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Abstract—There are many topological faces of the superfluid phases of 3He. These superfluids contain vari-
ous topological defects and textures. The momentum space topology of these superfluids is also nontrivial,
as well as the topology in the combined (p, r) phase space, giving rise to topologically protected Dirac, Weyl
and Majorana fermions living in bulk, on the surface and within the topological objects. The nontrivial topol-
ogy lead to different types of anomalies, which extended in many different directions the Landau-Khalat-
ninkov theory of superfluidity.
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1. INTRODUCTION
Superfluid phases of 3He discovered in 1972 [1]

opened the new area of the application of topological
methods to condensed matter systems. Due to the
multi-component order parameter which character-
izes the broken symmetries in these phases, there are
many inhomogeneous objects—textures and defects in
the order parameter field—which are protected by
topology and are characterized by topological charges.
Among them there are quantized vortices, skyrmions
and merons, solitons and vortex sheets, monopoles
and boojums, Alice strings, Kibble walls terminated by
Alice strings, spin vortices with soliton tails, etc. Some
of them have been experimentally identified and
investigated [2–5], the others are still waiting for their
creation and detection.

The real-space topology, which is responsible for
the topological stability of textures and defects, has
been later extended to the topology in momentum
space, which governs the topologically protected
properties of the ground state of these systems. This
includes in particular the existence of the topologically
stable nodes in the fermionic spectrum in bulk and/or
on the surface of superfluids [6, 7]. It appeared that
the superfluid phases of liquid 3He serve as the clean
examples of the topological matter, where the
momentum-space topology plays an important role in
the properties of these phases [8–11]. The further nat-
ural extension was to the combined phase-space
topology [12], which in particular describes the robust
properties of the spectrum of fermionic states local-
ized on topological defects.

In bulk liquid 3He there are two topologically dif-
ferent superfluid phases, 3He-A and 3He-B [13]. One

is the chiral superfluid 3He-A with topologically pro-
tected Weyl points in the quasiparticle spectrum. In
the vicinity of the Weyl points, quasiparticles obey the
Weyl equation and behave as Weyl fermions, with all
the accompanying effects such as chiral anomaly [14],
chiral magnetic effect (CME), chiral vortical effect
(CVE) [15], etc. The Adler-Bell-Jackiw equation,
which describes the anomalous production of fermi-
ons from the vacuum [16–18], has been verified in
experiments with skyrmions in 3He-A [19]. Weyl fer-
mions have been reported to exist in the topological
semiconductors, which got the name Weyl semimetals
[20–27], see reviews [28–30]. The possible manifesta-
tion of the chiral anomaly in these materials is under
discussion [31].

Another phase is the fully gapped time reversal
invariant superfluid 3He-B. It has topologically pro-
tected gapless Majorana fermions living on the surface
(see reviews [32, 33] on the momentum space topol-
ogy in superfluid 3He).

The polar phase of 3He has been stabilized in 3He
confined in the nematically ordered aerogel [34–37].
It is the time reversal invariant superfluid, which con-
tains Dirac nodal ring in the fermionic spectrum [38].

2. TOPOLOGICAL DEFECTS IN REAL SPACE
The classification of the topological objects in the

order parameter fields revealed the possibility of many
configurations with nontrivial topology, which are
described by the homotopy groups [39–41] and by the
relative homotopy groups [42, 43]. Some of the topo-
logical defects and topological textures are shown in
Fig. 1.
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All three superfluid phases discussed here are the
spin-triplet p-wave superfluids, i.e. the Cooper pair
has spin S = 1 and orbital momentum L = 1. The order
parameter is given by 3 × 3 matrix Aαi (see Eq. (11)),
which transforms as a vector under SO(3)S spin rota-
tions (first index) and as a vector under SO(3)L orbital
rotations (second index). The order parameter Aαi

comes as the bilinear combination of the fermionic
operators, Aαi ∝ 〈ψσα∇iψ〉, where σα are Pauli matri-
ces for the nuclear spin of 3He atom. Note that similar
order parameter appears in the so-called spinor quan-

tum gravity, where it describes the emergent tetrad
field [44–48].

2.1. Chiral Superfluid 3He

In the ground state of 3He-A the order parameter
matrix has the form

(1)

where  is the unit vector of the anisotropy in the spin
space due to spontaneous breaking of SO(3)S symme-
try;  and  are mutually orthogonal unit vectors; and
 is the unit vector of the anisotropy in the orbital

space due to spontaneous breaking of SO(3)L symme-
try. The -vector also shows the direction of the orbital
angular momentum of the chiral superfluid, which
emerges due to spontaneous breaking of time reversal
symmetry. The chirality of 3He-A has been probed in
several experiments [49–51].

In the chiral superfluid the superfluid velocity vs of
the chiral condensate is determined not only by the
condensate phase Φ, but also by the orbital triad , 
and :

(2)

where m is the mass of the 3He atom. As distinct form
the non-chiral superfluids, where the vorticity is pre-
sented in terms of the quantized singular vortices with
the phase winding ΔΦ = 2π  around the vortex core,
in 3He-A the vorticity can be continuous. The contin-
uous vorticity is represented by the texture of the unit
vector  according to the Mermi-Ho relation [55]:

(3)

Vorticity is created in rotating cryostat. In 3He-A,
the continuous textures are more easily created than
the singular objects with the hard core of the coher-
ence length size ξ, which formation requires overcom-
ing of large energy barrier. That is why the typical
objects which appear under rotation of cryostat with
3He-A is the vortex-skyrmion. It is the continuous tex-
ture of the orbital -vector in Fig. 1a without any sin-
gularity in the order parameter fields. This texture rep-
resents the vortex with doubly quantized (  = 2) cir-
culation of superfluid velocity around the texture,

 ⋅ vs = κ, where κ = h/2m is the quantum of cir-
culation [56, 57]. The vortex-skyrmions have been
identified in rotating cryostat in 1983 [58, 59]. They
are described by two topological invariants, in terms of
the orbital vector  and in terms of the spin nematic
vector :

Φ
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Fig. 1. (Color online) Some topological oblects in topo-
logical superfluids. (a) Vortex-skyrmions with two quanta
of circulation (  = 2) in the chiral superfluid 3He-A (see
also Fig. 2b). (b) Interface between 3He-A and 3He-B in
rotation: lattice of skyrmions with  = 2 in 3He-A trans-
forms to the lattice of singly quantized vortices (  = 1) in
3He-B. Each skyrmion with  = 2 splits into two merons
with  = 1 (Mermin-Ho vortices). The Mermin-Ho vor-
tex terminates on the boojum—the surface singularity
which is the analog of the Dirac monopole terminating the
3He-B string (the  =1 vortex). (c) Vortex sheet in 3He-A.
(d) Elements of the vortex sheet: merons with  = 1 within
topological soliton in 3He-A. (e) Hedgehog-monopole in
the -vector field in 3He-A. (f) Singly quantized vortex
( = 1) with spontaneously broken axial symmetry in
3He-B as a pair of half-quantum vortices (  = 1/2) con-
nected by non-topological (dark) soliton [52, 53]. Such
vortex has been identified due to Goldstone mode associ-
ated with the spontaneously broken axial symmetry of the
vortex core—the twist oscillations of the vortex core prop-
agating along the vortex line. This figure is also applicable
to the  = 2 vortex in 3He-B, which consists of two com-
posite objects—spin-mass vortices connected by the topo-
logical soliton [54], see Fig. 4g. Half-quantum vortices in
the polar phase of 3He, which in a tilted magnetic field are
connected by the topological spin soliton [4]. Red arrows
show direction of magnetic field, and blue arrows—direc-
tion of spin-nematic vector , which rotates by π around
each half-quantum vortex.
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(4)

(5)

The last equality in Eq. (4) shows the connection
between the topological charge of the orbital texture
and the circulation of superfluid velocity around it,
which follows from the Mermin-Ho relation (3).

In a high magnetic field the vortex lattice consists
of isolated vortex-skyrmions with  = 2, ml = 1 and
md = 0, see Fig. 2. In the low field, when the magnetic
energy is smaller than the spin-orbit interaction, the
vortex-skyrmion with md = ml = 1 becomes more pref-
erable. The first order topological transition, at which
the topological charge md of the skyrmion changes
from 0 to 1, has been observed in acoustic experiments
[60]. Finally, when magnetic field is close to zero, the
skyrmions are not isolated. They form the periodic
vortex texture represented in terms of merons—the
continuous Mermin-Ho vortices with ml = 1/2 and

= 1 each. The elementary cell of the vortex struc-
ture of rotating 3He-A contains four merons, see
Fig. 3. It has topological charge ml = md = 2 and

= 4. The isolated skyrmion in the non-zero field in
Fig. 1a can be represented as the bound state of two
merons in Fig. 2.

In 1994 new type of continuous vorticity has been
observed in 3He-A—the vortex texture in the form of
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1

the vortex sheets, Fig. 1c [62, 63]. Vortex sheet is the
topological soliton with kinks, each kink representing
the continuous Mermin-Ho vortex with  = 1,
Fig. 1d.

In addition to continuous vortex textures, the rotat-
ing state of 3He-A may consist of the singular vortices
with  = 1. They are observed in NMR experiments if
one starts rotation in the normal phase and then cools
down to the A-phase [64]. In principle the same
scheme can lead to the formation of the half-quantum
vortices (HQVs), which have been suggested to exist in
thin films of 3He-A [39]. The half-quantum vortex
represents the condensed matter analog of the Alice
string in particle physics [65]. The half-quantum vor-
tex is the vortex with fractional circulation of super-
fluid velocity,  = 1/2. It is topologically confined
with the fractional spin vortex, in which d changes sign
when circling around the vortex:

(6)

When the azimuthal coordinate φ changes from 0 to 2π
along the circle around this object, the vector ( )
changes sign and simultaneously the phase Φ changes
by π, giving rise to  = 1/2. The order parameter (6)

1

1

1
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Fig. 2. (Color online) (a) Rotating state in 3He-A in high
magnetic field as an array of isolated skyrmions with ml =
1 and  = 2 in Fig. 1a. (b) Such skyrmion contains two
merons—circular and hyperbolic. (c) NMR signature of
vortex skyrmion—the satlellite peak in the NMR spec-
trum. The type of the skyrmion is identified by the position
of the satellite peak, the peak amplitude reflects the num-
ber of skyrmions in the sample. In the absence of magnetic
field the skyrmions merge forming the periodic texture in
Fig. 3 with  = 4 in the elementary cell.
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Fig. 3. (Color online) Elementary cell of meron lattice in
rotating superfluid 3He-A in the absence of magnetic field
(adapted from [61]). The unit cell consists of four merons,
two of which are circular and two are hyperbolic. In each
meron the orbital vector  covers half a sphere, and accord-
ing to Eq. (3) each meron represents a vortex with a single
quantum of circulation,  = 1. Thus the unit cell carries
topological charge ml = 2 and thus the circulation number

 = 4. In the circular vortex-meron the orbital vector  || Ω
in the center, where Ω is the angular velocity of the rotating
cryostat. In the hyperbolic vortex-meron  || –Ω in the
center. When the magnetic field is switched on, this state
transforms to an array of isolated vortex-skyrmions with

= 2 each in Fig. 1a. Such skyrmion contains two
merons, see Fig. 2b.
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remains continuous along the circle. While a particle
that moves around an Alice string f lips its charge, the
quasiparticle moving around the half-quantum vortex
flips its spin quantum number. This gives rise to the
Aharnov-Bohm effect for spin waves in NMR experi-
ments [2].

In superfluid 3He the HQVs have been stabilized
only recently and in a different phase—in the polar
phase of 3He confined in aerogel [4], see Section 2.3.
HQVs have been identified in NMR experiments due
to the topological soliton, which is attached to the spin
vortex in tilted magnetic field because of spin-orbit
interaction, Fig. 1g.

Another object which is waiting for its observation
in 3He-A is the vortex terminated by hedgehog [66,
67]. This is the condensed matter analog of the elec-
troweak magnetic monopole and the other monopoles
connected by strings [68]. The hedgehog-monopole,
which terminates the vortex, exists in particular at the
interface between 3He-A and 3He-B, Fig. 1f. The
topological defects living on the surface of the con-
densed matter system or at the interfaces are called
boojums [69]. They are classified in terms of relative
homotopy groups [43]. Boojums in Fig. 1f terminate
the 3He-B vortex-strings with = 1. Though boojums
do certainly exist on the surface of rotating 3He-A and
at the interface between the rotating 3He-A and 3He-
B, at the moment their NMR signatures are too weak
to be resolved in NMR experiments. Experimentally
the vortex terminated by the hedgehog-monopole was
observed in cold gases [70].

1

2.2. Superfluid 3He-B

In the ground state of 3He-B the order parameter
matrix has the form

(7)
where Rαi is the real matrix of rotation, RαiRαj = δij.

Vorticity in the non-chiral superfluid is always sin-
gular, but in 3He-B it is also presented in several forms.
Even the  =1 vortex, where Φ( ) = φ, has an unusual
structure of the singular vortex core. Already in the
first experiments with rotating 3He-B the first order
phase transition has been observed, which has been
associated with the transition inside the vortex core
[71]. It was suggested that at the transition the vortex
core becomes non-axisymmetric, i.e. the axial sym-
metry of the vortex is spontaneously broken in the vor-
tex core [72, 73]. This was confirmed in the further
experiments, where the Goldstone mode associated
with the symmetry breaking was identified—the twist
oscillations in Fig. 1f and Fig. 5 propagating along the
vortex line [74]. In the weak coupling BCS theory,
which is applicable at low pressure, such vortex can be
considered as splitted into two half-quantum vortices
connected by non-topological soliton [52, 53].

On the other side of the transition, at high pressure,
the structure of the vortex core in 3He-B is axisym-
metric, but it is also nontrivial. In the core the discrete
symmetry is spontaneously broken, as a result the core
does not contain the normal liquid, but is occupied by
the chiral superfluid—the A-phase of 3He [2]. The A-
phase core in axisymmetric vortex results in the
observed large magnetization of the core compared
with that in the non-axisymmetric vortex [75]. Later
we shall discuss the Weyl fermions living within such a
core in Sections 4.1 and 6.5.

The phenomenon of the additional symmetry
breaking in the core of the topological defect has been

Φ
α α= Δ ,i

i B iA e R

1 r̂

3

Fig. 4. Topological oblects observed in superfluid 3He-B
in rotating cryostat. Conventional mass current vortices
with  = 1 form a regular structure. If the number of vor-
tices is less than equilibrium number for a given rotation
velocity, vortices are collected in the vortex cluster with the
vortex free region outside the cluster, where the mass cur-
rent is circulating. Spin vortices, which have the soliton
tail, are stabilized being pinned by the cores of the mass
current vortices. They form the composite object—the
spin-mass vortex with the soliton tail [54]. A single spin-
mass vortex is stabilized at the periphery of the cluster by
the combined effect of soliton tension and the Magnus
force acting on the mass vortex from the super-flow in the
vortex-free region. Pair of spin-mass vortices connected by
soliton forms the doubly quantized  = 2 mass vortex.
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also discussed for cosmic strings [76]. The sponta-
neous breaking of the electromagnetic U(1) symmetry
in the core of the cosmic string has been considered,
due to which the core becomes superconducting with
super-current along the core. The string with the
superconducting electric current is analogous to the
asymmetric vortex with twisted core, see Fig. 5.

The topology of 3He-B also admits existence of
spin vortices, Z2 topological defects of the matrix Rαi.
Due to spin-orbit interaction, which violates the
invariance under SO(3)S spin rotations, the spin vortex
gives rise to the topological soliton attached to the vor-
tex line, similar to that in Fig. 1 for the polar phase.
That is why, if the spin vortex appears in the cell, it is
pushed to the wall of the container by the soliton ten-
sion and disappears at the wall. However, the spin vor-
tex survives if it is pinned by the conventional vortex
(mass current vortices) with  = 1 and forms the com-
posite object—the spin-mass vortex. Experimentally
two types of composite objects have been identified in
3He-B, see Fig. 4. (i) The other end of the soliton is at
the wall of container. (ii) The  = 2 vortex is formed
which consists of two spin-mass vortices connected by
soliton [54].

2.3. Polar Phase of Superfluid 3He

Polar phase of superfluid 3He has been stabilized in
a nematically ordered aerogel with nearly parallel
strands (nafen) [34–36]. In the ground state of the
polar phase the order parameter matrix has the form

(8)
where axis z is along the nafen strands. Topology of
polar phase in nafen suggests existence of  = 1 mass
current vortices, Z2 spin vortices and the half-quantum
vortices. The latter is the combination of the fractional

 = 1/2 mass vortex and the fractional spin vortex in
Eq. (6). The spin-orbit interaction in the polar phase
is more preferable for the half-quantum vortices than
in 3He-A. In the absence of magnetic field, or if the
field is along the nafen strands the spin-orbit interac-
tion does not lead to formation of the solitons attached
to the spin vortices. As a result the half-quantum vor-
tices become emergetically favorable and appear in the
rotating cryostat if the sample is cooled down from the
normal state under rotation. The HQVs are identified
due to peculiar dependence of the NMR frequency
shift on the tilting angle of magnetic field [4]. Figure
1g shows a pair of half-quantum vortices in transverse
magnetic field (red arrows). Blue arrows show the dis-
tribution of the nematic vector  of the spin part of the
order parameter in the polar phase.

Later it was found [5] that the half-quantum
vorices survive the phase transition to 3He-B, where
the half-quantum vortex is topologically unstable. In
the B-phase the half-quantum vortices pinned by the

1
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strands of nafen become the termination lines of the
non-topological domain walls - the analog of Kibble
cosmic walls [77]. In 3He-B, the Kibble wall separates
the states with different tetrad determinant, and thus
between the “spacetime” and “antispacetime” [78].
More on spacetime in cosmology and condensed mat-
ter see [79–85].

3. MOMENTUM SPACE TOPOLOGY

The topological stability of the coordinate depen-
dent objects—defects and textures - is determined by
the pattern of the symmetry breaking in these super-
fluids. Now we shall discuss these three phases of
superfluid 3He from the point of view of momentum-
space topology, which describes the topological prop-
erties of the homogeneous ground state of the super-
fluids. These superfluids represent three types of topo-
logical materials, with different geometries of the
topologically protected nodes in the spectrum of fer-
mionic quasiparticles: Weyl points in 3He-A, Dirac
lines in the polar phase and Majorana nodes on the
surface of 3He-B.

The properties of the fermionic spectrum in the
bulk or/and on the surface of superfluids is deter-
mined by the topological properties of the Bogoli-
ubov-de Gennes Hamiltonian

(9)

or by the Green’s function

(10)
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Fig. 6. In 3He-B, the half-quantum vortex (analog of Alice
string) looses its topological stability and becomes the ter-
mination line of a non-topological domain wall—the Kib-
ble wall [5]. In terms of the tetrads, the Kibble wall sepa-
rates the states with different tetrad determinant, and thus
between the “spacetime” and “antispacetime” [78]. There
are two roads to antispacetime: the “safe” route around the
Alice string (along the contour C1) or “dangerous” route
along C2 across the Kibble wall.
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For the spin triplet p-wave superfluid 3He the gap
function is expressed in terms of the 3 × 3 order
parameter matrix Aαi:

(11)

The topologically stable singularities of the Hamil-
tonian or of the Green’s function in the momentum or
momentum-frequency spaces look similar to the real-
space topology of the defects and textures, see Fig. 7.
The Fermi surface, which describes the normal liquid
3He and metals, represents the topologically stable 2D
object in the 4D frequency-momentum space (px, py,
pz, ω), is analogous to the vortex ring. The Weyl points
in 3He-A represents the topologically stable hedgehog
in the 3D p-space, Fig. 7b. The Dirac nodal line in the
polar phase of 3He is the p-space analog of the spin
vortex, Fig. 7c. The nodeless 2D systems (thin films of
3He-A and the planar phase) and the nodeless 3D sys-
tem—3He-B—are characterized by the topologically
nontrivial skyrmions in momentum space in Fig. 7e.

α αΔ = σˆ( ) .i
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p

p

6

6

1

3.1. Normal Liquid 3He

The normal state of liquid 3He belongs to the class
of Fermi liquids, which properties at low energy are
determined by quasiparticles living in the vicinity of
the Fermi surface. The systems with Fermi surface,
such as metals, are the most widespread topological
materials in nature. The reason for that is that the
Fermi surface is topologically protected and thus is
robust to small perturbations. This can be seen on the
simple example of the Green’s function for the Fermi
gas at the imaginary frequency:

(12)

The Fermi surface at p = pF exists at positive chemical

potential, with /2m = μ. The topological protection
is demonstrated in Fig. 7a for the case of the 2D Fermi
gas, where the Fermi surface is the line p = pF in
(px, py)-space. In the extended (ω, px, py)-space this
gives rise to singularity in the Green’s function on the
line at which ω = 0 and p = pF, where the Green’s
function is not determined. Such singular line in
momentum-frequency space looks similar to the vor-
tex line in real space: the phase Φ(p, ω) of the Green’s
function G(p, ω) = |G(p, ω)|eiΦ(p, ω) changes by 2π
around this line. In general, when the Green’s func-
tion is the matrix with spin or/and band indices, the
integer valued topological invariant—the winding
number of the Fermi surface—has the following form
[15]:

(13)

Here the integral is taken over an arbitrary contour C
around the Green’s function singularity in the D + 1
momentum-frequency space. Due to nontrivial topo-
logical invariant, Fermi surface survives the perturba-
tive interaction and exists in the Fermi liquid as well.
Moreover the singularity in the Green’s function
remains if due to interaction the Green’s function has
no poles, and thus quasiparticles are not well defined.
The systems without poles include the marginal Fermi
liquid, Luttinger liquid, and the Mott pseudogap state
[92].

It is possible that in the Mott pseudogap state, the
poles of the Green’s function transform to zeroes of
the Green’s function. The topological invariant
remains the same, which is the reason why the Lut-
tinger theorem is still valid [93, 94]. The particle den-
sity of interacting fermions is equal to the volume in
the momentum space enclosed by the singular surface
with the topological charge N = 1, irrespective of the
realization of the singularity. As distinct from the pole,
the zero in the Green’s function is invisible, so that the
pole region of the Fermi surface looks as the Fermi
arc, see Fig.8b.
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Fig. 7. (Color online) Topological materials as configura-
tions in momentum space. (a) Fermi surface in normal liq-
uid 3He is topologically protected, since the Green’s func-
tion has singularity in the form of the vortex ring in the (p,
ω)-space. (b) Weyl point in 3He-A as the hedgehog in p-
space. It can be also represented as the p-space Dirac
monopole with the Berry magnetic f lux. (c) The polar
phase has the Dirac nodal line in p-space—the counterpart
of the spin vortex in real space. (d) The  = ∞ singular
vortex in chiral superfluid 3He-A has the one-dimensional
flat band terminated by the projections of the Weyl points
to the vortex line [86–88]. In real space it has analogy with
the Dirac monopole terminating the Dirac string. (e) Sky-
rmion configurations in p-space describe the fully gapped
topological superfluids. The 2D skyrmion describes the
topology of the 3He-A state in a thin film and the topology
of 2D planar phase of 3He [89–91]. The 3D p-space skyr-
mion describes the superluid 3He-B [7, 10, 11, 32].
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The Fermi surface may disappear in the topologi-
cal quantum phase transition, when the chemical
potential μ crosses zero: the vortex ring object shrinks
to the point at μ = 0 and disappears at μ < 0 if the point
is not protected by another topological invariant dis-
cussed in Section 3.2. The Fermi surface may disap-
pear also due to non-perturbative process of the sym-
metry breaking phase transition, when the fermionic
spectrum of the system is drastically reconstructed, as
it happens under the transition from the normal to the
superfluid state.

3.2. Weyl Superfluid 3He-A

Under the superfluid transition the 2 × 2 matrix of
the normal liquid Green’s function with spin indices
transforms to the 4 × 4 Gor’kov Green’s function. The
simplified Green’s function, which describes the
topology of the chiral superfluid 3He-A, has the form:

(14)

The Pauli matrices τ1, 2, 3 and σx, y, z correspond to the
Bogoliubov-Nambu spin and ordinary spin of 3He
atom respectively; μ = /2m as before; and the
parameter c = ΔA/pF.

Instead of the Fermi surface, now there are two
points in the fermionic spectrum, at K± = ±pF , where
the energy spectrum is nullified and the Green’s func-
tion is not determined at ω = 0. There are several ways
of how to describe the topological protection of these
two points. In terms of the Green’s function there is
the following topological invariant expressed via inte-
ger valued integral over the 3-dimensional surface σ

− ⎛ ⎞= ω+ τ − μ + ⋅ τ ⋅ + τ ⋅⎜ ⎟
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σ d e p e p
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l̂

around the singular point in the 4-momentum space
pμ = (ω, p) [12, 15]:

(15)

If the invariant (15) is nonzero, the Green’s function
has a singularity inside the surface σ, and this means
that fermions are gapless. The typical singularities
have topological charges N = +1 or N = –1. Close to
such points the quasiparticles behave as right-handed
and left-handed Weyl fermions [95] respectively, that
is why such point node in the spectrum is called the
Weyl point. The isolated Weyl point is protected by
topological invariant (15) and survives when the inter-
action between quasiparticles is taken into account.
The Weyl points with the opposite charge N may can-
cel each other, when they merge together at the quan-
tum phase transition, if some continuous or discrete
symmetry does not prohibit the annihilation.

In 3He-A, the topological invariants of the points at
K(a) = ±kF  are correspondingly N = +2 or N = –2: the
Weyl points are degenerate over the spin of the 3He
atoms. Considering only single spin projection one
comes to the 2 × 2 Bogoluibov-Nambu Hamiltonian
for the spinless fermions:

(16)

where the vector function g(p) has the following com-
ponents in 3He-A:

(17)

The Hamiltonian (16) is nullified at two points
K(a) = ±pF , where p = pF and p ⋅  = p ⋅  =0. At these
points the unit vector (p) = g(p)/|g(p)| has the singu-
larity of the hedgehog-monopole type in Fig. 7b,
which is described by the dimensional reduction of the
invariant (15):

(18)
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Fig. 8. (Color online) Due to interaction, in some parts of
the Fermi surface, the poles in the Green’s function may
transform to zeroes. The topological charge of these parts
of Fermi surface remain the same, but they become invisi-
ble, while the other parts of the Fermi surface look as
Fermi arcs.
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where σ now is the 2D spherical surface around the
hedhehog.

The hedgehog has N = ±1 and it represents the
Berry phase magnetic monopole [6, 15]. In the vicin-
ity of the monopole the Hamiltonian can be expanded
in terms of the deviation of the momentum p from the
Weyl point at K(a) [14, 96, 97]:

(19)
The emergent linear relativistic spectrum of Weyl fer-
mions leads to the observed T4 behavior of the thermo-
dynamic quantities [98]. Introducing the effective
electromagnetic field A(r, t) = pF (r, t) and effective
electric charge q(a) = ±1, one obtains

(20)
Such Hamiltonian decsribes the Weyl fermions mov-
ing in the effective electric and magnetic fields

(21)

and also in the effective gravitational field represented
by the triad field (r, t). The effective quantum elec-
trodynamics emerging in the vicinity of the Weyl point
leads to many analogs in relativistic quantum field the-
ories, including the zero charge effect—the famous
“Moscow zero” by Abrikosov, Khalatnikov and Lan-
dau [99].

In the presence of the superfluid velocity and
spacetime dependent chemical potential, the effective
spin connection emerges. It enters the long derivative

Dμ = ∂μ + (τατβ – τβτα) – iqAμ with the following

non-zero components:  = m (r, t) and  = μ(r,
t). The continuous vorticity in Eq. (3) gives rise to the
nonzero components of the curvature tensor: R12ik =
m(∂i  – ∂k ).

The Weyl points as the topologically protected
touching point of two bands [100, 101] have been dis-
cussed in semimetals [20, 22–27, 102–104]. Accord-
ing to the bulk-edge and bulk-defect correspondence,
the Weyl points in bulk may produce the Fermi arc on
the surface of the material [103, 104], and the f lat
band of fermionic excitations in the vortex core in Sec-
tion 6.3.

In a different form the topological invariant for the
Weyl point has been introduced for the massless neu-
trino in 1981 [105]. The evidence of neutrino oscilla-
tions does not exclude the possibility that in neutrino
sector of particle physics instead of formation of the
Dirac mass there is a splitting of two Weyl points with
breaking of CPT symmetry [106].

In 1982 the topological invariant for the Weyl
points in 3He-A have been described in terms of the
boojum living on the Fermi surface [107], the analog
of the real-space boojum in Fig. 1b. As follows from
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Eq. (9) the node in the spectrum occurs when (p) =
0 and the determinant of the gap function is zero,
det (p) = 0. That is why the node represents the
crossing point of the surface (p) = 0 (the Fermi sur-
face of the original normal state of liquid 3He) and the
line where det (p) = 0. The latter is described by the
integer winding number of the phase Φ(p) of the deter-
minant:

(22)
around the nodal line of the determinant. The topo-
logical charge N in Eq. (15) is nothing but the winding
number of the phase Φ(p) when viewed from the
region outside the Fermi surface [107]. Such defini-
tion of the topological charge N also coincides with
the Berry monopole charge, giving N = ±2 for the
Weyl points at K(a) = ±pF .

In general, the state with the topological charge
larger than unity, |N| > 1, is unstable towards splitting
to the states with nodes described elementary charges
N = ±1. In 3He-A the nodes with topological charges
N = ±2 are protected by the discrete Z2 symmetry
related to spins.

3.3. Nodal Line Polar Phase
The topology of the fermionic quasiparticles in the

polar phase of 3He is described by the following sim-
plified Hamiltonian:

(23)

where c = ΔP/pF. This Hamiltonian is nullified when

pz = 0 and  +  = , i.e. the spectrum of quasi-
particles has the nodal line in Fig. 7c. The nodal line is
protected by topology due to the discrete symmetry:
the Hamiltonian (23) anticommutes with τ2, which
allows us to write the topological charge, see e.g.
review [108]:

(24)

Here C is an infinitesimal contour in momentum
space around the line, which is called the Dirac line.
The topological charge N in Eq. (24) is integer and is
equal to 2 for the nodal line in the polar phase due to
spin degeneracy. In a different form the invariant can
be found in [109].

Dirac lines exist in cuprate superconductors [110]
and also in semimetals [111–118]. According to the
bulk-edge and bulk-defect correspondence, the Dirac
line in bulk may produce the f lat band on the surface
of the material [119–121] and the condensation of lev-
els in the vortex core [122], which we discuss in Sec-
tion 6.4. The flat band physics is important for the
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construction of materials experiencing superconduc-
tivity at room temperature [123].

3.4. Time Reversal Invariant Fully Gapped 3He-B
3He-B belongs to the same topological class as the

vacuum of Standard Model in its present insulating
phase [124]. The topological classes of the 3He-B
states can be represented by the following simplified
Bogoliubov–de Gennes Hamiltonian:

(25)

Here Rαi is the matrix of rotation; the phase of the
order parameter in Eq. (7) is chosen either Φ = 0 or
Φ = π; we also included the effective mass m* to dis-
cuss the possible topological quantum phase transi-
tions. In the limit of heavy effective mass, 1/m* → 0,
this model 3He-B Hamiltonian transforms to the
Hamiltonian for massive relativistic Dirac particles
with speed of light cB = ΔB/pF, and the mass parameter
M = –μ. There are no nodes in the spectrum of fermi-
ons: the system is fully gapped. Nevertheless 3He-B is
the topological superfluid. This can be seen from the
integer valued integral over the former Fermi surface
[7]:

(26)

where Nd = ± depending on the sign in Eq. (25).
In terms of the Hamiltonian the topological invari-

ant can be written as integral over the whole momen-
tum space (or over the Brillouin zone in solids)

(27)

where K = τ2 is the matrix which anticommutes with
the Hamiltonian. One has NK = 2Nd due to spin
degrees of freedom. For the interacting systems the
Green’s function formalism can be used. In the fully
gapped systems, the Green’s function has no singular-
ities in the whole (3+1)-dimensional space (ω, p).
That is why we are able to use in Eq. (27) the Green’s
function at ω = 0, which corresponds to the effective
Hamiltonian, Heff(p) = –G–1(0, p) [125].

In 3He-B, the K = τ2 symmetry is the combination
of time reversal and particle-hole symmetries. For
Standard Model the corresponding matrix K, which
anticommutes with the effective Hamiltonian and
enters the invariant, is constructed from the γ-matri-
ces: it is K = γ5γ0.

Figure 10 shows the phase diagram of topological
states of 3He-B in the plane (μ, 1/m*). The line
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1/m* = 0 corresponds to the Dirac vacuum of massive
fermions, whose topological charge is determined by
the sign of mass parameter M = –μ:

(28)

Finally, the point μ = 1/m* = 0 corresponds to the
massless Dirac particle, where the Dirac node consists
of two Weyl nodes with opposite chirality, Na = ±Nd.

The real superfluid 3He-B lives in the corner of the
phase diagram μ > 0, m* > 0, μ ≫ m* , which also
corresponds to the limit ΔB ≪ μ of the weakly interact-
ing gas of 3He atoms, where the superfluid state is
described by Bardeen-Cooper-Schrieffer (BCS) the-
ory. However, in the ultracold Fermi gases with triplet
pairing the strong coupling limit is possible near the
Feshbach resonance [126]. When μ crosses zero the
topological quantum phase transition occurs, at which
the topological charge NK changes from NK = 2 to
NK = 0. The latter regime with trivial topology also
includes the Bose–Einstein condensate (BEC) of
two-atomic molecules. In other words, the BCS-BEC
crossover in this system is always accompanied by the
topological quantum phase transition, at which the
topological invariant changes.

There is an important difference between 3He-B
and Dirac vacuum. The space of the Green’s function
of free Dirac fermions is non-compact: G has different
asymptotes at |p| → ∞ for different directions of
momentum p. As a result, the topological charge of
the interacting Dirac fermions depends on the regular-
ization at large momentum. 3He-B can serve as regu-
larization of the Dirac vacuum, which can be made in
the Lorentz invariant way [124]. One can see from
Fig. 10, that the topological charge of free Dirac vac-
uum has intermediate value between the charges of the
3He-B vacua with compact Green’s function. On the
marginal behavior of free Dirac fermions see [10, 15,
127, 128].

The vertical axis separates the states with the same
asymptote of the Green’s function at infinity. The
abrupt change of the topological charge across the
line, ΔNK = 2, with fixed asymptote shows that one
cannot cross the transition line adiabatically. This
means that all the intermediate states on the line of
this QPT are necessarily gapless. For the intermediate
state between the free Dirac vacua with opposite mass
parameter M this is well known. But this is applicable
to the general case with or without relativistic invari-
ance: the gaplessness is protected by the difference of
topological invariants on two sides of transition. The
gaplessness of the intermediate state leads also to the
fermion zero modes at the interface between the bulk
states with different topological invariants, see Section
6.1. For electronic materials this was discussed in
[129].
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4. COMBINED TOPOLOGY.
EVOLUTION OF WEYL POINTS

According to Eq. (21), the effective (synthetic)
electric and magnetic fields acting on the Weyl quasi-
particles emerge if the position Ka of the ath Weyl
points depends on coordinate and time. The topolog-
ical protection of the Weyl points together with topol-
ogy of the spatial distribution of the Weyl points in the
coordinate space gives rise to the more complicated
combined topology in the extended phase space (p, r)
[107]. This combined topology connects the effect of
chiral anomaly and the dynamics of skyrmions, which
allowed us to observe experimentally the consequence
of the chiral anomaly and to verify the Adler-Bell-
Jackiw equation [19]. We consider two examples of
such dependence: the skyrmion in 3He-A and the core
structure of the 3He-B vortex with  = 1, which exists
at high pressure.

1

1

4.1. From A to B. Topology
of Weyl Nodes in 3He-B Vortex

In the core of the 3He-B axisymmetric vortex with
the spontaneously broken parity [75] one has the 3He-
A order parameter on the vortex axis, at r = 0, which
continuously transforms to the 3He-B order parameter
far from the core. Figure 11 demonstrates the evolu-
tion of the Weyl points on the way from 3He-A to the
3He-B [2, 107]. At r > 0 the spin degeneracy of the
Weyl points is lifted, and the nodes with N = ±2 split
into the elementary Weyl nodes with N = ±1. At r =
rcore the Weyl points with opposite N merge to form the
Dirac points with trivial topological charge, N = 0. At
r > rcore, the Dirac points disappear, because they are
not protected by topology, and the fully gapped state
emerges. Far from the vortex core one obtains the
3He-B order parameter with the 2π phase winding
around the vortex line.

In this evolution of Weyl points the chirality of
3He-A, which is the property of topology in momen-
tum space, continuously transforms to the integer val-
ued circulation of superfluid velocity around the vor-
tex, which is described by the real space topology. The
topological connection of the real-space and momen-
tum-space properties is encoded in Eq. (4.7) of [107]:

(29)

Here  is the real-space topological invariant—the
winding number of the vortex; Na is the momentum-
space topological invariant describing the ath Weyl
point. Finally the index νa connects the two spaces: it
shows how many times the Weyl point Ka covers
sphere, when the coordinates r = (x, y) run over the
cross-section of the vortex core:

(30)

For the discussed 3He-B vortex the Weyl nodes
with Na = ±1 cover the half a sphere, νa = ±1/2, which

gives  = (1/2 + 1/2 + 1/2 + 1/2) = 1.

4.2. Topology of Evolution of the Weyl Nodes
in the 3He-A Skyrmion

Equation (29) is also applicable to the continuous
textures in 3He-A. For example, in the skyrmion in
Fig. 2 the Weyl nodes with Na = ±2 cover the whole

sphere once, νa = ±1. This gives  = (2 × 1 + (–2) ×

(–1)) = 2, which means that the skyrmion represents
the continuous doubly quantized vortex. The steps in
the NMR spectrum corresponding to the  = 2 vorti-
ces were observed in the NMR experiments on rotat-
ing 3He-A [130]. The meron—the Mermin-Ho vortex
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Fig. 10. (Color online) Phase diagram of topological states
of 3He-B in Eq. (25) in the plane (μ, 1/2m*). States on the
line 1/m* = 0 correspond to the Dirac vacua, which Ham-
iltonian is non-compact. Topological charge of the Dirac
fermions is intermediate between charges of compact 3He-
B states. The line 1/m* = 0 separates the states with differ-
ent asymptotic behavior of the Green’s function at infinity:
G–1(ω = 0, p) → ±τ3p2/2m*. The line μ = 0 marks topo-
logical quantum phase transition, which occurs between
the weak coupling 3He-B (with μ > 0, m* > 0 and topolog-
ical charge NK = 2) and the strong coupling 3He-B (with
μ < 0, m* > 0 and NK = 0). This transition is topologically
equivalent to quantum phase transition between Dirac
vacua with opposite mass parameter M = ±|μ|, which
occurs when μ crosses zero along the line 1/m* = 0. The
interface which separates two states contains single Majo-
rana fermion in case of 3He-B, and single chiral fermion in
case of relativistic quantum fields. Difference in the nature
of the fermions is that in Fermi superfluids and in super-
conductors the components of the Bogoliubov-Nambu
spinor are related by complex conjugation. This reduces
the number of degrees of freedom compared to Dirac case.
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with Na = ±2 and νa = ±1/2—represents the singly

quantized vortex,  = 2 ×  + (–2) ×  = 1.

The elementary cell of the skyrmion lattice in the low
magnetic field contains 4 merons, see Fig. 3, and thus
has  = 4. Merons are also the building blocks of the
vortex sheet observed in 3He-A [62, 63].

4.3. Topology of the Phase
of the Gap Function in (p, r)-Space

The close connection between topologies in real
and momentum space can be also seen when Eq. (22)
for the gap function is extended to the inhomogeneous
case

(31)
Then the phase Φ(p, r) of the determinant of the

gap function may include the phase winding in real
space (the state with quantized vortex) and the wind-
ing in momentum space, which gives rise to the line of
zeroes in the determinant of the gap function and thus
to the Weyl points in spectrum. In general, the wind-
ing number of the phase protects the 4-dimensional
vortex singularity of the phase Φ(p, r) in the (3 + 3)-
dimensional (p, r)-space. By changing the orientation
of this 4-D manifold in the (3 + 3)-space, one can
transform the 3He-B state with the  = 1 vortex, to the
homogeneous 3He-A state with Weyl points. In the
vortex state of 3He-B, outside of the vortex core the
phase depends only on the coordinates: Φ(p, r) =
Φ(φ) = 2φ. The corresponding 4D manifold is the
(3 + 1)-subspace (1D vortex line times the 3D
momentum space). In the vortex-free 3He-A state the
phase depends only on the momentum, Φ(p, r) =
Φ(p), and it has the winding number N in momentum
space. In this case the corresponding 4D manifold is
the (1 + 3)-subspace (the 1D line of determinant
nodes in momentum space times the 3D coordinate
space).

For the inhomogeneous 3He-A with (r), the non-
zero winding of the phase Φ(p, r) gives in particular
the following 4D generalization of the singular vortic-
ity: [107, 131]

(32)

(33)

5. CHIRAL ANOMALY
5.1. Hydrodynamic Anomalies in Chiral Superfluids

The singularity in Eq. (32) leads to the anomalies in
the equations for the mass current (linear momentum
density) and angular momentum density of the chiral
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⊥ = − ⋅ˆ ˆ( ) ( )( ( ) ).p r p l r l r p liquid, since these quantities can be expressed via the
gradients of the generalized phase Φ(p, r) [107, 131].
Later it became clear, that these anomalies are the
manifestation of the chiral anomaly in 3He-A related
to the Weyl points, which led to the modification of
the hydrodynamic equations derived by Khalatnikov
and Lebedev [132]. The effect of the chiral anomaly
has been observed in experiments with dynamics of

Fig. 11. Combined topology of the Weyl points in the core
of the axisymmetric 3He-B vortex according to [107] (from
review paper [2]). Here r is the distance from the vortex
axis. Weyl points are topologically stable nodes in the qua-
siparticle particle spectrum, which have integer topologi-
cal charge N in momentum space. The Weyl points are sit-
uated at momenta Ka in momentum space, which depend
on the position r in the real space. In superfluid 3He, the
Weyl points live at p = pF, i.e. on the former Fermi surface,

Ka = ±pF , where  are unit vectors. That is why origi-
nally the Weyl point was called “boojum on Fermi sur-
face”. On the vortex axis, at r = 0, one has two pairs of
Weyl points with  =  = . Each pair forms the Weyl
point with double topological charges, N = +2 on the
north pole and N = –2 on the south pole. This corresponds
to the chiral 3He-A on the axis without any vorticity. For
r > 0, the multiple nodes split into pairs of Weyl points,
each carrying unit topological charges N = +1 or N = –1.
For increasing r, the Weyl points move continuously
towards the equatorial plane, where they annihilate each
other (+1 – 1 = 0). For larger r the fully gapped state is
formed, which becomes the isotropic 3He-B far from the
vortex. The coordinate dependence of the Weyl point gives
rise to vorticity concentrated in the vortex core, as a result
the vortex in the B-phase acquires the winding number. In
other words, according to [107] the vortex—the topologi-
cal defects in r-space—flows out into p-space due to evo-
lution of the Weyl points. The topology of the evolution is
governed by Eq. (29), which connects three topological
invariants: real-space winding number of the vortex ,
momentum-space invariant of the Weyl point N and the
invariant ν, which describes the evolution of the Weyl
point in real space.
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the vortex-skyrmions [19], which revealed the exis-
tence of the anomalous spectral-flow force acting on
skyrmions.

Originally the anomalies in the dynamics of 3He-A
have been obtained from the calculations of the
response functions and from the hydrodynamic equa-
tions, which take into account the singularity of the
phase Φ in Eq. (32) [107, 131]. In these calculations
the main contribution to the anomalous behavior
comes from the momenta p far from the Weyl points,
where the spectrum is highly nonrelativistic. The
results of calculations coincide with the later results
obtained using the relativistic spectrum of chiral fer-
mions emerging in the vicinity of the Weyl points. This
is because the spectral f low through the Weyl nodes,
which is in the origin of anomalies, does not depend
on energy and is the same far from and close to the
nodes.

The original approach uses the semiclassical
approximation, which takes into accouns that the
phase Φ(p, r) of the determinant can be considered as
the action in the quasiparticle dynamics,

(34)

The mass current j = f(p, r), where f is the distri-
bution function of bare particles (atoms of 3He), see
details in [107, 131]. In the inhomogeneous state the

momentum and coordinate are shifted by ∇S and –

respectively, and one has at T = 0 (we take  = 1):

(35)

(36)

(37)

The first term in Eq. (37) is the superfluid mass cur-
rent with velocity vs and mass density ρ = mn, where n
is particle density. The second term is the mass current
produced by the inhomogeneity of the orbital angular
momentum density L = ( n/2)  in the chiral liquid.
This is what one would naturally expect for the angular
momentum of the chiral liquid with particle density n
and the angular momentum  for each pair of atoms.
The last term in Eq. (37) is anomalous, it is nonzero
due to the 4D vortex singularity in the gap function
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determinant in Eq. (32). The parameter C0, which
characterizes this hydrodynamic anomaly, equals:

(38)

The same parameter enters the other hydrodynamic
anomalies in the chiral superfluid: in the conservation
laws for the linear momentum and the angular
momentum in chiral superfluids. At T = 0 one has
[131]:

(39)

(40)

The nonzero value of the rhs of Eq. (39) manifests the
non-conservation of the vacuum current, which
means that the linear momentum is carried away by
the fermionic quasiparticles created from the super-
fluid vacuum. Equation (40) shows that the angular
momentum of the superfluid vacuum is also not con-
served. This equation can be also represented in terms
of the nonlocal variation of the angular momentum:

∂tδL = –∂E/∂θ with ∂L = (n – C0)δ  – δn. In other

words, there is the dynamical reduction of the angular

momentum from its static value  to the dynamic

value (n – C0) . Note that in 3He-A the Cooper pair-

ing is in the weak coupling regime, which means that
the gap amplitude Δ is much smaller that the Fermi
energy μ. As a result the particle density n in the super-
fluid state is very close to the parameter C0, which is
equal to the particle density in the normal state, C0 =
n (Δ = 0). One has (n – C0)/C0 = (n(Δ) – n(Δ =
0))/n(Δ = 0) ~ 10–5, so that the reduction of the
dynamical angular momentum is crucial.

5.2. Hydrodynamic Anomalies from Chiral Anomaly
To connect the hydrodynamic anomalies in Eqs.

(39), (40) and the chiral anomaly in relativistic theo-
ries, let us take into account that the parameter pF
which enters C0 marks the position of the Weyl points
in 3He-A: Ka = ±pF . When μ → 0 and correspond-
ingly Ka → 0, the Weyl points merge and annihilate. At
the same time C0 → 0, and all the hydrodynamic
anomalies disappear. They do not exist in the strong
coupling regime at μ < 0, where the chiral superfluid
has no Weyl points and C0 = 0. All the dynamic anom-
alies experienced by 3He-A come from the Weyl
points: the existence of the Weyl nodes in the spec-
trum allows the spectral f low of the fermionic levels
through the nodes, which carry the linear and angular
momentum from the vacuum to the quasiparticle
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world. The state of the chiral superfluid with anoma-
lies at μ > 0 and the anomaly-free state of the chiral
superfluid at μ < 0 are separated by the topological
quantum phase transition at μ = 0.

Close to the Weyl point the spectral f low can be
considered in terms of the relativistic fermions. The
chiral fermions experience the effect of chiral anomaly
in the presence of the synthetic electric and magnetic
fields in Eq. (21). The left-handed or right-handed
fermions are created according to the Adler-Bell-
Jackiw equation for chiral anomaly:

(41)

The fermionic quasiparticles created from the super-
fluid vacuum carry the fermionic charge from the vac-
uum to the “matter”—the normal component of the
liquid, which at low temperatures consists of thermal
Weyl fermions. For us the important fermionic charge
is the quasiparticle momentum: each fermion created
from the vacuum carry with it the momentum K(a) =
±pF . According to the Adler-Bell-Jackiw equations
for chiral anomaly, this gives the following momentum
creation from the vacuum per unit time per unit vol-
ume:

(42)

Here as before Na is the topological charge of the ath
Weyl point, which sign determines the chirality of the
Weyl quasiparticles near the Weyl node; and qa = ±1 is
the effective electric charge. The rhs of Eq. (42) is
non-zero, because the quasiparticles with opposite
chirality Na carry opposite momentum K(a). Since in
the supefluids the momentum density equals the mass
current density, P = j, Eq. (42) reproduces the
Eq. (39). This demonstrates that nonconservation of
the linear momentum of the superfluid vacuum is the
consequence of the chiral anomaly.

The angular momentum anomaly is also related to
the spectral f low through the nodes in bulk or on the
surface [133–137].

According to the Newton law, the creation of the
linear momentum from the vacuum per unit time due
to the spectral f low through the Weyl nodes under the
effective electric and magnetic fields produced by the
time dependent texture of the vector (r, t), is equiva-
lent to an extra force acting on the texture. In experi-
ment, the relevant time dependent texture is the vor-
tex-skyrmion moving with velocity vL, where (r, t) =
(r – vLt). This together with the effective magnetic

field Beff = pF∇ ×  gives also the effective electric field
Eeff = –pF∂t  = pF(vL ⋅ ∇) .
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The anomalous spectral-flow force acting on this
topological object is obtained after integration of the
rhs of Eq. (42) over the cross-section of the skyrmion:

(43)

Here  is the vortex winding number of the texture,
which via Eq. (29) is expressed in terms of the Weyl
point charges Na and the topological π2 charges of
their spatial distributions in the texture. This demon-
strates that the spectral f low force acting on the vor-
tex-skyrmion, which has  = 2, is the result of the
combined effect of real-space and momentum-space
topologies.

5.3. Experimental Observation of Chiral Anomaly
in Chiral Superfluid 3He-A

The force acting on the vortex-skyrmions has been
measured experimentally [19]. There are several forces
acting on vortices, including the Magnus force,
Iodanski force and the anomalous spectral-f low force,
which is called the Kopnin force. For the steady state
motion of vortices the sum of all forces acting on the
vortex must be zero. This gives the following equation
connecting velocity of the superfluid vacuum vs, the
velocity of the vortex line vL and the velocity vn of
“matter”—the velocity of the normal component of
the liquid:

(44)

For the continuous vortex-skyrmion in 3He-A with
the spectral f low force in Eq. (43) the reactive param-
eter d⊥ is expressed in terms of the anomaly parameter
C0:

(45)

Here ns(T) = n – nn(T) is the density of the superfluid
component.

Since in 3He-A the anomaly parameter C0 is very
close to the particle density n, the chiral anomaly in
3He-A should lead to equation d⊥ – 1 = 0 for practi-
cally all temperatures. This is what has been observed
in Manchester experiment on skyrmions in 3He-A, see
Fig. 12 (right) which experimentally confirms the gen-
eralized Adler-Bell-Jackiw Eq. (42).

In conclusion, the chiral anomaly related to the
Weyl fermionic quasiparticles, whose gapless spec-
trum is protected by the topological invariant in p-
space, has been observed in the experiments with sky-
rmions—objects, which are protected by the topologi-
cal invariant in the r-space. The effect of chiral anom-
aly observed in 3He-A incorporates several topological
charges described by the combined topology in the
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extended (p, r)-space, which is beyond the conven-
tional anomalies in the relativistic systems.

5.4. Chiral Magnetic and Chiral Vortical Effects
in 3He-A

Another combination of the fermionic charges of
the Weyl fermions gives rise to the chiral magnetic
effect (CME)—the topological mass current along the
magnetic field. The effect can be written in terms of
the following contribution to the free energy:

(46)

where μ(a) are chemical potentials of the right and left
Weyl quasiparticles. The variation of the energy over
the effective vector potential Aeff = pF  gives the effec-
tive current along the effective magnetic field. The
CME is nonzero if there is a disbalance of left and
right quasiparticles. In 3He-A this disbalance is
achieved by application of supercurrent, which pro-
duces the chemical potentials for chiral quasiparticles
with opposite sign: μ(a) = ±pF  ⋅ vs, see [15, 138] for
details. The supercurrent is created in the rotating
cryostat. For us the most important property of the
CME term is that it is linear in the gradient of . Its
sign thus can be negative, which leads to the observed
helical instability of the superflow towards formation
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of the inhomogeneous -field in the form of skyrmi-
ons, Fig. 13 [139]. Since the texture ∇ ×  inside the
skyrmion plays the role of magnetic field, the process
of formation of skyrmions in the superflow is analo-
gous to the formation of the (hyper)magnetic fields in
the early Universe [140, 141]. Now the CME is studied
in relativistic heavy ion collisions where strong mag-
netic fields are created by the colliding ions [142].

The related effect is the chiral vortical effect
(CVE), which is described by the following term in the
free energy [15]:

(47)

Here Bg is the effective gravimagnetic field, which in
3He-A is produced for example by rotation, Bg =
2Ω/c2, where Ω is the angular velocity of rotation. The
variation of the energy over the effective vector poten-
tial Aeff = pF  gives the effective current along the rota-
tion axis. The real mass current along the rotation axis
has been discussed in [2], see Fig. 14.

In general, the total current along the magnetic
field or along the rotation axis in the ground state of
the condensed matter system is prohibited by the
Bloch theorem [143]. In our case of CME the field A =
pF  is effective, and the corresponding current J =
δF/δA is also effective. It does not coincide with the
real mass current j = δF/δvs. The imbalance between
the chiral chemical potentials of left-handed and
right-handed Weyl fermions is also effective: it is pro-
vided by the superflow due to the Doppler shift. For
the effective fields and currents the no-go theorem is
not applicable. In the case of the chiral vortical effect
with the real mass current along the rotation in Fig. 14
the Bloch theorem is obeyed. Such configuration cor-
responds to the ground state in the given topological
class of rotating states in 3He-A. In equilibrium, the
total mass current along the rotation axis is absent: the
currents concentrated in the soft cores of the vortex-
skyrmions are compensated by the opposite superfluid
current in bulk.

6. FERMION ZERO MODES

The nontrivial topology of 3He superfluids leads to
the topologically protected massless (gapless) Majo-
rana fermions living on the surface of the superfluid
or/and inside the vortex core. Let us start with the fer-
mion zero modes on the surface of 3He-B.

6.1. Majorana Edge States in 3He-B
Figure 15 reproduces Fig. 12 from [7] for the fer-

mion zero modes living at the interface between two
bulk states of 3He-B with opposite topological charges
NK in Eqs. (26), (27). There are two branches E(py, pz)
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Fig. 12. (Color online) Experimental verification of the
Adler-Bell-Jackiw anomaly equation in 3He-A (from
[19]). Left: A uniform array of vortices is produced by
rotating the whole cryostat, and oscillatory superflow per-
pendicular to the rotation axis is produced by a vibrating
diaphragm, while the normal f luid (thermal excitations) is
clamped by viscosity, vn = 0. The velocity vL of the vortex
array is determined by the overall balance of forces acting
on the vortices in Eq. (44). The vortices produce the dissi-
pation d|| and also the coupling between two orthogonal
modes of membrane oscillations, which is proportional to
d⊥. Right: The parameters d|| and d⊥ measured for the con-
tinuous vortices-skyrmions in 3He-A. As distinct from the
3He-B vortices, for skyrmions the measured parameter d⊥
is close to unity. According to Eq. (45), the experiment
demonstrates that the anomaly parameter C0 is close to the
particle density n and thus it verifies the Adler-Bell-Jackiw
anomaly Eq. (42).
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of fermion zero modes with different directions of
spin, which form the Majorana cones. They are
described by the effective 2 + 1 theory with the follow-
ing Hamiltonian:

(48)

Here  is along the normal to the interface, and c is the
“speed of light” of the emergent relativistic spectrum
of these surface fermions. The same Hamiltonian
describes the surface states on the boundary of 3He-B
[127, 144], which we consider here.

The parameter c depends on the structure of the
anisotropic order parameter Aαi(x) in the interface, or
near the wall of the container. Let us consider the
order parameter near the wall, with the bulk 3He-B at
x > 0:

(49)

Δ⊥(x = ∞) = Δ||(x = ∞) = ΔB, where ΔB is the gap in
bulk 3He-B. The corresponding 3D Hamiltonian is:

(50)

where τα and σi are as before the Pauli matrices of
Bogoliubov-Nambu spin and nuclear spin corre-
spondingly; and px now is the operator. Let us find the
bound surface states of this Hamiltonian.
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We can use the method of trajectories. In 3He
superfluids the Fermi momentum pF ≫ 1/ξ, where ξ is
the coherence length, which determines the character-
istic thickness of the surface layer, where the order
parameter evolves. That is why with a good accuracy
the classical trajectories are the straight lines, and we
can consider the Hamiltonian along the trajectory. We
assume here the specular reflection of quasiparticles at
the boundary, then the momentum component px

which is normal to the wall of the container, changes

Fig. 13. (Color online) Demonstration of the chiral magnetic effect in 3He-A [139]. In NMR experiments the height of the sat-
ellite peak is measured, which comes from the vortex skyrmions, see Fig. 2c. Initially no vortices are present in the vessel. When
the velocity of the superflow vs, which corresponds to the chiral chemical potential in Eq. (46), exceeds a critical value determined
by spin-orbit interaction, the helical instability takes place, and the container becomes filled with the skyrmions. Skyrmions carry
the analog of a hypermagnetic field, as a result the process of their creation, which is governed by chiral anomaly, is analogous to
the process of formation of magnetic field in early Universe [140, 141].
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Fig. 14. Schematic illustration of the chiral vortical effect
in rotating 3He-A from [2]. The mass currents along the
rotation axis, which are concentrated in the soft cores of
the vortex skyrmions, are fully compensated by the bulk
current in the equilibrium state. This is the realization of
the Bloch theorem which forbids the total current in the
condensed matter system in equilibrium.
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sign after reflection. This means that after ref lection
from the wall the quasiparticle moving along the tra-
jectory feels the change from Δ⊥(x) to –Δ⊥(x). Then
the problem transforms to that discussed in [7] of find-
ing the spectrum of the fermion bound states at the
interface separating two bulk 3He-B states with the
opposite values of the topological charge NK = ±2 in
Eq.(15):

(51)α

Δ⎛ ⎞
⎜ ⎟+∞ = Δ = +
⎜ ⎟⎜ ⎟Δ⎝ ⎠

0 0
( ) 0 0 , 2,

0 0

B

i B K

B

A N

and

(52)

Introducing px = pF – i∂x and neglecting the terms
quadratic in py, pz and ∂x one obtains the Hamiltoinian

(53)

(54)

(55)

where  = pF/m* is the Fermi velocity.
For p|| = (py, pz) = 0 one has the Hamiltonian (54).

This Hamiltonian is supersymmetric, where Δ⊥(x)
serves as superpotential, since it changes sign across
the interface. That is why (54) has eigenstates with
exactly zero energy. There are two solutions with
E(p|| = 0) = 0, which correspond to different orienta-
tions of spin:

(56)

(57)

For nonzero p|| one may use the perturbation theory
with H1 as perturbation, if |p||| ≪ pF. The second order
secular equation for the matrix elements of H1 gives

the relativistic spectrum E2 = c2(  + ) of the gapless
edge states in (48) with the “speed of light”:

(58)

The speed of light of surface fermions is sensitive to the
structure of the surface layer, and only in the limit of
the infinitely thin surface layer, when Δ||(x) = Δ⊥(x) =
ΔBΘ(x), where Θ(x) is the Heaviside step function, it
approaches the value determined by the bulk order
parameter, c → cB = ΔB/pF.

In applied magnetic field the Pauli term violates
the K symmetry of the Hamiltonian, the topological
invariant NK ceazes to exist, and the edge states acquire
mass [145] (see also [32, 33]):

(59)

The topologically protected Majorana edge states
are under intensive investigations in superfluid 3He-B
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Fig. 15. Schematic illustration of the spectrum of Majo-
rana fermions at the Kibble wall in 3He-B—the nontopo-
logical domain wall which separates the regions with the
opposite topological charges NK = +2 and NK = –2 (from
[7]). The spectrum satisfies Eq. (48).
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experiments. They are probed through anomalous
transverse sound attenuation [146–149], in measure-
ments of the surface contribution to specific heat
[150–152], and by magnon BEC technique in NMR
experiments [153].

6.2. Caroli-de Gennes-Matricon Bound States
in the Vortex Core

The topological properties of the fermionic bound
states in the core of the topological objects is deter-
mined both by the real space topology of the object
and by the momentum space topology of the environ-
ment.

Let us start with the spectrum of the low-energy
bound states in the core of the vortex with winding
number  = 1 in the isotropic model of s-wave super-
conductor. The spectrum is characterized by two
quantum numbers, the linear momentum pz along the
vortex line, and the integer quantum number n, which
determines the angular momentum Lz. This spectrum
has been analytically obtained in microscopic theory
by Caroli, de Gennes and Matricon [154], see Fig. 16.
The low energy branch has the form:

(60)

This spectrum is two-fold degenerate due to spin
degrees of freedom. For the nonrelativistic vortex in s-
wave superconductors the exact zero energy states are
absent, see Fig. 16. However, typically the level spac-
ing—the so called minigap—is very small compared to
the energy gap of the quasiparticles outside the core,
ω0 ~ Δ2/μ ≪ Δ. In the approximation, when the min-
igap is neglected, which is valid in many applications,
the angular momentum quantum number n can be
considered as continuous variable. Then Eq. (60) sug-
gests that there is a branch En, which as a function of
continuous n crosses zero energy level in Fig. 16
(right). And, indeed, there is the topological index
theorem, which relates the number of branches, which
cross zero as a function of Lz and the winding number

 of the vortex [155]. This is the analog of index the-
orem for relativistic cosmic strings, where the theorem
relates the number of branches, which cross zero as a
function of 2pz, and the string winding number [156].

6.3. Flat Band of Majorana Fermions
in the Singular Vortex in 3He-A

Now let us consider fermions in the core of singular
 = 1 in the chiral superfluid 3He-A. The anomalous

branch, which crosses zero as function of continuous
angular momentum quantum number n, remains the
same, see Fig. 17 (right). The existence of the anoma-
lous branch E(n) depends only on the winding number

 of the vortex, and is not sensitive to the topology of
the bulk superfluid. The latter determines the fine

1

( )= − + ω0
1 ( ).
2n zE n p

1

1

1

structure of the spectrum. Now the spectrum contains
the exact zero energy states [15, 157]:

(61)

This is the result of the bulk-defect correspondence:
the odd winding number of the phase of the gap func-
tion, Δ(p) ∝ (px + ipy), in bulk is responsible for the
zero-energy states in the core. In the two-dimensional
case the n = 0 levels represent two spin-denenerate
Majorana modes [158, 159]. The 2D half-quantum
vortex, which is the vortex in one spin component,
contains single Majorana mode.

In the 3D case Eq. (61) at n = 0 describes the f lat
band [86]: all the states in the interval –pF < pz < pF

have zero energy, where K(a] = ±pF  mark the posi-
tions of two Weyl points in the bulk material [88]. The
reason for that can be explained using the general case,
when the vortex is along the z-axis and the Weyl points
are at K(a] = ±pF  with  = cosλ + sinλ, see Fig. 18.
At each pz except for |pz| = pFcosλ, i.e. away from the
Weyl nodes, the spectrum is gapped, and thus the sys-
tem represents the set of the fully gapped (2+1)-
dimensional chiral superfluids. Such superfluids are
characterized of the topological invariant N(pz),
obtained by dimensional reduction from the invariant
N in Eq. (15), which describes the Weyl points:

(62)

Here pμ = (ω, px, py). Such invariant is responsible for
the quantized value of the Hall conductivity in the
absence of external magnetic field in the (2+1) topo-
logical materials with broken time reversal symmetry
[90, 91, 128, 160–165]. It is the generalization of the

= − ω0( ).n zE n p
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Fig. 16. Illustration of the spectrum of fermion bound
states on symmetric singly-quantized (  = 1) vortex in the
non-topological s-wave superconductors. Left: There are
no states with exactly zero energy. Right: However, if one
considers the angular momentum quantum number n as
continuous variable, there is a branch which crosses zero as
a function of n. This is the consequence of the special
index theorem [155], which becomes applicable in the
semiclassical limit pF ≫ 1/ξ (or which is the same Δ ≪ μ).
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topological invariant introduced for quantum Hall
effect [166].

This invariant, which is applicable both to interact-
ing and non-interacting systems, gives

(63)

(64)

Since the vortex core of the topologically nontrivial
(2+1) superfluid contains the zero energy Majorana
mode, one obtains the zero energy states in the whole
interval –pFcosλ < pz < pFcosλ:

(65)

This is the topological origin of the f lat band in the
core of the singular 3He-A vortex, first calculated in
[86].

Flat band has been also discussed for vortices in d-
wave superconductors [168].

6.4. Fermion Condensation on Vortices in Polar Phase

Here we consider vortices, in which the minigap
ω0(pz) vanishes at pz =0. This leads to the enhanced
density of states of the fermions in the vortex core, and
as a consequence to the non-analytic behavior of the
DoS as a function of magnetic field in superconductor
or of rotation velocity in superfluid.

Examples are provided by vortices [4] in the
recently discovered [34] non-chiral (N = 0) spin-trip-
let polar phase of superfluid 3He. In general, the min-
igap for the Caroli-de Gennes-Matricon bound states
in the core of symmetric vortices in which the gap

= < λ3( ) 1, | | cos ,z z FN p p p

= > λ3( ) 0, | | cos .,z z FN p p p

= − λ < < λ( ) 0, cos cos .z F z FE p p p p

function behaves as Δ(pz)f(r) is given by the following
equation (see e.g. [157]):

(66)

where

(67)

is the wave function of the bound state.
For s-wave superconductors one has isotropic gap,

Δ(pz) = ΔS; for 3He-A the gap has point nodes, Δ(pz) =

ΔA|p⊥|/pF = ΔA /pF; and for the polar phase in
Eq. (23) the gap has nodal line, Δ(pz) = ΔP|pz|/pF. The
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Fig. 17. Illustration of the spectrum of fermion bound
states on the most symmetric  = 1 vortex in the chiral
Weyl superfluid 3He-A. As distinct from Fig. 16, the spec-
trum in this topological superfluid contains the states with
exactly zero energy at n = 0 in Eq. (61). These states form
the f lat band, which terminates on the projections of two
Weyl points to the vortex line, see Fig. 18.

pz n

E(pz, n)
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1

Fig. 18. (Color online) Projections of Weyl points on the
direction of the vortex axis (the z-axis) determine the
boundaries of the f lat band in the vortex core in Fig. 17.
Weyl point in 3D systems represents the hedgehog (Berry
phase monopole) in momentum space. For each plane
pz = const one has the effective 2D system with the fully
gapped energy spectrum (px, py), except for the planes
with pz± = ±pFcosλ, where the energy (px, py) has a
node due to the presence of the hedgehogs in these planes.
Topological invariant N(pz) in (62) is non-zero for |pz| <
pF|cosλ|, which means that for any value of the parameter
pz in this interval the system behaves as 2D fully gapped
topological superfluid. Point vortex in such 2D superfluids
has fermionic state with exactly zero energy. For the vortex
line in the original 3D system with two Weyl points this
corresponds to the dispersion-less spectrum of fermion
zero modes in the whole interval |pz| < pF|cosλ| (thick line).
This consideration can be extended to the boundary states.
Due to the bulk-boundary correspondence, the 1D
boundary of the 2D topological insulator with N(pz) = 1
contains the branch of the spectrum of edge states, which
crosses zero energy [167]. In the 3D system these zeroes
form the 1D line of the edge states with zero energy—the
Fermi arc, which is terminated by the projections of the
Weyl points to the surface [103, 104].
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nodal line in the polar phase leads to the large suppres-
sion of the minigap at small pz ≪ pF:

(68)

where ω00 has an order of the minigap in the conven-
tional s-wave superconductors. The spectrum is
shown in Fig. 19. All the branches with different n
touch the zero energy level. It looks as the f lat band in
terms of n for pz = 0. However, at pz → 0 the size of the
bound state wave function diverges, the state merges
with the bulk spectrum and disappears.

The effect of squeezing of all energy levels n
towards the zero energy at pz → 0 can be called the
condensation of Andreev-Majorana fermions in the
vortex core. The condensation leads to the divergent
density of states (DoS) at small energy. In the vortex
cluster with the vortex density nV the DoS is

(69)

In calculation of Eq. (69) we assume that the relevant
values of n are large, and instead of summation over n
one can use the integration over dn:

(70)

According to Eq. (68) the integral in Eq. (70) diverges
at small pz. The infrared cut-off is provided by the

intervortex distance rV = : the size of the wave
function of the bound state ξpF/|pz| approaches the
intervortex distance when |pz| ~ pFξ/rV. This cut-off
leads to the following dependence of DoS on the inter-
vortex distance:

(71)

The result in Eq. (71) is by the factor rV/ξ larger than
the DoS of fermions bound to conventional vortices.
Since in the vortex array rV ∝ Ω–1/2, the DoS has the
non-analytic dependence on rotation velocity, NV ∝
Ω1/2. Similar effect leads to the  dependence of the
DoS on magnetic field in cuprate superconductors
[110, 169].

6.5. Vortices with Multiple Branches Crossing Zero
in 3He-B

Finally let us mention, that vortices with broken
symmetry in the vortex core may contain a large num-
ber of the non-topological branches of spectrum,
which cross zero as function of pz [170–173], see e.g.
Fig. 20 for the spectrum in the 3He-B vortex with the
A-phase core.
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7. CONCLUSIONS

At the moment the known phases of liquid 3He
belong to 4 different topological classes.

(i) The normal liquid 3He belongs to the class of
systems with topologically protected Fermi surfaces.
The Fermi surface is described by the first odd Chern
number in terms of the Green’s function in Eq. (13)
[15].

(ii) Superfluid 3He-A and 3He-A1 are chiral super-
fluids with the Majorana-Weyl fermions in bulk,
which are protected by the Chern number in Eq. (15).
In the relativistic quantum field theories, Weyl fermi-
ons give rise to the effect of chiral (axial) anomaly. The
direct analog of this effect has been experimentally
demonstrated in 3He-A [19]. It is the first condensed
matter, where the chiral anomaly effect has been
observed.

The singly quantized vortices in superfluids with
Weyl points contain dispersionless band (flat band) of
Andreev-Majorana fermions in their cores [86].

New phases of the chiral superfluids have been
observed in aerogel. These are the so-called Larkin-
Imry-Ma states—the glass states of the -field [174],
which can be represented as disordered tangle of vor-
tex skyrmions. These are the first representatives of the
in homogeneous disordered ground state of the topo-
logical material. The spin glass state in the -field has
been also observed. The recently observed chiral
superfluid with polar distortion [175] also has Weyl
points in the spectrum.

(iii) 3He-B is the purest example of a fully gapped
superfluid with topologically protected gapless Majo-
rana fermions on the surface [32].

l̂

1

d̂

Fig. 19. Illustration of the spectrum of fermion zero modes
at |pz| ≪ pF on vortices in the polar phase of superfluid 3He.
The branches with different n approach zero-energy level
at pz → 0. This is the consequence of the Dirac nodal ring
in the spectrum of the polar phase.

pz
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(iv) The most recently discovered polar phase of
superfluid 3He belongs to the class of fermionic mate-
rials with topologically protected lines of nodes, and
thus contains two-dimensional f lat band of Andreev-
Majorana fermions on the surface of the sample [120],
see also recent reviews on superconductors with topo-
logically protected nodes [176].

It is possible that with the properly engineered
nanostructural confinement one may reach also new
topological phases of liquid 3He including:

(i) The planar phase, which is the non-chiral
super-fluid with Dirac nodes in the bulk and with
Fermi arc of Anfreev-Majorana fermions on the sur-
face [177].

(ii) The two-dimensional topological states in the
ultra-thin film, including inhomogeneous phases of
superfluid 3He films [178]. The films with the 3He-A
and the planar phase order parameters belong to the
2D fully gapped topological materials, which experi-
ence the quantum Hall effect and the spin quantum
Hall effect in the absence of magnetic field [90].

(iii) α-state, which contains 4 left and 4 right Weyl

points in the vertices of a cube, Ka = (±  ±  ± )

[106, 179]. This is close to the high energy physics
model with 8 left-handed and 8 right-handed Weyl
fermions in the vertices of a four-dimensional cube
[180, 181]. This is one of many examples when the
topologically protected nodes in the spectrum serve as
an inspiration for the construction of the relativistic
quantum field theories.

3
Fp x̂ ŷ ẑ

See also the other proposals in [182].
We did not touch the wide area of the bosonic col-

lective modes in the topological superfluids. Super-
fluid phases of 3He are the objects of the quantum
field theory, in which the fermionic quantum fields
interact with propagating bosonic modes, some of
which have the relativistic spectrum. Among these
modes there are analogs of gravitational and electro-
magnetic fields, W and Z gauge bosons and Higgs
fields. Higgs bosons—the amplitude modes—have
been experimentally investigated in superfluid 3He for
many years. For example, among 18 collective modes
of 3 × 3 complex order parameter in 3He-B, four are
gapless Nambu-Goldstone modes: oscillations of the
phase Φ represent the sound waves, while and oscilla-
tions of the rotation matrix Rαi are spin waves. The
other 14 modes are the Higgs modes with energy gaps
of the order of ΔB. These heavy Higgs modes in 3He-B
have been investigated both theoretically [183–186]
and experimentally [187–191]. Due to spin-orbit
interaction one of the spin-wave Goldstone mode
acquires a small mass and becomes the light Higgs
boson. The properties of the heavy and light Higgs
modes in 3He-A, 3He-B and in the polar phase suggest
different scenarios for the formation of the composite
Higgs bosons in particle physics [192–197].

One may expect the topological confinement of
topological objects of different dimensions in real
space, momentum space and in the combined phase
space. Examples are: Fermi surface with Berry phase
flux in 3He-A in the presence of the superflow [15];
the confinement of the point defect (monopole) and
the line defect (string) in real space [198]; the nexus in
momentum space [111, 199], which combines the
Dirac lines, Fermi surfaces and the crossing points;
the so-called type II Weyl point, which lead to forma-
tion of the analog of the black hole horizon [200–
204]; etc.

Topology also gives rise to different types of super-
fluid glass states, including skyrmion glass, Weyl glass,
analogs of spin foam, etc. [205].
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