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Reference-Feedforward Power-Synchronization Control

Lennart Harnefors, Fellow, IEEE, F. M. Mahafugur Rahman, Marko Hinkkanen, Senior Member, IEEE

and Mikko Routimo, Member, IEEE

Abstract—In this letter, an enhancement of power-
synchronization control is proposed, whereby pole–zero
cancellation in the closed-loop system is achieved. An effect
thereof is that step-response ringing and overshoot are
eliminated. For strong grids, the closed-loop bandwidth
increases, allowing a shorter step-response rise time.

Index Terms—Grid-connected converters, robustness, stability
analysis, voltage-source converters.

I. INTRODUCTION

POWER-SYNCHRONIZATION CONTROL (PSC) [1] is

based on emulating the dynamics of a synchronous ma-

chine by a grid-connected voltage-source converter (VSC).

The scheme was originally conceived to allow a stable inter-

connection with a very weak grid [2]. Its properties have been

studied in detail over the years. Two recent examples are the

large-signal transient stability analysis presented in [3] and the

analytic selection of the power-control gain derived in [4]. In

addition, in [4] an empirical selection recommendation for the

so-called active resistance (which resembles the proportional

gain of a current controller) is given. A robust design, with

guaranteed stability margins of the power control loop, is

obtained irrespective of the grid strength.

The great majority of papers on PSC consider weak-grid

connections and/or grid-forming control, e.g., [5]–[8]. For

robustness it is desirable that PSC should perform well also in

a strong-grid connection. Unfortunately, even with the robust

design in [4], the performance of PSC is inferior to that of

traditional vector current control with cascaded outer loops.

The closed-loop bandwidth is inherently limited and typically

the step response exhibits overshoot and/or ringing.

This shortcoming is here rectified by the enhancement

reference-feedforward PSC (RFPSC). In addition to using the

power reference in the power control law, it is fed forward

to the active-resistance part [9]. It is shown that this places

the zeros of the closed-loop system so that they (near-exactly)

cancel a complex pole pair, reducing the system order from

three to one. The pole–zero cancellation occurs irrespective of

the grid inductance, thus, ensuring robustness.

Design and analysis of RFPSC are presented in Section II,

followed in Section III by experimental verification.
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II. THEORETICAL RESULTS

A. Design

In PSC, the converter voltage, expressed in the stationary

αβ frame, is given as

v
s = vejθ (1)

assuming operation in the linear pulsewidth-modulation re-

gion, controller latency neglected, and switching harmonics

disregarded. With current and power direction out of the

converter, angle θ—which defines the synchronously rotating

dq frame—is governed by the (active) power control law

dθ

dt
= ω1 +Kp(Pref − P ) (2)

where ω1 is the fundamental angular frequency, Kp is the

power-control gain, Pref is the power reference,

P = κRe{vs(is)∗} = κRe{vi∗}, κ =
3

2K2
(3)

is the active output power, and K is the space-vector scaling

constant. For per-unit (p.u.) normalization of the quantities or

power-invariant vector scaling (K =
√

3/2), κ = 1. Moreover,

PSC gives the dq-frame converter voltage as

v = V +Ra(iref − i) (4)

where V here is considered constant (nominally 1 p.u.),

although in practice it may be varied via a closed control

loop for the point-of-common-coupling voltage or the reactive

power [1], [10]. The second term is that of the active resistance

Ra, expressed as a proportional control law. In conventional

PSC, iref is selected as a filtering of the converter current

i = id + jiq by the low-pass filter H(s) = ωb/(s+ ωb) [4].

In the steady state, iref−i = 0, simplifying (3) to P = κV id.

This motivates selecting the d component of iref as Pref/(κV ),
whereas the low-pass filtering for the q component remains,

i.e.,

iref =
Pref

κV
+ jH(s)Im{i} (5)

which constitutes the invention in RFPSC [9]. The block

diagram shown in Fig. 1 is obtained.

Remark: Being a voltage-stiff control scheme, PSC gives

injection of negative-sequence current as response to an unbal-

anced grid. The d component of iref has low negative-sequence

content; for conventional PSC because of filtering and for RF-

PSC due to its selection as a quotient of two references. Hence,

the two PSC variants have virtually identical unbalanced-grid

responses.
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Fig. 1. Block diagram of RFPSC. The thick line shows the feedforward path
for the power reference.

B. Analysis

The closed-loop system from Pref to P resulting from

RFPSC is here analyzed. In accordance with [1], [4], a

purely inductive grid impedance, with inductance L, behind an

infinite bus with the stiff voltage Vg is assumed. Consequently,

v
s − sLis = v

s
g = Vge

jω1t (6)

where s = d/dt. Since the coordinate transformation (1) and

the active-power expression (3) both are nonlinear, small-

signal analysis is required. Identically to [4], the involved

variables are expressed as perturbations (denoted by the prefix

∆) about operating points, as follows:

θ = ω1t+ θ0 +∆θ i = i0 +∆i (7)

where i0 = id0 + jiq0. With (7), (6) is transformed to the dq
frame as

v − [s+ j (ω1 + ∆̇θ)
︸ ︷︷ ︸

θ̇

]Li = Vge
−j(θ0+∆θ). (8)

For the conventional PSC selection iref = H(s)i, the small-

signal form of (4) becomes ∆v = Ra[H(s) − 1]∆i, whereas

the RFPSC selection (5) yields ∆v = Ra[∆Pref/(κV ) +
jH(s)Im{∆i} − ∆i]. The bandwidth of H(s) is selected

low, typically ωb = 0.1 p.u. [4]. This allows approximating

H(s) = 0 without significantly impairing the accuracy of the

results, yielding the following perturbation form of (4):

∆v = Ra

(

ξ
∆Pref

κV
−∆i

)

, ξ =

{
0 for conv. PSC

1 for RFPSC.
(9)

Straightforward comparison of the two variants, conventional

PSC and RFPSC, is thereby permitted. Substituting (9) in (8),

approximating e−j∆θ ≈ 1 − j∆θ, and neglecting cross terms

between perturbation variables yields

[Ra + (s+ jω1)L]∆i =
ξRa

κV
∆Pref + j(Vge

−jθ0 − sLi0)∆θ

+ V − jω1Li0 − Vge
−jθ0 (10)

where the last three terms on the right-hand side must sum up

to zero, giving Vge
−jθ0 = V − jω1Li0. Solving for ∆i yields

the following relation:

∆i =
j[V − (s+ jω1)Li0]

Ra + (s+ jω1)L
︸ ︷︷ ︸

Gθi(s)

∆θ +
ξRa

κV

Ra + (s+ jω1)L
︸ ︷︷ ︸

Gri(s)

∆Pref .

(11)

Introduction of perturbation variables in (3) gives, after lin-

earization

∆P = κRe{V∆i
∗ + i

∗

0∆v}. (12)

Substitution of (9) in (12) yields

∆P = κRe{V∆i
∗ −Rai

∗

0∆i}+
ξRaid0

V
∆Pref (13)

in which (11) is substituted, giving

∆P =κRe{VG
∗

θi(s)−Rai
∗

0Gθi(s)}
︸ ︷︷ ︸

GθP (s)

∆θ

+ ξ

[
Raid0
V

+
κ

ξ
Re{VG

∗

ri(s)−Rai
∗

0Gri(s)}

]

︸ ︷︷ ︸

GrP (s)

∆Pref .

(14)

The real part is evaluated for s real, resulting in

GθP (s) =
κV 2

ω1L

as2 + (1 + a+ b)ω2
1

s2 + 2αs+ ω2
1 + α2

(15)

GrP (s) =
cs2 + α(1 + c)s+ (c+ d)ω2

1 + α2

s2 + 2αs+ ω2
1 + α2

(16)

where

α =
Ra

L
a =

ω1Liq0
V

b = −
R2

a

V

(
iq0
ω1L

+
|i0|

2

V

)

c =
Raid0
V

d =
R2

aiq0
ω1LV

. (17)

Combining (14) with the power control law (2), expressed in

perturbation variables as ∆θ = (Kp/s)(∆Pref − ∆P ), the

closed-loop system shown in Fig. 2 is obtained. As Gp(s) is

invariant of ξ, RFPSC does not affect the feedback loop in Fig.

2, and consequently not the poles of the closed-loop system

Gc(s). This motivates adopting the gain selection in [4]

Kp =
ω1Ra

κV 2
(18)

which gives ample stability margins.

Block-diagram reductions in Fig. 2 give Gc(s) = [Gp(s) +
ξGrP (s)]/[1 + Gp(s)]. Substituting (15) and (16) in this

relation yields

Gc(s) =
ξcs3 + k2s

2 + k1s+ (1 + a+ b)αω2
1

s3 + (2 + a)αs2 + (α2 + ω2
1)s+ (1 + a+ b)αω2

1
(19)

where k2 = [a+ ξ(1 + c)]α and k1 = ξ[(c+ d)ω2
1 + α2]. The

denominator can be approximately factorized as [s+(1+ a+
b)α](s2 +αs+ω2

1), expanding to s3+(2+ a+ b)αs2 + [(1+
a+b)α2+ω2

1]s+(1+a+b)αω2
1. The coefficients for s2 and s

are, thus, imperfectly matched. An approximate factorization
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Fig. 2. Linearized closed-loop system, where RFPSC is obtained for ξ = 1.
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Fig. 3. Pole–zero plots for V = ω1 = 1 p.u., L = 0.5 p.u., Ra = 0.2 p.u.,
and various operating points i0 = id0 + jiq0. Exact pole–zero cancellation
is obtained for i0 = 0, near-exact otherwise.

of the numerator is, for ξ = 1, given as [cs+(1+a+b)α](s2+
αs+ ω2

1). Expansion shows that the coefficients for s2 and s
are imperfect matches here as well. However, all mismatches

are small for {|a|, |b|, |c|} ≪ 1. This is normally the case, as

long as Ra is moderate; Ra = 0.2 p.u. is suggested in [4].

By the approximate factorizations, the second-degree factors

cancel, reducing (19) to the first-order system

Gc(s) ≈
cs+ (1 + a+ b)α

s+ (1 + a+ b)α
. (20)

RFPSC (i.e., ξ = 1) with gain selection (18) is required for this

pole–zero cancellation to occur. For i0 = 0 ⇒ a = b = c = 0,

the polynomial factorizations are exact, and, thus, also the

pole–zero cancellation. For other operating points i0, yet a

near-exact cancellation is obtained, as exemplified in Fig. 3.

As found in [4], the cancelled pole pair is dominant for

strong grids (i.e., small L), effectively limiting the closed-

loop bandwidth to ω1 = 1 p.u. for conventional PSC. On

the contrary, for RFPSC, the remaining pole of (20) gives the

closed-loop bandwidth (1 + a+ b)α, which for a strong grid

easily exceeds 1 p.u. For example, L = 0.1 p.u., Ra = 0.2
p.u., and i0 = 0 give (1 + a + b)α = α = 2 p.u. In addition,

since the pole pair is located fairly close to the imaginary axis,

see Fig. 3, its cancellation generally improves damping.

TABLE I
TEST-SYSTEM DATA

Variable/parameter Actual value Normalized value
Rated power 12.7 kVA 1 p.u.

Rated voltage
√

2/3 · 400 V 1 p.u.

Rated current
√

2 · 18.3 A 1 p.u.
Base impedance 12.6 Ω 1 p.u.
Fundamental frequency 50 Hz 1 p.u.
Sampling frequency 8 kHz 160 p.u.
Switching frequency 4 kHz 80 p.u.
Active resistance Ra 4.4 Ω 0.2 p.u.
Filter bandwidth ωb 31 rad/s 0.1 p.u.

Grid

LCL

Test inverterSource

DS1006

400 V

50 Hz
L

Fig. 4. Schematic of the experimental setup.

III. EXPERIMENTAL RESULTS

RFPSC is here experimentally compared to conventional

PSC, using the same back-to-back (grid and dc source) two-

level VSC system as in [4]—see the schematic depicted in Fig.

4—whose data are given in Table I. Control is implemented on

a dSPACE DS1006 processor board. The dc link is controlled

from the dc source.

Figs. 5 and 6 show results for four successive steps in Pref ,

respectively for a weak and a strong grid, with conventional

PSC as well as with RFPSC. (The subfigures for conventional

PSC are repeated from [4], for clarity.) The following can be

observed.

• The step-response rise times in the weak-grid case are

similar for conventional PSC and RFPSC. This was to

be expected, since, for a weak grid, the real pole of

the closed-loop system is dominant. Cancellation of the

complex pole pair only gives a slight increase of the

closed-loop bandwidth. On the other hand, the tendency

to ringing in the step response is eliminated.

• In the strong-grid case, RFPSC gives shorter rise times

than conventional PSC and, perhaps even more impor-

tantly, eliminates the overshoots. In addition, the voltage-

magnitude transients are significantly reduced.

• In accordance with the model (20) resulting from the

pole–zero cancellation, all step responses for RFPSC

resemble first-order exponentials.

IV. CONCLUSION

In this letter, the enhancement RFPSC of conventional

PSC was presented. It involves feeding the power reference

forward to the active-resistance part of the control law. When

observing the robustifying gain selection (18), the complex

pole pair of the closed-loop system is (near-exactly) cancelled.

Compared to conventional PSC, this was shown to eliminate
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(a) Conventional PSC.

(b) RFPSC.

Fig. 5. Step responses for a weak grid, L = 1 p.u.

step-response ringing for weak grids. For strong grids, a

shorter step-response rise time is obtained and overshoot

is avoided, allowing performance similar to that of vector

current control. The design was shown to be robust in the

sense that, irrespective of the grid inductance L, the step

response resembles a first-order exponential whose rise time

is proportional to L. Knowledge of L is not required for the

robust design, as fundamentally shown by gain selection (18).

A suitable topic for further research is performance analysis

for a generic grid impedance.
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