronous MoC it is
based upon.

Being based on SystemJ, service interfaces in SOSJ adopt
the communication mechanisms of SystemJ. Service invocation
and provision between reactions in the same CD is done through
signals, while it is performed via channels for reactions belong-
ing in different CDs. Although how reactions are allocated to the
CDs is a design decision, this decision determines that SystemJ
communication mechanisms should be used to perform service
invocations and receive the service responses.

Based on the role of reactions that are composed in a CD, we
illustrate service invocations by scenarios, as shown in Fig. 3,
as follows.

1) CD is composed of one or more reactions which all have
one role only (service consumer or service provider). An
example of this scenario is shown in Fig. 3(a), where
reactions R11 and R12 have service consumer role,
while R21 and R31 have service provider role. Possible
service invocation scenarios include, e.g., R11 can invoke
(request) services offered by R21 via channel Ch1121 and
receive results (responses) via channel Ch2111.

2) CD is composed of reactions with a mix of service
provider and service consumer roles. An example of this
scenario is shown in Fig. 3(b), where reactions R41 and
R43 have service provider role and R42 and R44 have
service consumer role. In this example, R51 can invoke
the services offered by R41 via Ch5141 and receive
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Fig. 3. Illustrations showing examples of scenario 1), 2), and composite
services.

Fig. 4. CD macrostates and their transitions.

results via Ch4151, while R43 receives request from R44
through signal S4443 and replies with response through
signal S4344.

Also, it is possible that reactions in a CD are connected with
other reactions in the same CD (via signals) or other CDs (via
channels) to produce new services created by composition of
their services. In scenario 2), individual reactions in a CD can
have mixed service producer and consumer roles, since they may
comprise child reactions. An example of composite service is
shown in Fig. 3(c), where reaction R71 acts as an orchestrator
that forms a composite service through the composition of itself
with services from R712 and R711 via signals and process
data acquired from R712 through signal (S71271). As a service
consumer, R81 can invoke the composite service via Ch8171
and receives results via Ch7181.

With the adoption of the SOA paradigm, the pairings of
channels used by reactions to invoke and receive service in
different CDs must be reconfigurable to allow dynamic interac-
tions/aggregations of services from reactions in different CDs
and in case of change of presence of software behaviors. It
should be noted that despite the aforementioned changes in the
nature of CDs, a SystemJ subsystem is still considered as a
“container” that encapsulates CDs handled by the same RTS
and JVM and semantics of signal is unchanged.

In addition, the features that allow the creation, termination,
and mobility of service entity during runtime in such dynamic,
service-oriented systems are crucial. For this purpose, CDs are
enhanced with a set of “higher-level” states, referred to as
macrostates, as shown in Fig. 4, with semantics as described
in the following.

1) Dormant: The CD code is present in the machine, how-
ever it is not yet schedulable. The CD moves to the
active state once the CD descriptor, signals, channels, and
service descriptions are created.

Fig. 5. Interaction between the global service registry and SOSJ RTS.

2) Active: The CD is created and schedulable. If migration
is invoked, it moves to migrating. The CD goes to
terminated after the command to terminate is issued and
the CD is erased from the memory, or moves to dormant
when the command to “update” (e.g., modify with new
code) is issued.

3) Migrating: The CD can move from one subsystem to
another, and is considered to be in the migrating state
until the migration process is completed, which then it
moves to the active state in the destination subsystem.

4) Terminated: The CD is considered in the terminated state
if the CD is erased from the memory.

More in-depth discussion about CD macrostates and their
transitions is not within the scope of this paper and readers are
referred to [20].

B. SOSJ Framework

The SOSJ framework is developed by extending the original
SystemJ with CD macrostates and with SOA features of loose
coupling and dynamic composition. The global service registry
(GSR) in SOSJ is maintained as a stand-alone application
outside of the SOSJ program. Besides storing the service
description of advertised services, GSR also handles other
SOA functionalities. service description is written in XML
and is stored in JavaScript object notation format by the SOSJ
framework.

The interaction between the GSR and the SOSJ RTS
through the SOA functionalities is shown in Fig. 5, with SOA
functionalities as follows.

1) Beacon: Transmitted by the GSR application and re-
freshed periodically to inform all parties of its presence.

2) Advertisement: Sent periodically, before it expires; con-
tains a list of services of all CDs with service provider
role residing in a particular subsystem.

3) Notify: Transmitted after the GSR receives an adver-
tisement and indicates that creation, termination, and
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Fig. 6. SOA RTS within SOSJ RTS.

mobility occurs in a particular subsystem, or after new
services are advertised to the GSR or existing services are
removed.

4) Request for Advertisement: Transmitted by GSR when an
advertisement is approaching its expiry. If an advertise-
ment is not refreshed within a certain time or “expired,”
the subsystem associated with the advertisement is con-
sidered unavailable, and the service descriptions and the
information regarding macrostate of CDs associated with
the advertisement are removed from the GSR.

5) Discovery: Transmitted to the GSR to obtain the list of
advertised services.

6) Discovery Reply: Transmitted by the GSR as a reply to
Discovery.

The part of the SOSJ RTS that provides SOA support
(diamond-patterned) is shown in Fig. 6. The SOA manager
comprises threads that receive beacon, advertisement, discov-
ery, discovery reply, request for advertisement, and notify and
transmit all of them except Beacon. The SOA message generator
provides the function to generate SOA messages. The internal
service registry represents the data structures in the RTS which
store service descriptions, CD macrostates, and the physical
location of subsystems. The SOA function Calls/application
programming interfaces (APIs), which can be used in addition
to SystemJ statements and Java as integral part of SystemJ
are shown in Table II. Table I includes also APIs that allow
channel reconfiguration, which is handled by the SOSJ RTS
when a particular output channel needs to bind dynamically
with another input channel.

In addition, SOSJ provides built-in mechanisms and APIs that
allow programmers to deal with dynamic creation, suspension,
resumption, termination, and migration of CDs and associated
services. More details are available in [21].

As a guideline, a CD with service consumer role needs to use
two dedicated SOSJ signals, called SOSJDisc and SOSJDiscRe-
ply, for transmitting discovery and receiving discovery reply,
respectively. To invoke service offered by different CD via
channel, the CD needs to utilize a pair of channels, one input
and one output channel. The output channel is used to send
service invocation message, while the input channel is used to
receive reply from the provider CD. Similarly, a CD with service
provider role also needs to utilize a pair of channels, to receive

TABLE II
SOSJ SOA PROGRAMMING CONSTRUCTS

Fig. 7. Graphical illustration of the “template” of consumer and provider
CD.

Fig. 8. Graphical illustration of the CDs described in listing 1.

invocation request and transmit the reply. An example (“tem-
plate”) is shown in Fig. 7, with the consumer CD (“consumer”)
and the provider CD (“provider”).

C. Code Example—Service Invocation Using SOSJ

To show how the programming constructs of SOSJ can
be utilized, listing 1 presents a code snippet of parts of the
example shown in Fig. 1. PEDetCD (line 1–35) is a CD that
obtains the PE (photo eye) sensor reading, e.g., PE1, to detect
workpiece on the conveyor and invoke the conveyor service.
ConvConCD (line 36-54) is a CD which governs the conveyor
service, e.g., CB1. The graphical illustration of both is shown
in Fig. 8.

First, PEDetCD obtains the sensor reading from the PE sensor
via signal PESens (line 10). If the sensor indicates that a work-
piece is detected (line 12), the CD triggers service discovery
by emitting SOSJDisc signal (line 13), the dedicated SOSJ
signal used for transmitting discovery, and then waits to
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receive discovery reply (which will be sent by the global service
registry) via signal SOSJDiscReply, the dedicated SOSJ signal
for receiving discovery reply (line 14). Once the discovery
reply is received, the discovery reply message is extracted
(line 15) and the CD performs service matching to find the
conveyor service (line 16). In the example, the CD uses a Java
method named “DoMatching” for service matching, however its
implementation is application-specific, e.g., the method looks
for the conveyor to actuate based on the location of the detected
workpiece, i.e., position of PE1 sensor (represented as “Loc” in
line 16). Once the service is found, the CD makes a request to
perform channel reconfiguration to bind the Invoke1ReqCh with
the input channel used by the ConvConCD to receive request
message (i.e., RecInvCCCh) using the SOSJ programming
construct (line 21).

Once the channel reconfiguration request is passed to the
SOSJ RTS (lines 21 and 22), and if the status of the channel

TABLE III
COMPUTATIONAL CAPABILITY OF EMBEDDED CONTROLLERS

reconfiguration indicates that the reconfiguration is successful
(line 24), the CD proceeds to generate service invocation request
message (line 26) and then transmits it to the ConvConCD
via channel Invoke1ReqCh (line 27). Then, the CD waits for
a response message sent from the ConvConCD via channel
Invoke1RespCh (line 28) which indicates the completion of the
conveyor actuation.

V. PERFORMANCE EVALUATION AND COMPARISONS

A. Handling Channel Reconfiguration for Service
Invocation

Two scenarios are considered. Both involve one CD with
a reaction (consumer role) attempting to invoke the service
offered by a reaction (provider role) in another CD, in this
case, the consumer CD invoking the photo eye sensor (e.g., PE1
in Fig. 1) service offered by another CD. The Beaglebone black
(BB) platform, raspberry Pi 2B (RPI2B) and ARM processor in
altera/intel cyclone V device on Terasic DE1 board (DE1) are
chosen as the execution platforms, as given in Table III, to com-
pare the performance of channel reconfiguration. The first sce-
nario considers both CDs belonging to the same subsystem and
running on the same machine, while in the second scenario, each
CDs belongs to two different subsystems deployed on separate
machines. The second scenario utilizes a 100 MB/s IPv4-based
Ethernet network with one network router.

Prior to starting the measurement, 20 500 executions of
the processes (in this case, channel reconfigurations) are
performed to allow for the “warmup” of the JVM, i.e., for the
just-in-time compiler to compile the byte-code of the executed
functionalities. After this, the measurement is performed on
1000 and 2000 channel reconfigurations for each scenario.
The average time to perform reconfiguration over 10 runs is
calculated. The time needed to perform channel reconfiguration
is measured using Java timer ([21] describes the reconfiguration
implementation). The results for the two scenarios are shown
in Figs. 9 and 10, respectively.

It can be noticed that the overall average time required to
perform channel reconfiguration within the same subsystem
is significantly lower than in subsystems distributed in the
network. The time for channel reconfiguration is spent on
three different operations: to send a request to perform channel
reconfiguration to the RTS to query whether the partner input
channel (which will receive the service invocation request
message) is available to be bound to the corresponding output
channel used to send the service invocation request message;
to obtain the acknowledgment to proceed with the channel
reconfiguration; and allow RTS of the involved subsystem to
modify the corresponding channel pairing and its mapping
accordingly.



ATMOJO et al.: SERVICE-ORIENTED PROGRAMMING APPROACH FOR DYNAMIC DISTRIBUTED MANUFACTURING SYSTEMS 157

Fig. 9. Average time required to perform channel reconfigurations in
case of the single subsystem.

Fig. 10. Average time required to perform channel reconfigurations in
case of distributed subsystems.

For single subsystem, as seen in Fig. 9, most of the time to
perform channel reconfiguration is spent on the “modify channel
pairing,” which occurs during the time when the RTS executes
the SystemJ reactive interface functions at the end of current
tick of a CD, also called the house-keeping time.

For distributed subsystems, the results are presented as the
sum of the time to perform three operations because the time
spent on the first and second operation is significantly much
smaller than the time spent on the third operation. In distributed
system case, significantly longer time is required because the
RTSs of the corresponding subsystems need to exchange data on
parameters needed for channel reconfiguration over the network.
Figs. 9 and 10 also indicate the dependence of the overall
performance on the performance of three execution platforms.

B. Comparisons With WS4D JMEDS

The performance of SOSJ is compared with a SOA-only
based approach of WS4D JMEDS (which adopts the device
profile for web service/DPWS standard [22]) in handling SOA
functionalities and service invocation. The WS4D JMEDS is
chosen because it is a popular SOA-based approach used in other
related research [23] and also based on Java, so the performance
is similarly affected the use of the JVM. The same procedure to
“warmup” the JVM as explained in Section V-A for both SOSJ
and WS4D JMEDS is applied.

1) Service Discovery Handling: In service discovery, the
DPWS standard has the equivalent of SOSJ’s discovery and
discovery reply, namely probe and probe match, respectively.

Fig. 11. Comparison of average RT time of WS4D probe—probe match
and SOSJ discovery—discovery reply.

A probe message is transmitted (multicast) by a consumer to
find available DPWS devices (entities that provide services),
and upon receiving the Probe message, DPWS devices respond
with probe match message (unicast) back to the consumer. The
benchmarks consider a scenario of 5-50 SOSJ subsystems (with
three conveyors, one diverter, and one photo eye CDs, in total
five CDs in each subsystem) with 25 s advertisement expiry
time in SOSJ, and 5–50 DPWS devices, in which each set of
five DPWS devices represents three conveyors, one diverter, and
one photo eye sensor. The 5–50 subsystems and DPWS devices
are deployed on 1–5 BB platforms, with each BB running a
maximum of ten subsystems (in SOSJ) or ten DPWS devices
(in DPWS), while the SOSJ global service registry application
runs on another BB. Discovery/Probe message is sent from and
discovery reply/probe match is received by a PC, which logs the
timestamps of when the discovery message is sent and the dis-
covery reply message is received (in SOSJ) and when the probe
message is sent and probe matches, sent from all DPWS devices,
are received (in WS4D JMEDS), using Wireshark packet sniffer
application. It should be noted that SOSJ subsystems typically
contain multiple CDs, where a single CD typically represents a
single manufacturing device (e.g., conveyor device, photo eye
device, etc.), while in DPWS, a DPWS device represents a
single manufacturing device. Thus in the scenario, there are
25–250 CDs since each subsystems contains 5 CDs (i.e., 25–250
manufacturing devices), in comparison to only 5–50 DPWS
devices (i.e., 5–50 manufacturing devices) in WS4D JMEDS.

The average round trip time (avg RT Time) of 100 discovery–
discovery reply (in SOSJ) and probe–probe Match (in WS4D
JMEDS) is calculated. Note that in contrast to SOSJ that has
a separate service registry application that receives discovery
from clients and transmits discovery reply to clients (centralized
discovery), in WS4D JMEDS Probe message is transmitted via
multicast (one to many), with potentially multiple probe match
replies coming from multiple devices (decentralized discovery).
The results are shown in Fig. 11. For the considered scenario,
SOSJ has lower avg RT Time compared to WS4D JMEDS,
which is attributed to the WS4D JMEDS runtime that waits for
all DPWS devices to send probe match, while in SOSJ, the client
only waits for the GSR to send discovery reply. While having
“discovery proxy” is possible in WS4D JMEDS to reduce mes-
sage traffic, only an example implementation of discovery proxy
is provided in the framework and programmers is expected
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Fig. 12. Average round trip time of invocation (single machine setting)
in SOSJ and WS4D JMEDS.

Fig. 13. Average round trip time of invocation (distributed machine
setting) in SOSJ and WS4D JMEDS.

to implement their own discovery proxy depending on their
applications.

2) Service Invocation Handling: The following two bench-
marks are run to compare the performance of SOSJ and WS4D
JMEDS in handling service invocation. The benchmarks con-
sider the example of consumer CD invoking the PE sensor
service offered by a provider CD: (i) both consumer and provider
reside on a single BB; and (ii) the consumer and provider reside
on two different networked BBs. The benchmark considers 1000
and 2000 consecutive service invocations. In SOSJ, service
invocation in benchmark (i) is achieved via channel and via
signal for invocation within one CD, while in benchmark (ii),
it is performed via channel involving CDs in different SOSJ
subsystems and via signal involving CDs in different SOSJ
programs. In WS4D JMEDS, in benchmark (i), both provider
and consumer are handled by the same WS4D JMEDS runtime
environment instance, while in benchmark (ii), the provider and
consumer are handled by their respective runtime environment
instances in each platform. The total round trip time to perform
each run of 1000 and 2000 service invocations is measured using
Java timer and the average is calculated over ten runs. Then, the
average round trip time for single service invocation (of 1000
and 2000 invocations) is calculated and the results are shown in
Figs. 12 and 13.

As shown in Fig. 12, in the first benchmark, WS4D JMEDS
achieves lower average time compared to SOSJ in service
invocation in case of single machine scenario. In SOSJ, service
invocation via signal has lower performance overhead compared

TABLE IV
SUMMARY OF COMPARISONS

to invocation via channel as rendezvous/handshake mechanism
is not used, however data delivery is not guaranteed. Higher
performance overhead is observed in invocation via channel,
introduced by the handshake/rendezvous mechanism and chan-
nel reconfiguration on both the consumer and provider’s side.
In SOSJ, when both the consumer and provider CDs belong
to the same subsystem, signal and channel communication are
achieved through shared memory. On the other hand, WS4D
JMEDS service invocation always goes through the DPWS
communication stack that utilizes TCP/IP.

With regard to distributed setting (results shown in Fig.
13), SOSJ achieves better performance in service invocation
compared to WS4D JMEDS. Performed over UDP/IP, SOSJ
invocation via signal puts ahead performance over reliability in
service invocation (i.e., no guarantee in data delivery). Mean-
while, invocation via channel is slower as it guarantees data
delivery. In this benchmark, invocation messages sent through
channel are exchanged via TCP/IP. Despite having the added
feature of guaranteed data exchange and the use of TCP/IP, SOSJ
invocation via channel has better performance compared to
WS4D JMEDS, which relies only on its communication stack to
support the reliability in service invocation.

3) Qualitative Comparisons: SOSJ Versus WS4D
JMEDS: This section presents some additional comparisons
between SOSJ and WS4D JMEDS, which are given in
Table IV.

SOSJ utilizes built-in reactive programming constructs which
support software behaviors that react to events from the en-
vironment through signals, while WS4D JMEDS has limited
features for supporting reactivity. While WS4D JMEDS sup-
ports asynchronous concurrency, achieving true synchronous
concurrency is virtually impossible without underlying formal
MoC. In contrast, being based on GALS MoC, SOSJ supports
both asynchronous and synchronous concurrency as part of
the language. For handling dynamic scenarios, SOSJ provides
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built-in features to handle wider range of application scenarios,
as demonstrated in [21]. With regard to service invocation,
in WS4D JMEDS it goes over the network regardless of the
location of the service consumer and provider. Also, successful
invocation is guaranteed in SOSJ through the use of channels.

VI. CONCLUSION

Based on the synergy of SOA concepts and system-level
language SystemJ, SOSJ offers new support for designing
dynamic distributed software systems typical for manufacturing
applications. In this paper, code examples were presented to
show how the SOA features of the SOSJ framework are
used, and benchmark evaluations were conducted in handling
SOA functionality over competing SOA-only approach. Our
future works are on the extending SOSJ with new standard
mechanisms for programmers to support reconfigurability
through simple abstractions and interface, as well as achieving
interoperability with other software tools used in manufacturing
context, e.g., IEC 61499, through the use of service-oriented
approach demonstrated in this paper.
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