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ABSTRACT
Eclipsing time variations have been observed for a wide range of binary systems, including
post-common-envelope binaries. A frequently proposed explanation, apart from the possibility
of having a third body, is the effect of magnetic activity, which may alter the internal
structure of the secondary star, particularly its quadrupole moment, and thereby cause quasi-
periodic oscillations. Here, we present two compressible non-ideal magnetohydrodynamical
simulations of the magnetic dynamo in a solar mass star, one of them with three times the
solar rotation rate (‘slow rotator’), and the other one with 20 times the solar rotation rate
(‘rapid rotator’), to account for the high rotational velocities in close binary systems. For the
slow rotator, we find that both the magnetic field and the stellar quadrupole moment change
in a quasi-periodic manner, leading to O − C (observed minus corrected times of the eclipse)
variations of ∼0.025 s. For the rapid rotator, the behaviour of the magnetic field as well as the
quadrupole moment changes becomes considerably more complex, due to the less coherent
dynamo solution. The resulting O − C variations are of the order of 0.13 s. The observed
system V471 Tau shows two modes of eclipsing time variations, with amplitudes of 151 and
20 s, respectively. However, the current simulations may not capture all relevant effects due
to the neglect of the centrifugal force and self-gravity. Considering the model limitations and
that the rotation of V471 Tau is still a factor of 2.5 faster than our rapid rotator, it may be
conceivable to reach the observed magnitudes.

Key words: dynamo – MHD – methods: numerical – binaries: eclipsing – stars: rotation.

1 IN T RO D U C T I O N

Post-common-envelope binaries (PCEBs) are close binaries that
consist of a low-mass main-sequence star and a white dwarf (WD).
Such systems are expected to form when the more massive compo-
nent evolves until its surface extends beyond the outer Lagrangian
point and eventually engulfs its companion (Paczynski 1976). Then
the less massive star experiences friction and deposits orbital energy
and angular momentum into the common envelope (CE). It spirals
inwards until the envelope is expelled due to the energy transfer,
leaving a close binary, typically consisting of an M dwarf (dM) or a
subdwarf and a WD (see e.g. Parsons et al. 2013). The CE model has
been revised and extended by various authors, including Meyer &

� E-mail: felnavarrete@udec.cl

Meyer-Hofmeister (1979), Iben & Livio (1993), Taam & Sandquist
(2000), Webbink (2008), and Taam & Ricker (2010).

For about 90 per cent of these systems, eclipsing time variations
have been observed (e.g. Zorotovic & Schreiber 2013; Bours
et al. 2016). The variations occur on rather long time-scales of
the order of 20 yr or more. Two possible interpretations of these
variations are commonly discussed in the literature: the first is the
presence of a third body, i.e. a planet or a brown dwarf, which
would cause apparent eclipsing time variations due to the light-
traveltime (LTT) effect, i.e. the change in the light traveltime to
the observer due to the change of distance as the PCEB rotates
around the common centre of mass (e.g. Beuermann et al. 2010;
Beuermann, Dreizler & Hessman 2013). Clearly, this effect requires
rather massive planets (>MJ, where MJ is the mass of Jupiter) on
extended orbits (>au) to produce significant variations. Alterna-
tively, such variations may also be produced through the Applegate
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1044 F. H. Navarrete et al.

mechanism (Applegate 1992), which will be described in further
detail below.

If the LTT is adopted, the eclipsing time variations imply
the presence of two planets with masses of 5.6 and 2.1 MJ and
semimajor axis of 5 and 3.4 au, respectively, in the system NN Ser
(Beuermann et al. 2010, 2013), which often serves as a reference
system for typical PCEBs. Beuermann et al. (2013) demonstrated
the dynamical stability of these orbits, which was independently
confirmed by Horner et al. (2012). However, when the additional
data by Bours et al. (2016) are considered, they require an extra
quadratic term in the expression for the eclipsing times if they
want to maintain the planet solution. The physical origin of such an
additional term is, however, unclear. In case of the system HW Vir, a
two-planet solution appears to be secularly stable (Beuermann et al.
2012). A final conclusion on the stability of orbits in Hu Aqr is still
pending (Goździewski et al. 2012; Hinse et al. 2012; Bours et al.
2014; Goździewski et al. 2015), and similarly for QS Vir (Parsons
et al. 2010b). In the case of the system V471 Tau, the proposed third
body has been searched via direct imaging, but has not been found
(Hardy et al. 2015). Using the orbital period of the system (12.5
h) and the spin period (9.25 min) of the WD as two independent
clocks, Vanderbosch et al. (2017) have concluded that a third body
interpretation cannot adequately explain the nature of this system.

If the planets in NN Ser are real, they should also be dynamically
young, as the WD has an age of only 106 yr (Parsons et al. 2010a).
While their existence is highly speculative, they have at least two
possible origins. The so-called first-generation scenario proposes
that they formed together with the binary and then survived the
CE phase, while the second-generation scenario implies that they
formed through the material ejected during the CE phase. A hybrid
scenario may be also possible, with accretion of the ejected gas
on to already existing planets. Several studies have been carried
out on this matter (e.g. Bear & Soker 2014; Schleicher & Dreizler
2014; Völschow, Banerjee & Hessman 2014), though it is currently
difficult to draw any final conclusions.

The other possible explanation of the eclipsing time variations is
magnetic activity. Historically, in particular the Applegate mecha-
nism (Applegate 1992) has been a relevant scenario, in which the
magnetic activity of the secondary stars leads to a redistribution
of the stellar angular momentum, thus changing its gravitational
quadrupole moment. This in turn produces a variation of the binary
separation. The original Applegate model has been improved by
several authors. For instance, Lanza & Rodonò (1999) improved
the model by adopting a consistent description of stellar virial equi-
librium. Brinkworth et al. (2006) extended the model introducing
a finite shell formalism, considering the exchange of the angular
momentum between the shell and the core. Völschow et al. (2016)
examined their model in more detail and applied it to a sample
of 16 close binary systems (predominantly PCEBs), showing that
the Applegate mechanism is a viable process in the shortest and
most massive binary systems. The corresponding model has been
made public through the Applegate calculator,1 and shows that the
mechanism is favoured in particular for rapidly rotating systems
(Navarrete et al. 2018).

In addition to the finite shell model, Lanza & Rodonò (2004)
and Lanza (2005) presented a one-dimensional framework based
on the angular momentum transport equations, using simplifying
assumptions of magnetohydrodynamical (MHD) turbulence and

1Applegate calculator: http://theorygroup-concepcion.cl/applegate/index.
php

the mean magnetic field. We have extended this framework in
Völschow et al. (2018), considering in particular time-dependent
hydrodynamic and magnetic fluctuations assuming a magnetic
activity cycle, as well as a superposition of different modes.
For typical RS Canum Venaticorum (RS CVn) systems, which
are detached binaries typically composed of a chromospherically
active G or K star, the expected eclipsing time variations are,
however, two orders of magnitude lower than observed. The most
promising Applegate candidates are PCEBs with secondary masses
of ∼0.35 M� (Völschow et al. 2018), as these produce more
energy through nuclear burning and can thus more easily redistribute
angular momentum as required by the Applegate mechanism, while
simultaneously not being critically affected by the presence of a
radiative core.

The presence of magnetic activity should be expected in these
systems due to the convective envelopes of the secondaries and
their rapid rotation. A corresponding dynamo model has been put
forward by Rüdiger et al. (2002). Observationally, magnetic activity
has been inferred on many occasions. In the case of V471 Tau, it
has been probed via photometric variability, flaring events, and H α

emission along with a strong X-ray signal (Kamiński et al. 2007;
Pandey & Singh 2008). For DP Leo, magnetic activity has been
revealed through X-ray observations (Schwope et al. 2002). In the
system QS Vir, it is indicated via detections of Ca II emission and
Doppler imaging (Ribeiro et al. 2010), as well as observed coronal
emission (Matranga et al. 2012). In case of HR 1099, a 40 yr X-ray
light curve suggesting a long-term cycle was recently compiled by
Perdelwitz et al. (2018), and similar studies have been pursued via
optical data (e.g. Donati et al. 2003; Lanza et al. 2006; Berdyugina &
Henry 2007; Muneer et al. 2010).

While magnetic activity is potentially relevant to explain the
origin of the eclipsing time variations, its effects on the stellar
structure so far have only been explored via finite shell or 1D
models, in both of which the presence of a dynamo was externally
imposed. However, a self-consistent modelling of the dynamo and
its interaction with the stellar structure may be crucial, and is only
possible within 3D MHD simulations. While stellar dynamo models
have previously been pursued (see e.g. Yadav et al. 2016), the latter
was done in the anelastic limit, which does not allow to explore
the effect of the dynamo on to the stellar structure. Here, as a
first step, we will employ a fully compressible set-up developed by
Käpylä et al. (2013) for a solar mass star although with rotation rates
exceeding the solar one. These models allow the quantification of
changes in stellar structure due to the dynamo. While solar mass
stars are not very common in post-common-envelope systems, they
do occasionally occur, as for instance the secondary of V471 Tau
has a mass of 0.93 ± 0.07 M� (Zorotovic & Schreiber 2013), and
is thus still consistent with being a solar mass star. Independently,
we of course stress that this is an exploratory study that should be
extended to stars of different masses as well.

In Section 2, we will briefly introduce the PENCIL CODE2 (Bran-
denburg & Dobler 2002; Brandenburg 2003) as well as the set-
up employed here, which is based on previous developments by
Käpylä et al. (2013). In these simulations, the Rayleigh number,
which describes the ratio of the time-scale for thermal transport via
diffusion to the time-scale for thermal transport via convection, is,
however, much smaller than in reality due to the higher diffusivities
required for numerical stability; see detailed discussions in Käpylä
et al. (2013) and Kupka & Muthsam (2017). Another caveat of fully

2https://github.com/pencil-code/
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MHD origin of ETVs in PCEBs 1045

compressible simulations of solar-like stars is that the low Mach
number in the deep parts of the convection zone (CZ) necessitates
a very short time-step and that the thermal relaxation occurs in the
Kelvin–Helmholtz time-scale that is of the order of 107 (105) yr
for the whole Sun (solar CZ) (see e.g. Kupka & Muthsam 2017).
Thus, to bring the dynamic and acoustic time-scales closer to each
other and to shorten the Kelvin–Helmholtz time-scale, the energy
flux needs to be enhanced (see also Brandenburg et al. 2005). To
compensate for this and to obtain a comparable rotational influence
on the flow as in real stars, which is the key factor determining
their dynamo properties, the angular velocity needs to be increased
proportional to one-third power of the increase of the energy flux
(see a detailed description in Käpylä et al. 2019). For this reason, the
effect of the centrifugal force has been omitted in this formulation
of the Navier–Stokes equation, as the resulting centrifugal force
would be too high, thereby significantly altering the hydrostatic
balance (Käpylä et al. 2011, 2013). With this in mind, we note that
our simulations present only a first step, where the redistribution
of material can be explored for instance due to meridional flows,
and we will not probe the effect originally proposed by Apple-
gate (1992). Nevertheless, the occurrence of quadrupole moment
variations even in the absence of the centrifugal force term is a
central outcome of the simulations. The results of our simulations
are presented in Section 3, including a hydrodynamical reference
run and two MHD simulations. Our discussion and conclusions are
presented in Section 4.

2 ME T H O D S

2.1 PENCIL CODE

The PENCIL CODE (Brandenburg & Dobler 2002; Brandenburg 2003)
is a finite-difference code written in FORTRAN 95. It uses sixth-order
spatial derivatives and a third-order Runge–Kutta time integrator
scheme, which makes the code particularly useful for studying
weakly compressible turbulent flows. For the time-stepping, a high-
order scheme is implemented in order to reduce amplitude errors
and to allow longer time-steps, which is the RK-2N Runge–Kutta
scheme (Williamson 1980), where the ‘2N’ stands for its memory
consumption of two chunks. The time-step is specified by the
Courant time-step. The Message Passing Interface (MPI) is used
for parallelization.

2.2 The model

The model we use here is based on those used by Cole et al. (2014)
and Viviani et al. (2018) and is described here for completeness.
The computational domain is spherical but without the poles,
which allows to reach a higher spatial resolution but at the cost of
omitting connecting flows across the poles and introducing artificial
boundaries at high latitudes. The domain (r, θ , φ) denotes radial,
colatitudinal, and longitudinal directions. The radius extends from
0.7 R� (the bottom of the CZ) to 1.0 R�, where R� is the solar
radius; θ goes from π /12 to 11π /12, and φ from 0 to 2π . The
corresponding grid resolution is 128 × 256 × 512. We employ the
compressible non-ideal MHD equations in the following form:

∂ A
∂t

= u × B − μ0η J, (1)

D ln ρ

Dt
= −∇ · u, (2)

Du
Dt

= g − 2�0 × u + 1
ρ

( J × B − ∇p + ∇ · 2νρS) , (3)

T
Ds

Dt
= 1

ρ

{−∇ · (Frad + FSGS
) + μ0η J2

} + 2νS2, (4)

where A is the magnetic vector potential, u and B = ∇ × A are the
velocity and magnetic field, J = μ−1

0 ∇ × B is the electric current
density with μ0 being the vacuum permeability. D/Dt = ∂/∂t +
u · ∇ is the convective derivative, ρ is the density, and

Frad = −K∇T , (5)

and

FSGS = −χSGSρT ∇s, (6)

are the radiative and subgrid scale (SGS) fluxes. The former
accounts for the flux coming from the radiative core and the
latter is added to stabilize the scheme and to account for the
unresolved turbulent transport of heat. K and χSGS are the radiative
heat conductivity and turbulent entropy diffusivity, respectively. s
is the specific entropy, p is the pressure, and T is temperature.
Furthermore, the system of equations (1)–(4) is closed by assuming
an ideal gas law,

p = (γ − 1)ρe, (7)

where γ = cP/cV = 5/3 is the ratio of specific heats at constant
pressure and volume, and e = cVT is the specific internal energy. S

is the traceless rate-of-strain tensor

Sij = 1

2
(ui;j + uj ;i) − 1

3
δij∇ · u, (8)

where semicolons denote covariant differentiation. g = −GM r̂/r2

is the gravitational acceleration with G being the gravitational
constant, M the stellar mass, and r̂ the radial unit vector. The stellar
rotation vector is given as �0 = (cos θ,− sin θ, 0)�0. As already
discussed in the introduction, the formulation of the Navier–Stokes
equation employed here does not include the centrifugal force term,
which would be unrealistically high (see Käpylä et al. 2011, 2013,
2019, for details).

2.3 Initial and boundary conditions

The initial state is entropic with a temperature gradient given as

∂T

∂r
= − GM/r2

cV(γ − 1)(nad + 1)
, (9)

where nad = 3/2 is the polytropic index for adiabatic stratification.
The fixed values that define a simulation are (i) the energy flux at
the bottom,

Fb = −K

(
∂T

∂r

) ∣∣∣
r=r0

, (10)

where K = (n + 1)K0 is the radiative conductivity, K0 is a constant
(Käpylä et al. 2013), and

n = 2.5

(
r

r0

)−15

− 1. (11)

Here n = nad at the bottom and n → −1 at the surface. This
choice is made to ensure that the radiative flux at the bottom is
solely responsible for supplying energy into the system and that
convection transport essentially the total flux in the bulk of the CZ.
The remaining parameters of the model are (ii) the angular velocity
�0, (iii) viscosity ν, (iv) magnetic diffusivity η, and (v) turbulent
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heat conductivity χSGS and its radial profile (see Käpylä et al. 2013).
The turbulent velocity and magnetic fields are initialized with small-
scale low-amplitude Gaussian noise perturbations.

2.3.1 Radial boundary

The radial boundaries are assumed to be impenetrable and stress-
free, i.e. at r = r0, R:

ur = 0, (12)

∂uθ

∂r
= uθ

r
, (13)

∂uφ

∂r
= uφ

r
. (14)

The bottom (r = r0 = 0.7R) is assumed to be a perfect conductor
with

∂Ar

∂r
= Aθ = Aφ = 0, (15)

and at the top (r = R) the magnetic field is radial

Ar = 0, (16)

∂Aθ

∂r
= −Aθ

r
, (17)

∂Aφ

∂r
= −Aφ

r
. (18)

The value of ∂T/∂r is fixed at the bottom and the upper radial
boundary uses a blackbody condition

σT 4 = −K∇rT − χSGSρT ∇r s, (19)

where σ is a modified value of the Stefan–Bolzmann constant (see
Käpylä et al. 2013).

2.3.2 Latitudinal boundary

The latitudinal boundary is also assumed to be stress-free at θ =
15◦, 165◦

∂ur

∂θ
= uθ = 0, (20)

∂uφ

∂θ
= uφ cot θ, (21)

and a perfect conductor

Ar = ∂Aθ

∂θ
= Aφ = 0. (22)

Density and entropy are assumed to have zero first derivative on
both boundaries, thus suppressing heat fluxes through them.

2.4 Quadrupole moment and its scaling

The quadrupole tensor is defined as

Qij = Iij − 1

3
δij Tr I , (23)

where Tr denotes the trace and Iij is the tensor of inertia

Iij =
∫

xixj dm =
∫

ρ(x)xixj d3x, (24)

where xi refer to Cartesian coordinates.
As already mentioned in the introduction, the stellar luminosity

is enhanced due to numerical constraints (see Brandenburg et al.

2005; Käpylä et al. 2019). As a result, the energy flux coming from
the bottom is much higher than in the Sun. The ratio of fluxes Fr in
the present case is

Fr = Fsimulation

F�
= 8.07 × 105. (25)

The increased flux implies that the fluctuations of other quantities
are correspondingly enhanced. The fluctuation of the pressure can
be written as

�p =
(

∂p

∂ρ

)
s

�ρ ≡ c2
s �ρ, (26)

where the subscript s indicates constant entropy and where cs is the
sound speed. Furthermore, variations in pressure scale as

�p ∼ ρu2. (27)

Equating (26) and (27) we obtain

�ρ

ρ
∼ u2

c2
s

= Ma2. (28)

Here Ma is the Mach number, which scales as (e.g. Käpylä 2019;
Käpylä et al. 2019)

Ma ∼ F1/3
r , (29)

and thus,

�ρ ∼ F2/3
r . (30)

All of the numbers given in Sections 3.3.4 and 3.4.4 have been
rescaled in this fashion, which corresponds to a factor of (8.07 ×
105)−2/3 ≈ 1.15 × 10−4, i.e.

Qxx = 1.15 · 10−4Qxx,sim, (31)

where the subscript ‘sim’ denotes the estimated quadrupole moment
obtained in the simulations.

Furthermore, we define the Taylor, Coriolis, fluid and magnetic
Reynolds, and SGS and magnetic Prandtl numbers as

Ta =
[

2�0(0.3R)2

ν

]2

, Co = 2�0

urmsk1
, (32)

Re = urms

νk1
, ReM = urms

ηk1
, (33)

PrM = ν

η
, PrSGS = ν

χm
SGS

, (34)

where uurms is the volume-averaged root-mean-square velocity, k1 =
2π /0.3R is an estimate of the wavenumber of the largest eddies, and
χm

SGS is the SGS entropy diffusion at r = 0.85 R�.

3 R ESULTS

In this section, we present our main results obtained from the
numerical simulations. In Section 3.1, we introduce the notation
used throughout the paper and discuss the overall properties of our
simulations. We first discuss a pure hydrodynamical reference run
in Section 3.2 to demonstrate that the long-term modulation of the
quadrupole moment must have an MHD origin. We then present
two MHD models, a slow rotator (three times solar rotation, Prot =
9 d) and a fast rotator (20 times solar rotation, Prot = 1.4 d) in
Sections 3.3 and 3.4. These values were chosen as the rotation
rate in PCEBs is considerably enhanced compared to isolated stars,
with a rotation period in V471 Tau of about 0.522 d (Zorotovic &
Schreiber 2013).
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3.1 Notation and general properties

We label the two MHD simulations according to their rotation rates,
namely run3x for the three times solar rotation, and run20x for the
20 times solar rotation rate. Quantities with an overline indicate an
average over the azimuthal angle; e.g. Br indicates an average of
the r component of B over φ and is given by

Br (r, θ ) =
∫

Br (r, θ, φ) dφ∫
dφ

. (35)

Other averages are presented inside angular brackets with subscripts
and superscripts. For example, 〈Br 〉ki indicates an average of Br in
regions denoted with i and k. The subscript indicates the depth
at which the quantity of interest is taken and the superscript
indicates the latitude where the average is further calculated with
the following rules:

i = {s, m, b}, (36)

k = {np, eq, sp}, (37)

where

s = surface → r = 0.98R, (38)

m = middle → r = 0.85R, (39)

b = bottom → r = 0.72R, (40)

and

np = northern hemisphere 75◦ < 90◦ − θ < 0◦, (41)

eq = equator 20◦ < 90◦ − θ < −20◦, (42)

sp = southern hemisphere 0◦ < 90◦ − θ < −75◦, (43)

where θ is colatitude. So for example, 〈Br 〉eq
s indicates the average

of the azimuthally averaged Br over 20◦ < θ < −20◦, i.e. the
equatorial, near the surface of the computational domain.

Typical density and temperature profiles are shown in Fig. 1,
corresponding to the final state of run20x. The density at the
bottom is 181.8 and 13.6 kg m−3 at the surface, where bottom and
surface are evaluated following the definition in (38) and (40). This
corresponds to a density

ρbottom

ρsurface
= 13.4. (44)

The temperature profile is shown in the lower panel of Fig. 1. The
temperature at the bottom is set to be the same as the temperature
at the bottom of the CZ in the Sun, namely T = 2 × 106 K, and
decreases towards a value of 1.9 × 105 K at the surface.

The time-averaged angular velocity � = uφ/r sin θ + �0 is
shown from six latitudes from run3x in the top panel of Fig. 2.
Overall the rotation is faster at the equator than at high latitudes,
but we often observe an increase in the angular velocity at the
latitude boundaries (see the cyan dotted lines in Fig. 2). This is
likely an artefact due to the impenetrable latitude boundary. In the
lower panel of Fig. 2, we show the time-averaged rotation profile for
run20x. The difference in the rotation rates between high latitudes
and the equator is significantly smaller than in the slower rotator.
The decrease of differential rotation as the overall rotation rate is
increased is consistent with earlier studies (e.g. Viviani et al. 2018).

At the beginning, the simulations first have to go through a
relaxation phase during which thermal and magnetic saturation is
established. The description that follows corresponds to run20x,

Figure 1. Density (top) and temperature profile (bottom) for run20x.

but is qualitatively the same for run3x. There are two conditions
that need to be fulfilled before analysing the results and deriving
astrophysical implications for PCEB systems.

On the one hand, the system has to reach dynamo saturation,
which is shown in Fig. 3, where we plot the root-mean-squared mag-
netic field for run20x. The seed magnetic field first decays because
most of the initial magnetic energy is contained on the small scales
which is quickly dissipated (Dobler, Stix & Brandenburg 2006).
Furthermore, it takes susbtantial time for convection and large-
scale flows to develop that lead to dynamo action. Subsequently,
the magnetic field grows exponentially during the next three years
during the kinematic stage. This growth starts to slow down in the
non-linear regime until it reaches the saturation stage after about
22 yr.

The system has to also reach thermal equilibrium, which is shown
in Fig. 4, where we plot the fraction of thermal to total energy. The
only energy source in the simulations is the energy injected from
the bottom of the CZ. While most of this energy is transported to the
surface by convection, a fraction is deposited in the thermal reservoir
of the CZ until equilibrium between energy input and output is
achieved. This is manifested by an increase of the thermal energy
in the present case. Thermal evolution after roughly eight years is
slow and the system is sufficiently close to thermal saturation to be
used for statistical analysis of the data.
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1048 F. H. Navarrete et al.

Figure 2. Angular velocity as a function of radius from six latitudes
indicated by the legend from runs run3x (top) and run20x (bottom).

Figure 3. Saturation of the dynamo in run20x. The rms value of the
magnetic field, Brms, grows exponentially up to the saturation regime where
the analysis is performed.

Figure 4. Evolution of the thermal energy as a fraction of the total energy
of the system in run20x. Ethm is the thermal energy, Ekin is the kinetic
energy, Epot is the potential energy, and Emag is the magnetic energy. The
initial transient is due to the onset and maturing of convection and the
corresponding development of turbulent heat transport.

Figure 5. Gravitational quadrupole moment (Qxx; dotted line) variations
together with the thermal energy of the system (solid line). High-frequency
oscillations are obtained. The thermal relaxation phase coincides with the
phase of gravitational quadrupole moment relaxation, marked with the
dashed blue line.

3.2 Purely hydrodynamical simulation

Here we present a pure hydrodynamical reference run with 20 times
solar rotation. This serves essentially for comparison with the MHD
simulations, to demonstrate that long-term variations only occur in
simulations that include magnetic fields.

Fig. 5 shows the change of the gravitational quadrupole moment
Qxx in the dotted line, together with the thermal energy as a fraction
of the total energy of the system as solid line. Here we can see very-
high-frequency oscillations with a period of 0.18 yr. This is very
close to an average sound-crossing time τ sc, which we calculate as

τsc = 2 rconv

〈cs〉vol
≈ 0.18 yr, (45)

where rconv is the radial extent of the simulations, and 〈cs〉vol

corresponds to the sound speed, cs, averaged over the radial
direction. The sound speed is calculated as

cs =
√(

∂p

∂ρ

)
s

(46)
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MHD origin of ETVs in PCEBs 1049

Figure 6. Radial velocity near the surface for run3x. The colour bar is cut
at ±90 m s−1 to improve visualization.

Figure 7. Radial magnetic field near the surface for run3x. The colour bar
is cut at ±5 kG to improve visualization.

where the subscript ‘s’ indicates the derivative is taken at constant
entropy. Thus, the high-frequency oscillations have a purely hydro-
dynamical origin.

3.3 The case of the slow rotator (run3x)

We first investigate the evolution of a simulation with three times
solar rotation. This case is characterized by Ta = 5.68 × 107, Co =
2.68, Re = ReM = 71, PrM = 1, and PrSGS = 2.5. Simulations with
similar parameters were also explored by Viviani et al. (2018) for
the stellar dynamo but they have not explored the implications on
the stellar structure.

3.3.1 Overview of convective and magnetic states

To illustrate the general structure, we first examine a snapshot at
the end of the simulation. Fig. 6 shows a Mollweide projection (an
equal-area map projection also known as homolographic projection)
of the near surface radial velocity. The colour bar is cut at ±90 m s−1

to improve visualization. The velocity field does not show clear
signs of large-scale structures. At the equator we see elongated
cells (sometimes called ‘banana cells’). Their existence is due
to the influence that rotation has on the flow (see Busse 1970).
At higher latitudes the banana cells disappear, and the effect of
rotation is to give rise to more symmetric and smaller cells (see e.g.
Chandrasekhar 1961). It should be noted that these cells are much
larger than those observed in the Sun which is due to the much lower
density stratification in the simulations. The mean radial velocity is
±60 m s−1, while the extrema can reach ±1000 m s−1.

In Fig. 7, we plot the near surface radial magnetic field at
the end of the simulation. The colour bar is cut at ±5 kG to
improve visualization. The magnetic field strength at the equator is

Figure 8. Time evolution of the mean toroidal magnetic field Bφ for run3x
at three different depths, labelled at the lower left corner of each panel. The
magnetic field is changing its intensity and there are short periods where the
activity is much weaker. The colour bars are cut to improve visualization.

weaker than at high latitudes, and a clear m = 1 non-axisymmetric
component is observed. The mean magnetic field strength is 2.5 kG
and the extrema are ±90 kG. The sizes of the magnetic structures
is much larger than, e.g. sunspots. This is due to the fact that
the current simulations lack the resolution to capture the small-
scale granulation near the surface and the physics leading to spot
formation.

3.3.2 Overview of the magnetic field evolution

We start the analysis by examining the dynamo solution of the slow
rotator. Fig. 8 shows the evolution of the mean toroidal magnetic
field (butterfly diagram) of run3x at three depths. At the Northern
hemisphere there is an overall positive polarity whereas in the
Southern hemisphere the dominant polarity is negative. In each
panel, the polarity near the latitude boundaries is opposite to the
dominant polarity. Polarity reversals can be seen at high latitudes
at the bottom of the convective region (third panel). In the middle
(second panel), these reversals at the poles are more pronounced
and thus easier to see whereas at the surface the reversals are not
as clearly observed in the azimuthal field. Thus, it appears that
the axisymmetric part of the magnetic field consists of a dominant
quasi-stationary component and a weaker quasi-periodic one, as also
recently reported by Viviani et al. (2019). Meanwhile, the strength of
the azimuthal magnetic field is varying quasi-periodically without
polarity reversals near the equator. At the three reference depths
there are episodes of decreased activity, for example at the equator
during the time frames of 55 to 59 yr and 62 to 66 yr. The extrema
at the bottom, middle, and surface are ±20, ±7, and ±3 kG,
respectively.

The evolution of the radial field is shown in Fig. 9. At the
bottom of the convective zone (bottom panel) the behaviour of
Br is similar to the one described for the toroidal field at the
surface. At low latitudes and towards the equator the magnetic field
is positive (negative) at the Northern (Southern) hemisphere, and
there are no clear signs of polarity reversals. In the middle of the
convective region we start seeing hints of a poleward migrating
dynamo wave (see second panel in Fig. 9) at latitudes greater
than 50◦ in both hemispheres. Meanwhile, at mid-latitudes (±30◦)
a persistently negative (positive) magnetic field in the Northern

MNRAS 491, 1043–1056 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/491/1/1043/5610677 by guest on 25 February 2020



1050 F. H. Navarrete et al.

Figure 9. Time evolution of the mean radial magnetic field Br for run3x
at three different depths, labelled at the lower left corner of each panel. A
poleward migration of the magnetic field is clearly seen at the surface of the
domain. Sporadic activity is seen at the equator.

Figure 10. Time evolution of the gravitational quadrupole moment com-
ponents 2|Qxx|, 2|Qyy|, and Qzz in run3x. Apart from differences of a factor
of approximately two, the components follow the same overall trend, in the
form of short-term differences in the high-frequency oscillations.

(Southern) hemisphere is obtained with no migration. Near the
equator, the mean radial magnetic field is weaker but with periods
of increased strength at t = 39, 43, 55, 51, and 67 yr. At the surface
of the star (top panel) a dynamo wave is obtained with a poleward
migration. At the equator the strength of Br is weaker with periods
of increased strength at the same times as in the middle of the
computational domain.

3.3.3 Origin of the quadrupole moment fluctuations

The time evolution of the diagonal elements of the quadrupole
moment Qxx, Qyy, and Qzz is shown in Fig. 10. While Qzz is positive,
Qxx and Qyy are negative, and there is a difference of about a
factor of two in the components. Apart from that, their overall
behaviour is very similar, showing a quasi-periodic evolution with
a period of around eight years, and an amplitude of the order of
∼1 × 1039 kg m2 in the case of Qxx. For comparison, we also applied
the semi-analytic model by Völschow et al. (2018), obtaining the
same order of magnitude for the fluctuations. The system further
shows the presence of short-term oscillations, which are also present
in hydrodynamical runs (see Section 3.2). We will in the following
text take the Qxx component as a reference that we compare to other

Figure 11. Time evolution of the gravitational quadrupole moment com-
ponent Qxx (black dotted line) in run3x together with the absolute value of
the azimuthal average of the radial magnetic field near the surface averaged
over the Northern hemisphere (magenta solid line). The variations of Qxx

can be interpreted as a reaction to the changes of the magnetic field intensity
(see the text).

Figure 12. Time evolution of the total magnetic energy (top panel) and the
axisymmetric magnetic energy (lower panel), compared to the evolution of
the gravitational quadrupole moment Qxx (black line) in run3x.

quantities, keeping in mind that the result would be similar for the
other components as well.

We compare the evolution with the average radial magnetic field
near the surface averaged over the Northern hemisphere in Fig. 11.
We can see peaks of the magnetic field and how they relate to the
quadrupole moment. The first peak of the magnetic field at t =
40 yr can be related to the minimum of Qxx at t = 41.7 yr. Then,
the continuous increase in the magnetic field intensity from t =
45 yr to t = 50 yr is reflected in a decrease of Qxx starting at the
45 yr mark to t = 51 yr. This shows the direct impact of magnetic
field to the overall density distribution of the star. We also compare
the evolution of Qxx directly with the evolution of the total and
axisymmetric magnetic energies in the top and bottom panels of
Fig. 12. Here we see a close anticorrelation between the magnetic
energy and Qxx in both panels, and a time lag might also be present.
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MHD origin of ETVs in PCEBs 1051

Figure 13. Time evolution of the gravitational quadrupole moment com-
ponent Qxx (black line) in run3x together with the mean averaged of the
Reynolds stress component Rrφ at the equator in the surface (red), middle
(green), and bottom (blue).

Figure 14. Time evolution of the gravitational quadrupole moment com-
ponent Qxx (black dotted line) together with the angular momentum per unit
volume averaged over the Northern hemisphere at the surface (red), middle
(green), and bottom (blue) for run3x.

Now, we explore the correlation between the Reynolds stress
tensor component Rrφ = u′

ru
′
φ , where primes denote fluctuations

from azimuthal averages which are denoted by overbars, which is
known to drive differential rotation (Rüdiger 1989; Käpylä et al.
2016). This is shown in Fig. 13. The stress at the surface (middle)
of the computational domain is correlated (anticorrelated) with the
quadrupole moment. The stress at the bottom is weak and with a
small contribution and weak correlation to Qxx.

Finally, we study how the angular momentum Lz = ρ� 2�,
where � = rsin θ is related to Qxx. In Fig. 14, we plot the
angular momentum per unit volume averaged over the Northern
hemisphere at the surface (red), middle (green), and bottom (blue).
While the angular momentum itself will not directly affect the
stellar structure through the centrifugal force, it changes due to
the Reynolds stress and shows a strong correlation here with the
change of the quadrupole moment.

From this figure, we see that the outer layers carry less angular
momentum than the inner ones, and at the surface there is an
anticorrelation between the absolute value of Qxx and the absolute
value of Lz. The angular momentum at the surface further appears
to be anticorrelated with the angular momentum in the middle and
at the bottom, thus indicating an internal redistribution.

3.3.4 Gravitational quadrupole moment evolution

We return to Fig. 10 to analyse the time evolution of quadrupole
moment. We are interested in variations on time-scales longer
than the hydrodynamic oscillations with a period of ∼0.18 yr, see

Section 3.2. The variations in Qxx are not strictly periodic. For
example, there is an episode between t ∼ 44 and t ∼ 52 yr where
it takes clearly more time to reach a local maximum. Furthermore,
Qxx reaches a global minimum at t = 65 yr which is clearly lower
than those that precede it. This behaviour is to be expected to a
certain degree as the full set of MHD equations is highly non-linear.
Overall, these fluctuations have a period of approximately five to
six years and semi-amplitudes of ∼1 × 1039 kg m2.

Bearing in mind the necessary rescaling to obtain astrophysical
values (see Section 2.4) and that we are modelling a solar mass star,
we can use the results from our simulations to estimate the impact in
V471 Tau. Following Applegate (1992), the variations in the binary
period are related to variations in the quadrupole moment via

�P

P
= −9

(
R

abin

)2
�Qxx

MR2
, (47)

or

�P

P
= −9

�Qxx

M a2
bin

, (48)

where M and R are the mass and radius of the magnetically active
star, and abin is the binary separation. We take the Qxx semi-
amplitude as

�Qxx = 1 × 1039 kg m2 (49)

and adopt a binary separation of 3.3 R�. This result is consistent
with the semi-analytic model by Völschow et al. (2018), adopting
fluctuations of about 10 per cent in the turbulence and magnetic
field. We therefore obtain

�P

P
= 8.4 × 10−10. (50)

Furthermore,

O − C = �P

P

Pmod

2π
, (51)

where Pmod is the modulation period of the O − C diagram (see
Applegate 1992). Combining this equation with equation (48)
yields

O − C = 0.025 s. (52)

Marchioni et al. (2018) presented the most updated analysis of
the eclipsing times of V471 Tau. The authors reported two period
variations, one with O − C = 151 s and Pmod = 35 yr. The other
contribution has a semi-amplitude of O − C = 20 s and a modulation
period of Pmod = 9.7 yr. The semi-amplitude obtained from the
simulations in this case is thus much lower than observed. However,
we note that the rotation rate is different than in V471 Tau, and
also the stellar mass may not be exactly the same. Indeed, more
promising results will be obtained with the fast rotator in the next
section.

3.4 The case of the fast rotator (run20x)

We now investigate the evolution of a simulation with 20 times solar
rotation. This case is characterized by Ta = 2.55 × 109, Co = 59.7,
Re = ReM = 21, PrM = 1, and PrSGS = 2.5. Also this simulation
lies within the parameter regime explored by Viviani et al. (2018).

3.4.1 Overview of convective and magnetic states

Fig. 15 shows the near-surface radial velocity from run20x. Also
here, banana cells are present at the equator, but with a decreased

MNRAS 491, 1043–1056 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/491/1/1043/5610677 by guest on 25 February 2020



1052 F. H. Navarrete et al.

Figure 15. Mollweide projection of the radial velocity near the surface for
run20x. The colour bars are cut to improve visualization.

Figure 16. Mollweide projection of the radial magnetic field near the
surface for run20x. The colour bars are cut to improve visualization.

azimuthal extent in comparison to run3x. At higher latitudes the
size of the convection cells is also reduced. This decreasing size of
convection cells as the rotation increases is in accordance with linear
stability analysis (e.g. Chandrasekhar 1961) and earlier numerical
simulations (e.g. Viviani et al. 2018). The average convective
velocity is 19.4 m s−1, with extrema of 700 and −561 m s−1.

Fig. 16 shows the near-surface radial magnetic field at the end of
run20x. The radial magnetic field differs from that of run3x in that
it is stronger and more organized. The rms radial magnetic field is
4.5 kG, i.e. 1.8 times stronger than in run3x. The extrema are about
±90 kG, as in run3x. These large-scale magnetic structures can
cover the whole surface of the star. A possible explanation is that
convection in the rapidly rotating run is less supercritical in terms
of its Rayleigh number because the values of ν and χSGS remain the
same as in run3x. Thus the flows and magnetic fields in run20x are
more laminar than in run3x.

3.4.2 Overview of the magnetic field evolution

We follow here the same approach as in the case of the slow
rotator. Fig. 17 shows the time evolution of the mean toroidal
magnetic field, i.e. butterfly diagram, at three depths labelled at
the lower left corner of each panel. The mean magnetic field shows
a more complex behaviour than in run3x. At the bottom of the
domain the dynamo solution is cyclic everywhere in the beginning.
The maximum amplitudes are ±12 kG. At later times there is a
quasi-stationary axisymmetric magnetic field from 57 to 76 yr,
covering most of the Southern hemisphere. The dynamo solution
at the middle of the domain is persistently cyclic with a poleward
migration. Here the extrema of the magnetic field are ±8 kG. At
the surface there is a poleward dynamo wave near the equator with

Figure 17. Time evolution of the mean azimuthal toroidal magnetic field Bφ

for run20x. A poleward migration of the magnetic field is clearly seen at the
surface and middle of the domain. Near the equator there is a hemispheric
wave operating on the Northern hemisphere at latitudes between ∼5◦ to
∼50◦. This hemispheric asymmetry is decreasing towards the end of the
simulation. The colour bars are cut at ±2.5 kG for better visualization.

Figure 18. Time evolution of the mean radial magnetic field Br for run20x.
The hemispheric dynamo wave is clearly seen at the surface and middle of
the domain. It is also seen that the magnitude of the axisymmetric field
decreases until around 70 yr.

extrema of ±5 kG. This poleward mode is clearly more coherent
on the Northern hemisphere and can be seen at latitudes between
∼5◦ to ∼50◦, whereas a higher frequency wave on the Southern
hemisphere can be seen only very near the equator. The amplitude
of the axisymmetric magnetic field is also slowly decreasing during
the simulation. The absence of a strong toroidal magnetic field near
the surface is due to the radial field boundary condition (see Käpylä
et al. 2016; Warnecke et al. 2016).

A time-latitude diagram for Br is shown in Fig. 18. Here, the
presence of a hemispheric dynamo wave with decreasing amplitude
in time is clearly visible and the magnetic fields have a poleward
migration. At early times, the extrema at the surface (bottom) is
±20 kG (±8 kG). The hemispheric asymmetry disappears in the
period between 68 to 80 yr and the extrema near the top (bottom)
is ±4 kG (±3 kG), respectively. The behaviour is quite different
from the case of run3x. This is because the excited dynamo mode
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MHD origin of ETVs in PCEBs 1053

Figure 19. Time evolution of the gravitational quadrupole moment compo-
nents 2|Qxx|, 2|Qyy|, and Qzz in run20x. Apart from differences of a factor
of approximately two, the components follow the same overall trend, with
short-term differences in the high-frequency oscillations.

Figure 20. Total and detrended Qxx in black and orange, respectively, for
run20x.

depends on the rotation rate of the simulation (see e.g. Viviani
et al. 2018). The major differences in the magnetic field evolution
between run3x and run20x is that first, the intensity of Br in the
latter is larger by a factor of two at the surface. Secondly, the overall
intensity of the azimuthally averaged magnetic field in the latter is
decaying, whereas in run3x it remains roughly constant. And thirdly,
the magnetic field is migrating virtually everywhere in run20x,
whereas the migrating component was found to be subdominant in
run3x where a strong quasi-steady field is present at all times (see
Fig. 9). We note in summary that the behaviour of the magnetic
field is considerably more complex in the rapidly rotating case.

3.4.3 Origin of the Qxx fluctuations

Analogous to the slowly rotating case, we explore the origin of the
quadrupole moment variations. The time evolution of the diagonal
elements Qxx, Qyy, and Qzz are shown in Fig. 19 but we again study
Qxx bearing in mind that the result would be similar for the other
components. In |Qxx|, we see a quasi-periodic variation on a time-
scale of about 30 yr superimposed with a longer term trend. The
latter, which decreases continuously the quadrupole moment, might
be related to an incomplete thermal saturation of the stellar interior.
For this reason, we have detrended Qxx by taking the difference
between the endpoints of its time series and subtracting this linear
trend from the data. The resulting time series is shown in Fig. 20.
We first compare the total, non-detrended Qxx to the evolution of the
mean radial magnetic field averaged at the Northern hemisphere at
the surface of the domain, depicted in Fig. 21. The sharp decrease

Figure 21. Time evolution of the gravitational quadrupole moment com-
ponent Qxx (black dotted line) for run20x together with the absolute value
of the mean radial magnetic field averaged at the North pole (top panel) in
the surface of the domain (magenta solid line). The middle panel shows the
comparison with the mean radial magnetic field averaged at the South pole
in the surface of the domain, in the bottom panel the average was taken at
the equator in the surface of the domain.

of 〈Br〉np
s reflects the change in the dominant dynamo mode (same

as in Fig. 18). The effect of this decrease on Qxx can also be clearly
seen.

This correlation is not seen when the same quantities are com-
pared on the Southern hemisphere (see middle panel of Fig. 21). It
can also be seen that the mean magnetic field is weaker by almost
an order of magnitude in the Southern hemisphere around t = 32 yr.
The mean field strengths evolve gradually such that they are equal
around t = 70 yr. The mean fields at both hemispheres start to
grow around the 80 yr mark; see top panel of Fig. 21) which
coincides with the weak increase in Qxx. Finally, it can be seen
from the bottom panel of Fig. 21 that the average magnetic field
at the equatorial portion of the surface of the star does not have
significant variations nor correlation with Qxx. We further compare
the evolution of the detrended Qxx with the total magnetic and
the azimuthal magnetic energy in Fig. 22. Here, especially for the
azimuthal magnetic energy, the anticorrelation is less pronounced
than we previously found in run run3x. In the total magnetic energy,
several maxima or minima show counterparts in the evolution of Qxx
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1054 F. H. Navarrete et al.

Figure 22. Time evolution of the total magnetic energy (top panel) and the
axisymmetric magnetic energy (lower panel), compared to the evolution of
the detrended gravitational quadrupole moment Qxx (black line) in run20x.

Figure 23. Time evolution of the gravitational quadrupole moment com-
ponent Qxx (black dotted line) for run20x together with the mean averaged
Reynolds stress component Rrφ at the equator in the surface (red line),
middle (green), and bottom (blue) of the domain.

but only towards the end of the simulation, i.e. t � 65 yr. Further,
while Qxx on average is decreasing during the period investigated
here, the total magnetic energy shows an average increase. The
azimuthal magnetic energy, on the other hand, shows a strong peak
towards the beginning of the simulated period, and subsequently
remains at a lower level with quasi-periodic fluctuations on a time-
scale of roughly five years in superposition with a possible longer
term modulation.

As for run3x, we plot the rφ component of the Reynolds stress
at the equator and at the three depths in Fig. 23. The average
of Rrφ at the surface is steadily increasing while Qxx decreases.
Meanwhile, the stress at the deeper layers is approximately constant.
There is anticorrelation between Qxx and the stress at the equator

Figure 24. Time evolution of the gravitational quadrupole moment compo-
nent Qxx (black dotted line) for run20x together with the angular momentum
per unit volume averaged over the Northern hemisphere at the surface (red),
middle (green), and bottom (blue) for the fast rotator.

near the surface in the latter part (t � 60 yr) of the simulation.
We also show the correlation between the quadrupole moment
and the angular momentum at three depths in Fig. 24, though we
note as before that this correlation is due to the effect of angular
momentum redistribution by the Reynolds tensor, and unrelated to
the centrifugal acceleration. While at early times Lz at the bottom
increases and Qxx remains constant, the correlation in both quantities
after the 40 yr mark is high. To recapitulate, we find that the
evolution of the fast rotator is much more complex in comparison
to the more slowly rotating counterpart and clear correlations
between magnetic activity and quadrupole moment variations are
visible only towards the end of the simulation. A significantly
longer time series would be needed to quantify this effect more
precisely. This is out of the scope of this study and will be pursued
elsewhere.

3.4.4 Gravitational quadrupole moment evolution

The purely hydrodynamic oscillations in the quadrupole moments
particularly Qxx (see also Section 3.2) are present, similarly as in
run3x. The overall behaviour of the quadrupole moment in this
run is remarkably different from the case of run3x, showing a
more complex behaviour. At the beginning from the 29 to 37 yr
marks Qxx remains constant on average, apart from the presence
of hydrodynamic oscillations with a period of ∼0.18 yr. After
the 37 yr mark, Qxx decreases gradually from −1.15 × 1041 to
−1.16 × 1041 kg m2. After this, the behaviour described above
starts again but now the decrease is stronger and starts at 60 yr.
Qxx changes from −1.17 × 1041 to −1.18 × 1041 kg m2. It is thus
possible that we see here a quasi-periodic oscillation superimposed
with a longer term trend. Analogous to the case of run3x where we
rescaled the gravitational quadrupole moment (see Section 2.4), we
take the system parameters of the magnetically active component
in the PCEB V471 Tau and bear in mind that this run has a rotation
rate and stellar parameters similar to the magnetically active star in
this system, but now we take the maximum and minimum of Qxx to
obtain

�Qxx = 1.7 × 1039 kg m2 (53)

and adopt a binary separation of 3.3 R�. Inserting this into
equation (48) yields

�P

P
= 1.40 × 10−9. (54)

MNRAS 491, 1043–1056 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/491/1/1043/5610677 by guest on 25 February 2020



MHD origin of ETVs in PCEBs 1055

Furthermore,

O − C = �P

P

Pmod

2π
(55)

where Pmod is the modulation period of the O − C diagram semi-
amplitude (see Applegate 1992) with equation (48). In our case
Pmod = 50 yr. Thus

O − C = 0.13 s. (56)

The semi-amplitude obtained from the simulations is still lower than
the observed value found by Marchioni et al. (2018). Nevertheless,
we also found that it has increased considerably compared to the
slow rotator, by a factor of 5.2, while the rotation velocity has
changed by roughly a factor of 6.7. As we are still a factor of
2.5 below the rotation velocity of V471 Tau, it is conceivable that
another significant increase could be expected for the parameters
of that system. In addition, we note that the centrifugal force
is neglected in our simulations, which can be another relevant
contribution.

4 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we have studied the stellar quadrupole moment
variations arising from magnetic activity through directly solving
the 3D compressible non-ideal MHD equations with the PENCIL

CODE. We have run two simulations of solar mass stars, one with
three times the solar rotation rate, and the other with 20 times
solar rotation. This is motivated by the fact that typical rotation
rates in PCEBs are considerably higher than for isolated stars. As a
reference system, we here consider V471 Tau, which has a roughly
solar mass secondary.

In the two simulations we have run, we see two very different
behaviours in the evolution of the magnetic fields and the quadrupole
moment. For the slow rotator, quasi-periodic oscillations in the
quadrupole moment, the magnetic field, the Reynolds stress, and
other quantities can be distinguished easily. Meanwhile, for the
fast rotator the evolution is much more complex, which can also
be seen in the magnetic field evolution. The slow rotator has a
relatively simple magnetic field behaviour, showing a superposition
of a strong quasi-steady and a weaker migrating dynamo modes,
whereas the fast rotator has a significantly more complex magnetic
field evolution. It has a poleward migrating magnetic field near
the equator and a superposed hemispheric dynamo wave operating
only on the Northern hemisphere. The latter is also decreasing its
amplitude. While the run has been evolved for a total of 90 yr, it may
not yet be in complete thermal saturation, which can give rise to the
long-term trends that we observed. We therefore have detrended the
simulations to correct for such an influence, yielding then a clear
anticorrelation with magnetic energy.

We have established a link between the magnetic activity and the
gravitational quadrupole moment by means of the Reynolds stress
tensor, which will be affected by the magnetic dynamo due to its
local effect on the convective velocities. There is an anticorrelation
between both the total and axisymmetric magnetic energies and
Qxx, but we do not discard a time lag of the anticorrelation. While
in the case of the slow rotator it is relatively easy to observe, in
the fast rotator case the behaviour is much more complex, as it
shows signs of a quasi-periodic change, on which a global trend
appears to be superimposed both for the magnetic field and the
quadrupole moment. The timeline in our simulations (∼55 yr) is
larger than the observed timeline in V471 Tau, while the observed
timeline corresponds to about 35 yr. The expected O − C variation

has increased considerably going from the slow to the fast rotator,
where a change by half an order of magnitude in the rotation velocity
corresponds to a change by a factor of 5.2 in the expected value of
O − C. As even the fast rotator is a factor of 2.5 below the rotation
velocity of V471 Tau, another significant increase may be expected
for the rotation velocity of that system. We also note that the effect
of the centrifugal force has been neglected so far, but it may further
enhance the O − C variations. The current simulations also assume a
fixed spherically symmetric gravitational potential. This modelling
choice is possibly also limiting the quadrupole moment variations.

Overall, we arrive at the following preliminary conclusions:

(i) the complexity of the evolution of Qxx is linked to the dynamo
mode, angular momentum evolution, and Reynolds stress tensor,

(ii) Qxx is anticorrelated to the total and axisymmetric magnetic
energies,

(iii) the numbers of the O − C amplitude and �P/P depend on
the overall magnetic field evolution and complexity,

(iv) the angular momentum at the bottom of the CZ is more
correlated to Qxx than that near the surface,

(v) �Qxx has a dependence on stellar rotation.

In spite of relevant uncertainties to be explored, we present
here the first analysis showing how the stellar quadrupole moment
changes as a function of time in compressible non-ideal MHD
simulations. We find strong evidence that magnetic effects can
indeed produce such variations, while pure hydrodynamical runs
as presented in Section 3.2 produce only short-term variations on
the sound-crossing time-scale. We believe that such simulations will
be important in the future to more quantitatively explore the effects
of magnetic activity in close binary systems, and to allow a better
understanding of the observed phenomena.

The variations in Qxx found here should be taken as indicative
rather than precise, as with the current computational power it
is impossible to approach the real dimensionless parameters that
govern stellar plasmas. For example, the magnetic Prandtl number is
1 in the simulations whereas in the Sun it is ∼10−5. The normalized
flux in the bottom of the Sun is ∼10−11 whereas in the simulation
it is highly enhanced with a value of 3.2 × 10−5. In the case of
the Reynolds number this is more severe, as in the Sun it ranges
from 1012 to 1013 and in the simulations we have Re ∼ 21–71.
However, the simulations in previous studies have proven to be
successful in reproducing some of the solar phenomena (see e.g.
Käpylä, Mantere & Brandenburg 2012; Käpylä et al. 2013, 2016;
Viviani et al. 2018). Further development of 3D MHD simulations
of fully convective stars will prove to be of great importance as
we expect the Applegate mechanism to be an important tool for
studying dMs dynamos through eclipsing time variations.

To draw stronger conclusions, more simulations are required
to explore the parameter space. In particular, exploring how Qxx

depends on stellar rotation and mass is important as the magnetically
active companion in PCEBs is rotating at a high fraction of their
critical stellar rotation, which scales with the energetical feasibility
of the Applegate mechanism (Navarrete et al. 2018). Also, fully
convective stars are expected to produce a higher amplitude of
�P/P based on the models of Völschow et al. (2018). Based on such
simulations, eclipsing time observations may become a promising
tool to probe stellar dynamos in the future.
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2018, A&A, 615, A81
Paczynski B., 1976, in Eggleton P., Mitton S., Whelan J., eds, Proc. IAU

Symp. 73, Structure and Evolution of Close Binary Systems. Kluwer,
Dordrecht, p. 75

Pandey J. C., Singh K. P., 2008, MNRAS, 387, 1627
Parsons S. G., Marsh T. R., Copperwheat C. M., Dhillon V. S., Littlefair S.
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Warnecke J., Käpylä P. J., Käpylä M. J., Brandenburg A., 2016, A&A, 596,

A115
Webbink R. F., 2008, in Milone E. F., Leahy D. A., Hobill D. W.,

eds, Astrophysics and Space Science Library, 352, Common Envelope
Evolution Redux, Springer-Verlag, Berlin. p. 233

Williamson J. H., 1980, J. Comput. Phys., 35, 48
Yadav R. K., Christensen U. R., Wolk S. J., Poppenhaeger K., 2016, ApJ,

833, L28
Zorotovic M., Schreiber M. R., 2013, A&A, 549, A95

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 491, 1043–1056 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/491/1/1043/5610677 by guest on 25 February 2020

http://dx.doi.org/10.1086/170967
http://dx.doi.org/10.1093/mnras/stu1529
http://dx.doi.org/10.1086/517881
http://dx.doi.org/10.1051/0004-6361/201015472
http://dx.doi.org/10.1051/0004-6361/201118105
http://dx.doi.org/10.1051/0004-6361/201220510
http://dx.doi.org/10.1093/mnras/stu1879
http://dx.doi.org/10.1093/mnras/stw1203
http://dx.doi.org/10.1016/S0010-4655(02)00334-X
http://dx.doi.org/10.1002/asna.200510411
http://dx.doi.org/10.1111/j.1365-2966.2005.09718.x
http://dx.doi.org/10.1086/150337
http://dx.doi.org/10.1088/2041-8205/780/2/L22
http://dx.doi.org/10.1086/498634
http://dx.doi.org/10.1046/j.1365-2966.2003.07031.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21341.x
http://dx.doi.org/10.1093/mnras/stu2728
http://dx.doi.org/10.1088/2041-8205/800/2/L24
http://dx.doi.org/10.1111/j.1365-2966.2011.20283.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21620.x
http://dx.doi.org/10.1086/133321
http://dx.doi.org/10.1086/520923
http://dx.doi.org/10.1051/0004-6361/201015884
http://dx.doi.org/10.1088/2041-8205/755/1/L22
http://dx.doi.org/10.1088/0004-637X/778/1/41
http://dx.doi.org/10.1051/0004-6361/201527002
http://dx.doi.org/10.1111/j.1365-2966.2005.09559.x
http://dx.doi.org/10.1002/asna.200310239
http://dx.doi.org/10.1051/0004-6361:20064847
http://dx.doi.org/10.3847/2515-5172/aae36f
http://dx.doi.org/10.1088/0004-637X/747/2/132
http://dx.doi.org/10.1051/0004-6361/201014931
http://dx.doi.org/10.1051/0004-6361/201732425
http://dx.doi.org/10.1111/j.1365-2966.2008.13342.x
http://dx.doi.org/10.1111/j.1365-2966.2009.16072.x
http://dx.doi.org/10.1111/j.1365-2966.2010.17063.x
http://dx.doi.org/10.1093/mnras/sts332
http://dx.doi.org/10.1051/0004-6361/201732222
http://dx.doi.org/10.1088/0004-6256/139/3/1106
http://dx.doi.org/10.1051/0004-6361:20020956
http://dx.doi.org/10.1051/0004-6361/201322860
http://dx.doi.org/10.1051/0004-6361:20011651
http://dx.doi.org/10.1016/j.newar.2010.09.027
http://dx.doi.org/10.1146/annurev.astro.38.1.113
http://dx.doi.org/10.1051/0004-6361/201732191
http://arxiv.org/abs/1902.04019
http://dx.doi.org/10.1051/0004-6361/201322111
http://dx.doi.org/10.1051/0004-6361/201527333
http://dx.doi.org/10.1051/0004-6361/201833506
http://dx.doi.org/10.1051/0004-6361/201526131
http://dx.doi.org/10.1016/0021-9991(80)90033-9
http://dx.doi.org/10.3847/2041-8213/833/2/L28
http://dx.doi.org/10.1051/0004-6361/201220321

