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Exploratory search requires the system to assist the user in comprehending the information space and ex-

pressing evolving search intents for iterative exploration and retrieval of information. We introduce interac-

tive intentmodeling, a technique thatmodels a user’s evolving search intents and visualizes them as keywords

for interaction. The user can provide feedback on the keywords, from which the system learns and visualizes

an improved intent estimate and retrieves information. We report experiments comparing variants of a sys-

tem implementing interactive intent modeling to a control system. Data comprising search logs, interaction

logs, essay answers, and questionnaires indicate significant improvements in task performance, information

retrieval performance over the session, information comprehension performance, and user experience. The

improvements in retrieval effectiveness can be attributed to the intent modeling and the effect on users’ task

performance, breadth of information comprehension, and user experience are shown to be dependent on

a richer visualization. Our results demonstrate the utility of combining interactive modeling of search in-

tentions with interactive visualization of the models that can benefit both directing the exploratory search

process and making sense of the information space. Our findings can help design personalized systems that

support exploratory information seeking and discovery of novel information.

CCS Concepts: • Information systems → Users and interactive retrieval;

Additional Key Words and Phrases: Proactive search, user intent modeling

T. Ruotsalo and J. Peltonen contributed equally.

This work has been partly supported by the Academy of Finland (278090; 252845; 305739; 252845; 294238; 292334; 255725;

and the Finnish Centre of Excellence in Computational Inference Research COIN), Re: Know and D2I funded by TEKES,

and MindSee (FP7 ICT; Grant Agreement 611570).

Authors’ addresses: T. Ruotsalo, University of Helsinki, Helsinki Institute for Information Technology HIIT, Department

of Computer Science, P.O. Box 68, FI-00014 University of Helsinki, Finland; email: tuukka.ruotsalo@helsinki.fi; J. Peltonen,

University of Tampere, Faculty of Natural Sciences, FI-33014 University of Tampere, Finland; email: jaakko.peltonen@uta.fi;

M. J. A. Eugster and S. Kaski, Aalto University, Helsinki Institute for Information TechnologyHIIT, Department of Computer

Science, P.O.Box 15400 FI-00076 Aalto, Finland; emails: manuel@mjae.net, samuel.kaski@aalto.fi; D. Głowacka, P. Floréen,

P. Myllymäki, and G. Jacucci, University of Helsinki, Helsinki Institute for Information Technology HIIT, Department of

Computer Science, P.O. Box 68, FIN-00014 University of Helsinki, Finland; emails: glowacka@cs.helsinki.fi, {patrik.floreen,

petri.myllymaki, giulio.jacucci}@helsinki.fi.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

2018 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 1046-8188/2018/10-ART44 $15.00

https://doi.org/10.1145/3231593

ACM Transactions on Information Systems, Vol. 36, No. 4, Article 44. Publication date: October 2018.

https://doi.org/10.1145/3231593


44:2 T. Ruotsalo et al.

ACM Reference format:

Tuukka Ruotsalo, Jaakko Peltonen, Manuel J. A. Eugster, Dorota Głowacka, Patrik Floréen, Petri Myllymäki,

Giulio Jacucci, and Samuel Kaski. 2018. Interactive Intent Modeling for Exploratory Search. ACM Trans. Inf.

Syst. 36, 4, Article 44 (October 2018), 46 pages.

https://doi.org/10.1145/3231593

1 INTRODUCTION

Information retrieval research has primarily focused on improving retrieval for a single query at a
time or a short sequence of queries occurring in a search session. However, many complex tasks,
such as literature surveys or product comparisons, require the user to become accustomed to a
wider body of knowledge to complete the task. The objective of an exploratory search is not only
to retrieve relevant results for a particular query but to aid the user in completing more complex
tasks that may involve evolving and changing search intents. Therefore, the goal of an exploratory
search system is not only to find a diverse set of results or to minimize the time the user has to
spend to look for a small highly-relevant or obvious subset of results. A search system tailored for
exploratory search should rather provide the user with adequate interaction affordances to allow
exploration to cumulatively gain information during a search session.
Consequently, user behavior has been shown to depend on the type of task. For example, re-

searchers have proposed a distinction of “lookup,” “learning,” and “investigation” task types [21,
75, 118]. Lookup tasks aim at finding information of which the user is already aware, and they are
already well supported by the current generation of search engines. Conversely, systems support-
ing exploratory search, requiring learning and investigating the information space to comprehend
a wider body of knowledge, have turned out to be more difficult to design. One reason is that in
an exploratory search setting the user is not a priori familiar with the information space.
A user engaged in an exploratory search task is facing the relevance paradox and an anomalous

state of knowledge [17, 18, 34]. This means that the relevance of a particular piece of information
for the task may become apparent to the user only after it has been retrieved. This implies that the
user has to know what to search for, as existing approaches do not support becoming aware of in-
formation needs that arise during exploration. Consequently, exploratory search processes require
iteration between discovering and subsequently comprehending retrieved information through-
out the course of the task [32, 48]. Empirical evidence also suggests that in a large portion of web
search sessions, users are struggling, and these sessions can bemostly characterized as exploratory
search sessions [81].
The needs of the user may evolve throughout the search session, and the user may need assis-

tance in directing the search to explore initially unpredictable but highly relevant information. In
the current typed-query based search user interfaces, users are forced to invest significant cogni-
tive efforts in acquiring cues to formulate queries from the intermediate results, instead of being
able to focus on discovering, learning, and collecting relevant information [114].
Intent modeling can help to sequentially mitigate the relevance paradox, the initially anomalous

state of knowledge, and consequently struggling to find information by acquiring knowledge of
the task from user interactions over the duration of the task [73, 118]. Consequently, users can
discover and explore information relevant to their tasks rather than optimizing results to be max-
imally relevant for an individual query, which may be suboptimal in the first place. Recent results
suggest that systems leveraging knowledge about a user’s search intentions can provide higher-
quality task outcomes on a longer term, than systems that try to optimize the immediate results
set against the present query [1, 41, 119]. For example, a scientist conducting a literature survey
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on an unfamiliar topic would need to learn new conceptualizations that are potentially relevant to
the research topic, use them to explore related but still relevant information, and comprehend the
displayed information to make sense of relevant and useful information for completing the task.
A search system best supporting the scientist to accomplish such a task would allow a dialogue
between the system and the user to not only retrieve relevant results for a particular query but
to also assist in discovering related information, conceptualizing the relevant information space
for comprehending the available information, and helping to specify search intents that evolve
throughout the course of the task when users learn and gain information.
Despite the fact that a significant portion of search activities is associated with exploratory

tasks, and task complexity is known to affect search success [21], current interaction methods for
supporting exploratory search are based on techniques that suggest terms or rephrased queries
[62], document relevance feedback mechanisms [61], and faceted search interfaces that enable
narrowing down the search within the initial query scope [104, 125]. These techniques put the
user in a reactive role to filter search results rather than offering interaction affordances to actively
direct the exploratory search process.
We introduce interactive intent modeling to support exploratory search [as discussed earlier

in preliminary conference papers and an overview paper: 43, 82, 96–98]. It is based on three
principles:

(1) Intent modeling. The intent model predicts the user’s evolving information need dur-
ing a search session in an interactive modeling-based loop. The exploration-exploitation
trade-off of reinforcement learning is used to control exploiting the best estimates and
explore alternative, yet relevant, directions in the information space and present them as
suggestions for subsequent interactions.

(2) Intent-model visualization. The intent model is transparently visualized for interac-
tion. The visualization of the model can turn the human memory recall task to a fluid
visual recognition task. Instead of recalling queries from human memory, the user can
visually recognize potential intents expressed as keywords and interact with them. The
user can direct the search by reinforcing or penalizing selected keywords, even when the
space of possible alternative intents is large.

(3) Intent-model based retrieval. The intent model provides a relevance weighting for the
document features. This is used in retrieving an updated set of documents reflecting the
change in the user’s search intent.

The objective of the article is to investigate interactive intent modeling utilizing reinforcement
learning with feedback from the visualization of the information space. We validate the approach
through comparative user studies in exploratory search and information comprehension.
We report two experiments using a system implementing the approach on a database indexing

over 50 million scientific documents. The first experiment focuses on the effects of interactive
intent modeling on the user’s task performance (measured by expert ratings of users’ answers),
the system’s retrieval performance (measured by precision, recall, and F1, cumulatively over the
course of the session and at the end of the session), and user interactions with the intent model
in exploratory search tasks. The experiment shows improved system retrieval performance with
all conditions that implement interactive intent modeling, but task performance is only improved
when rich visualization is used. The second experiment focuses on the visualization and studies
the information comprehension support of the visualization operationalized as a user’s ability to
find semantic topics that cover the information content in a set of search results. The experiment
shows improved coverage attributed to the visualization of the model.
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2 RELATEDWORK

To investigate how to support information retrieval in complex and exploratory tasks, we start by
reviewing related work on information seeking and exploratory search that originate from em-
pirical observations of human search behavior. After that, we relate our approach to more recent
studies that describe opportunities and challenges in adapting search by mining and modeling in-
teraction data acquired from search engine logs. Moreover, we highlight our contribution to recent
work in the area of search intent modeling and personalization of search. We then turn to review-
ing search user interfaces, in particular, interfaces that make use of information visualization to
assist comprehending search results, and adapting and personalizing search.

2.1 Empirical and Theoretical Frameworks of Exploratory Search

Possibly the best known hypothesis explicating the roots of the exploratory search problem is the
anomalous state of knowledge hypothesis [17, 18]. The anomalous state of knowledge hypothesis
states that in many cases, users of search systems are unable to precisely formulate what they need
as they miss some vital knowledge to formulate queries. In such cases the system should attempt
to model a user’s intentions to assist the user rather than to require the user to specify a query
explicating the information need [78].

As a result, exploratory search has been described as a combination of exploratory browsing
with focused searching [16, 75], where mixed search strategies are used to achieve task goals and
the user is explicating the information need in different phases. It has been shown that tasks, goals,
users’ pre-knowledge, and task phases are factors in this process [32, 73].

Focused and exploratory searching strategies are also analogous to orienteering and teleporting
strategies [114]. The orienteering strategy refers to search behavior where the user issues a quick,
imprecise query, reaching approximately to the right region of the information space. Users then
follow paths that require small steps that move them closer to their goal. Conversely, teleporting
refers to a strategy where the user issues a more precise query to jump directly to the target. This
requires more effort in query formulation and prior knowledge about the problem domain, as users
have to be able to formulate the query more precisely already in the beginning of their search. For
a long time, most of the search engines have focused on supporting teleporting. Behavioral studies,
however, have demonstrated that a large portion, around 40% to 65% [114], of the search goals are
informational, in which users want to learn about something they are not a priori familiar with.
Yet, recent empirical evidence also suggests that in a large portion of web search sessions users
are struggling, and these sessions can be mostly characterized as exploratory search sessions [81].
These behavioral findings highlight the importance of techniques and user interaction support
that can assist users in orienteering to their goals and adjusting expressions of their information
needs that arise during exploration.
Some classic frameworks have a more holistic view of information seeking. The information

search process model describes users’ experience in the process of information seeking as a se-
ries of affective, cognitive, and physical functions. Affective states that begin as uncertain, vague,
and ambiguous become clearer, more focused, and specific as the search process progresses [68].
The early stages of the process model identify the uncertainty related to the information needs
and the exploration phase in which inconsistent and incompatible information is encountered and
new information discovered. Another framework directly related to our work is the berry pick-
ing model, which refers to understanding search behavior as a multistage process of recognizing
the problem, establishing a plan for the search, conducting the search, evaluating the results, and
iterating through the process [15]. The information foraging theory has also inspired the devel-
opment of exploratory retrieval techniques [83]. It draws an analogy to humans’ evolutionary
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pressure to optimize their actions. This theory proposes that humans constantly make decisions
on what kind of information to look for, whether to continue using the current source of infor-
mation to try to find related additional information, or to move on to another direction, and when
to finally stop the search. Although human cognition is not a result of evolutionary pressure to
improve search, the analogy can be seen in users’ aim to reduce cognitive effort to optimize search
behavior [84]. These frameworks are partially overlapping and emphasize different aspects of hu-
mans’ roles in approaching the information-seeking problem. For example, a difference between
exploratory search and information foraging is that in the latter hypothesis, users optimize their
cognitive efforts, while in the former hypothesis, the users’ willingness to invest time and effort
to explore may change depending on what information is found during exploration [123]. While
these models explain different aspects of the information-seeking process, they all define some
common aspects of the process: the initial anomaly in user’s knowledge, the different phases of
the search processes where users are trying to find, learn, and further specify their information
needs and intentions, and the focus on information-seeking episodes that can be described as a
series of interaction between the user and the information that are supported by the information
retrieval system.

2.2 Complex Tasks and Search Personalization

Themajority of previous studies on practical information retrieval focuses on optimizing and eval-
uating look-up retrieval, where the information target is well-defined and human-machine inter-
action is limited to queries and search-result selections [90]. While look-up retrieval already serves
many of our information needs, many practical tasks that generate information needs require in-
teractive support to assist the search process [14, 75].

More recent work has highlighted the importance of interaction support for more complex tasks
[118], whole-session relevance [90], and task performance beyond session boundaries [71]. Several
studies have also shown how to predict search intents and intentional task types from query data
and search behavior. Researchers have used data from user interactions, such as query history or
interactions with a visual interface [9, 28, 45], search logs [12, 79], and search-interface dependent
search-behavior features [78]. Studies show that both behavior inside one session and historic
behavior over sessions can be used in combination or isolation to improve search results [19].
Also statistics about results repetition within search sessions have been incorporated into ranking
for personalizing search results [106]. Further studies investigated how typical or atypical queries
can be identified and help profile a search session to improve search results [40]. Other studies
explored how to detect if queries have little ambiguity in intent but seek content covering a variety
of aspects [90] as well as learning semantic query annotations suitable to the target intent of each
individual query [42]. Such studies mark a trend toward personalized search based on models
representing users’ individual needs and intentions [77] that can model topical and even cognitive
aspects of user intentions [60].
Users often struggle in formulating their intents as queries when they are engaged with ex-

ploratory search tasks. As a response, personalization techniques have been developed to support
query formulation and relevance feedback. This is grounded in a well-known cognitive science
theory stating that humans find recognition easier than recall [10], as it is usually easier for a
human to recognize something presented than it is for her to describe it without any support.
Several techniques exist to either support query formulation or to process results to help re-rank,
filter [116], expand [31, 77], diversify [2, 27, 54, 89], or extract entity-oriented search intents to
improve query suggestion and recommendation [39, 91]. Relevance feedback [61] and query and
term suggestions [62] have also been proposed to improve short-term navigational search, but
provide limited support for exploratory search.
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Term and document relevance feedback mechanisms have been found to improve retrieval in
laboratory studies [61], but much of the evidence from user studies indicates that relevance feed-
back features are not used, or if they are, they are unlikely to result in retrieval improvements
[50]. There are two main reasons for this. First, relevance feedback directly affecting the query
often leads to a context trap, i.e., after a few iterations of feedback, users have specified their con-
text so strictly that the system can no longer propose anything new and users are trapped within
the present set of results. Second, the requirement to explicitly select relevant and irrelevant doc-
uments or terms, when the system’s responses are not immediately satisfying for the user, can
prevent the user from actively engaging with the feedback mechanisms.
An alternative approaches requiring less active user involvement are query suggestion diversi-

fication and answer set diversification approaches that recommend alternative interpretations of
a given query upfront [38, 87].

Methods have been proposed for modeling search intents for diversification and improvements
over conventional diversification methods have been achieved by clustering query refinements
for intent detection [100] and using click-through data to intent-aware diversification [53] and
diversification that targets to predict novel suggestions [102]. Researchers have also developed
diversification methods that canmake meaningful query suggestions context-aware by taking into
account the search or session context [22, 23].

Other techniques use query clustering to similar intent classes or hierarchical models of intents
[30, 54] and suggest a diverse set of queries using models that utilize a short-term context using
the user’s behaviour within the current search session, such as the previous query, the documents
examined, and the candidate query suggestions that the user has discarded [63], the page context
that the user has browsed [29], or the whole search session [92].
Recent research proposed implicit detection of intentions using pre-search context by monitor-

ing the documents visited prior to performing a search [67]. Similarly, most of the previous work
has focused on identifying alternative queries that bear a strong similarity or relevance to the
original query or query history [109]. The suggested queries may therefore be good alternatives
to the initial query or predicting the next query, but are not necessarily helpful in exploring
outside the initial query scope. In exploratory search, search intents may shift and new intents
arise as the search progresses. This requires the user to be able to choose and switch among a
number of potential and even partially contradictory intents, instead of just allowing the system
to converge toward a single target.
More generally, research in session search has benefited from the introduction of the Session

Track at TREC (see, e.g., References [24, 59]) but has also limited the scope to the interaction types
recorded in the TREC sessions. TREC sessions are also relatively short compared to the sessions
that we have recorded in our task-based experiments.
We approach the intent modeling by using reinforcement learning [72, 111], where the user

rewards the model through interaction and the predictions of the model are used to retrieve infor-
mation and visualized for interaction. Conventional reinforcement learning assumes user states
and a planning process to reach states for maximizing reward. In the bandit setting, the user is di-
rectly rewarding the model through interactions with the model as opposite to computing policy
over state transition space. In this setting, the user does not need to have a specific goal in mind
at the outset of the search but can gradually provide evaluative feedback on the system responses
to reward the model while exploring the information space.
In our approach, the multi-armed bandit algorithm is used to suggest keywords related to the

ones the user has preferred in the past (exploitation) but also keywords that are related and have
high uncertainty (exploration). Consequently, the user can reward a direction already in the search
focus (exploit), or reward an alternative and uncertain direction (explore). In this context, if the
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user consistently gives reward on very similar information, then the system will converge on this
type of information. Conversely, if the user rewards a varied type of information, then the system
will keep on exploring until the user decides to converge on a specific search direction.
As opposite to conventional relevance feedback [94, 101], the bandit approach is not limited to

predictions within the information already been retrieved; the predictions of the keywords rep-
resenting the intent model do not have to come from the set that the user has already seen, but
rather from a model that can represent the data collection – and in principle could use even data
from other sources than the collection being searched. The relevance feedback is interpreted as
providing reward to the model as opposite to a highest ranked document representations as in
conventional relevance feedback.
Similar to our modeling approach, multi-armed bandits have been utilized to model user pref-

erences by learning diverse rankings for a single query based on clicking behavior [56, 88] and
learning rankings from pair-wise document comparisons derived from implicit feedback [52, 126].
Other similar techniques include POMDPs that have been recently proposed for re-ranking [128]
and session search [74].

2.3 Visual Interfaces in Search

The early studies in search user interfaces already demonstrated that even simple interaction sup-
port, such as faceted search interfaces, can be effective for tasks where the search goal is well de-
fined and the success is measured based on the system’s response to short interaction sequences
[51, 125].

The user interface designs of search systems make trade-offs in complexity and richness of
the information being presented to the user. The reduction of interface complexity can happen in
several dimensions: choice of the amount of information or search control options to be shown, or-
ganization of this information into categories or some visualization that can reduce the complexity
for the user and allow for more efficient and effective navigation.
The main user interface oriented approaches to present richer information and allow naviga-

tion include filtering by facets [125], result visualization and navigation through clusters [49], and
visual search [3]. While these approaches provide means for navigation, they are purely based
on analysis of the document data, and do not take into account that search intents for the same
query can be very different and can be learned during the search session [125]. Modeling search
intent allows reducing the complexity of the search interface by narrowing down available feed-
back options to those most likely to be relevant for the user’s information need. In complex tasks,
however, the user’s information needs evolve throughout the course of the search and the user’s
ability to direct the search to solve the task at hand is critical [43].

Recent search systems employ visualization of the resulting information to enable faster rele-
vance judgment and effective feedback [47, 58, 70, 76, 117]. A variety of visualization approaches
of search results have been explored, including multiple linked lists, scatter plots, graphs, and
their combinations [70, 110]. These types of visual search systems are distinguished from familiar
query composition based systems by their emphasis on rapid filtering to reduce result sets, pro-
gressive refinement of search parameters, continuous reformulation of goals, and visual scanning
to identify results [3]. There is mixed evidence of the effectiveness of the proposed techniques, but
research suggests that when the interaction and predictive mechanisms are adopted they typically
lead to improved efficiency [58].
Current visual-search approaches attempt to better support exploration in different ways: sup-

porting sense-making by incrementally and interactively exploring the network of data [25], show-
ing how visualization supports user involvement in the recommendation by providing a rationale
behind suggested items [121], and visualizing relations of different queries and result sets [5].
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Research demonstrating how to support users to view and manipulate the user models are rare [6,
7] and are limited for information seeking, as they employ conventional static ranked lists with
limited focus on exploration. More recent work attempts to combine personalization of searchwith
visualization approaches, indicating a renewed interest in adopting advanced visual interfaces for
exploratory search [4, 5, 65]. Despite extensive research in visualization and interactive support
for search result ordering, there is no conclusive evidence that these visualization approaches lead
to improved retrieval performance or search result comprehension in the hands of users [50, 105].
Studies have mainly focused on reporting either behavioral findings on the exploration behavior
[36, 69] or finding more diverse information or increased coverage of variables in the exploration
process [124]. Moreover, existing approaches focus on visualizing different data dimensions as
separate widgets [3, 36, 124] but not topical similarity and relevance simultaneously.

A line of recent work has focused on interactive support for making sense of search results and
several interactive interfaces have recently been proposed. ExplorationWall [65] is an interface
that allows incremental exploration and sense-making of large information spaces by visualizing
documents and related entities as search streams. PivotPaths [36] is another recently proposed in-
terface for exploring faceted information resources by visualizing facets as paths and supporting
pivot operations as lightweight interaction techniques that trigger gradual transitions between the
facets. Syed and Collins-Thompson [112, 113] introduced a retrieval algorithm designed to maxi-
mize educational utility of a search system as opposite to conventional relevance optimization.
Interactive interfaces that enable transparent control on user models have recently become pop-

ular [8, 66, 95, 96]. The idea behind these approaches is that, as opposite to visualizing results, the
user model is visualized and the user can interactively provide feedback on the search intentions
using the visualization. Similar visual controls for user modeling have also been proposed for rec-
ommender systems [13, 35, 122].

Effective presentation of search results is important in exploratory information search scenarios
where a user tries to gain understanding of a topic to retrieve more specific or related information
in subsequent search iterations [75, 114]. A simple ranked list may be sufficient in simple look-up
search scenarios where users focus on finding one or a few highly relevant documents. However,
broader coverage of search results is needed especially when the aim of the information seeking
is not to look up an individual relevant document but to gain an overall understanding of varied
information across multiple relevant documents. Only part of the information in each document
may be relevant, and information content over multiple documents may be interrelated; the user
must then comprehend not only individual documents but a wider coverage of different aspects
of relevant information spread across documents. Successfully comprehending information con-
tent across search results lets the user relate the result documents to each other, the query, and
the underlying information need, and to exploit the information content appropriately in further
processing of the found information [64].

While the existing work highlights the utility and applicability of visualization techniques for
interactively browsing information collections, in general, we lack understanding of the benefits
of the visualizations. Visualizations can possibly improve users’ effectiveness or efficiency in un-
derstanding or comprehending the information collections, or alternatively act as complex proxies
for simpler interactions that the users perform as a part of their information exploration processes.

2.4 Contributions

Several contributions set interactive intent modeling apart from the previous research:

(1) We present the principle of interactive intent modeling that allows the user to interact
with the intentmodel visualization to provide feedback on themodel.We also demonstrate
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the technical realization of the approach by using reinforcement learning with rewards
obtained from user interactions. This is in contrast to previous research in intent predic-
tion and personalization that have mainly focused on analyzing query logs for suggesting
queries, providing document-driven visualizations, or diversifying ranked document lists.

(2) We demonstrate implementations of the technique as parts of practical information re-
trieval systems. Unlike majority of previous studies proposing modeling users’ search in-
tentions, we study the effectiveness and efficiency of the approach in user studies with
real-world system implementations indexing a real-life data collection of over 50 million
scientific documents.

(3) We empirically validate the performance of interactive intent modeling in exploratory
search and information comprehension tasks. We report significant improvements of task
performance, information retrieval performance over the session, information compre-
hension performance and user experience over a conventional search system. This is in
contrast to previous approaches that typically evaluate models against log files or artifi-
cial session benchmarks that can not capture user dynamics emerging from experiment-
dependent user interactions.

3 INTERACTIVE INTENT MODELING

Interactive intent modeling is a technique that models the user’s evolving search intents over
a search session. The model learns intent estimates from user feedback and visualizes them as
keywords for interaction as shown in Figure 1. Consequently, interactive intent modeling forms
an interactive loop between the system and the user to refine the user’s search intentions and
direct the search process.
At each iteration, a set of keywords is suggested to the user based on the feedback obtained in

previous iterations. Given the evolutionary nature of exploratory search, it is important to exploit
the feedback elicited from the user but also to balance it with exploration. Users must be able to
focus on a specific subset of the documents (exploit), but at the same time to be able to broaden their
search to more general, but still highly relevant, documents (explore). This learning procedure is
called the exploration/exploitation tradeoff of reinforcement learning.
Assisting the user in directing the search, the visualization shows both the current intent esti-

mate, the alternative intents, and how the alternatives are related to the current intent estimate.
The two-dimensional visualization shows the relevance of each keyword in the current estimated
intent and the similarity of the keywords representing alternative intents.

3.1 A Walkthrough Example

We demonstrate an example implementation of interactive intent modeling in a system called
IntentRadar, which indexes a large corpus of scientific documents. Interactive intent modeling
represents the search intent through a set of weighted keywords associated with the documents,
and the model is transparently visualized for interaction.
We explain the system and illustrate its usage via a walkthrough example of directing search in

an exploratory search task. Figure 1 illustrates the IntentRadar interface when a query, “computer
vision,” has been issued. Besides a typical query box and article list, the IntentRadar interface
provides an interactive visualization of the intent model on a radial layout. The center of the
IntentRadar interface represents the user. In the inner area (Figure 1(C)), keywords close to the
center of the radar visualize the system’s estimate of the user’s present search intent. The outer
area (Figure 1(B)) consists of keywords that are not part of the present intent estimate but are
recommended for the user as potential future intents to explore. The interface thus allows the
user to recognize potentially interesting intents to direct the search toward them.
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Fig. 1. A screenshot of the IntentRadar interface. A query, “computer vision,” has been issued. Besides a
query box and an article list, the interface also visualizes the predicted keywords representing search intent
and potential future intents. The keywords are visualized with a set of keywords organized on a radial layout
(A), where the center area represents the user: The closer a keyword is to the center, the more relevant it is
to the estimated intent. The present intent model used for retrieval is visualized as keywords in the inner
circle (C), and the future projection of alternative search intents is visualized as potential new directions in
the outer circle (B). Details of the visualization can be inspected with a fisheye lens (D). The ranked list of
documents is shown on the right side of the interface (E).

The position of an individual keyword in the visualization is defined by the radius and the
angle. In more detail, the radius of a keyword represents its relevance: The closer a keyword is to
the center, the more relevant it is for the current estimated search intent. The angles of keywords
represent their similarity: Similar angles indicate the keywords are relevant to similar intents. To
help distinguish topically different search intents from each other in the outer area, the interface
also colors the keywords based on a clustering. The keywords with the highest relevance in each
cluster are shown with labels to characterize the cluster. The other keywords are shown as dots
that can be enlarged with a fisheye lens (Figure 1(D)). The retrieved document list is visualized on
the right side of the interface (Figure 1(E))
The visualization can be used to direct the search. Positive relevance feedback can be provided

by dragging a keyword closer to the center of the radar, or by clicking a keyword under a docu-
ment, which assigns full relevance for the keyword. Negative relevance feedback can be provided
by dragging a keyword outside the radar. Feedback can be provided on several keywords at each it-
eration. After the user has finished providing feedback, the center of the radar is clicked by the user,
and the system will update the intent model, the visualization, and the document list accordingly.
Figure 2 illustrates a sequence of exemplar interactions for a user who starts by issuing a query,

“computer vision,” and uses the interface to tune the search toward more detailed areas of interest.
We focus on the user’s interaction to direct the search. At any point during the interaction, the
user can also read abstracts and visit the full articles.
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Fig. 2. An example of interactive intent modeling with the IntentRadar system. (A) The initial visualization
in response to a typed query “computer vision.” The visualization shows keywords relevant to the estimated
search intent and keywords for alternative future intents. (B) The user wants to learn more about “object
recognition” and “perception,” and gives feedback by moving those keywords toward the center of the radar
(movements are shown as small red arrows) and clicking the center of the radar. (C) The user receives a new
estimate of the present and future intents and an updated document set (omitted in the figure for brevity).
The user wants to learn about “stereo vision” and “tracking” and gives feedback by moving the keywords
closer to the center of the radar and clicking the center of the radar. (D) The user again receives an updated
intent estimate and an updated document list.

After the initial query, the user is displayed a visualization (Figure 2(A)) of the system’s initial
estimate of her search intent, potential future intents, and an initial set of documents. The user
selects “object recognition” and “perception” tomatch her search intent and provides them positive
relevance feedback by dragging those keywords toward the center of the radar (Figure 2(B)).
The system learns from the feedback and updates the intent model to improve the estimates

of the current and potential future intents. The visualization is correspondingly updated and a
matching set of documents is retrieved (Figure 2(C)). The user then further directs the search
toward “stereo vision” and “tracking” by dragging those keywords closer to the center and receives
an updated model and document list (Figure 2(D)).
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In the following, we explain each component of the system presented in Figure 1. Section 3.2
explains estimation of the current intent model, which is used in Figure 1(C). Section 3.3 explains
the projections of future intents used in Figure 1(B). Section 3.4 explains the layout computation
for the visualization. Section 3.5 explains the document retrieval model that uses the intent model
to produce a ranking of the documents listed in Figure 1(E). Table 1 summarizes the notation used
in the sections.

3.2 Estimation of the Intent Model

The purpose of intent model estimation is to predict a set of keywords and their relevances that
together represent the user’s search intent (Figure 1(C)) within a search session. Modeling intent
over the search session has the advantage of capturing the user’s overall search intent, while al-
lowing the user to direct the search toward more specific topics.
The intent model estimation must balance exploration and exploitation of the user’s feedback. If

the system would simply estimate the intent by selecting the keywords with the highest exploita-
tive estimates, then the system would suggest keywords similar to the ones presented to the user
in the previous iterations. This would risk the user in getting stuck in a local “context bubble.”
Alternatively, the system could purely explore, which would lead to a set of “diverse” keywords,
that is, keywords having large variance across the documents but having little to do with the user’s
feedback so far. Both situations are suboptimal given the evolving nature of exploratory search.
To solve the exploration/exploitation tradeoff, we utilize the LinRel algorithm [11]. First, LinRel

estimates a linear model representing the current search intent based on the search session his-
tory. Second, it predicts expected keyword relevances and corresponding upper confidence bounds.
Third, keywords with high upper confidence bounds are selected for visualization. Intuitively, key-
words with high upper confidence bounds are the ones that are either already highly relevant with
less uncertainty, or potentially relevant but with greater uncertainty. These are the keywords that
are optimal for user feedback to improve the intent model.
In detail, a search session consists of t = 1, . . . ,T iterations. At each iteration t , a large set of

keywords have been assigned estimated relevance scores from the intent model; the top-k ranked
keywords are visualized, and the user provides relevance feedback for one ormore of the visualized
keywords. The intent model is then re-estimated taking the new feedback into account, yielding
new estimated relevance scores for all keywords.
The new estimated relevances are then used for retrieving documents (Section 3.5) and updating

the visualization (Section 3.4) for the iteration t + 1.
Suppose up to time t we have collected F instances of relevance feedback where each feedback

r1, . . . , rF ∈ [0, 1], is a relevance value for a particular keyword, and the vector of all feedback
values is denoted r̃ . The model operates on a tf-idf-valued [57] data matrix K where documents
are columns and the F keywords that received feedback are rows.
The algorithm then consists of two steps. For any keyword (whether it has received feedback

or not), denote by k the tf-idf vector of documents versus that keyword. For this keyword, the
algorithm first computes a regression weight vector,

a = k (K�K + λI )−1K�, (1)

where I is the identity matrix, and λ is a regularization parameter set to 0.5. In the second step, the
final relevance score at the current iteration is computed for the keyword, by taking into account
the vector r̃ of feedback obtained so far:

v̂ = a · r̃ + c

2
‖a‖, (2)
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Table 1. Mathematical Notation for Intent Model Estimation, Intent Model
Visualization, and Document Retrieval

Symbol Meaning

T total number of iterations in the search session
t index of an iteration, omitted where obvious
F number of keywords that have received relevance feedback so far
r relevance feedback value for a particular keyword, a number between 0 and 1
r̃ vector of all F relevance feedback values received so far
K data matrix for keywords that have received feedback. Rows represent keywords

and columns represent documents
k vector for a keyword whose relevance is to be predicted
λ regularization parameter in regression model
a regression weight vector for a keyword whose relevance is to be predicted
v̂ relevance score for a keyword: upper confidence bound of predicted relevance for

the keyword
c constant used to adjust the confidence bound to balance exploration and

exploitation
L number of alternative pseudo feedback considered
l index of an alternative pseudo feedback

v̂ fu,l upper confidence bound of predicted relevance for a keyword after the lth
alternative pseudo feedback

i and j indices of two keywords, omitted where obvious
ṽi vector of L predicted relevances for keyword i , corresponding to the L pseudo

feedback; characterizes behavior of the keyword in response to feedback
p (j |i ) similarity of keyword j to i as a probability, based on similarity of their

characterizations
q(j |i ) on-screen apparent similarity of keyword j to i as a probability, based on

similarity of their angles
σi parameter controlling falloff of the similarity probabilities around keyword i
αi angle of keyword i on the IntentRadar
pi probability distribution over keywords j based on the similarity of their

characterizations to i; contains all values p (j |i )
qi probability distribution over keywords j based on the similarity of their angles to

i; contains all values q(j |i )
DKL Kullback-Leibler divergence between two probability distributions

where r̃ is the vector of feedback obtained so far, a is the regression weight vector for the keyword
whose relevance score we are predicting, ‖a‖ is the L2 norm of the regression weight vector, and
the constant c is used to adjust the exploration/exploitation trade-off (we used c = 2 to give equal
weight for exploration and exploitation). This procedure is repeated for all keywords whose rel-
evance needs to be estimated; note that in Equation (1) all terms except k on the right-hand-side
are the same for all keywords, thus the computation can be quickly done over all keywords whose
relevances need to be estimated. It can be shown that this procedure is equivalent to estimating
the upper confidence bound in a linear regression problem [11].

Intuitively, the first term on the right side of Equation (2) models exploitation and the second
term exploration. Therefore, at each iteration of the search, based on the feedback, the model
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suggests not only keywords with the highest relevance score, but the keywords with the highest
confidence bound, balancing exploration and exploitation as desired.

3.3 Projecting Future Intents

The keywords together with their corresponding relevances form the user’s present intent model,
which is visualized in the inner part of the visualization (Figure 1(C)). To offer the user these feed-
back options and to allow directing the search toward alternative, yet relevant intents, the system
estimates how the relevances of keywords would change in response to simulated feedback cor-
responding to future intents. Keywords that may become relevant in the future intent predictions
are then offered to the user in the outer part (Figure 1(B)) of the visualization.
To predict a diverse set of future intents, we use several alternative pseudo feedback, one for

each of the top Lmost relevant keywords; that is, if relevances v̂1, . . . , v̂M have been computed for
a large set ofM keywords, the keywords having the L largest values are each separately selected for
pseudo feedback. In practice, a pseudo-relevance feedback with value 1 (strong positive feedback)
is given as feedback for the keyword at rank l to simulate the lth potential future intent. Using
this pseudo feedback in addition to the feedback received so far, a corresponding relevance esti-
mate in this future intent is computed for all keywords, with the the intent estimation procedure
introduced in the previous section. This is repeated for each of the L alternative pseudo feedback.
Therefore, each keyword will receive L estimated future relevances [v̂ fu,1, . . . , v̂ fu,L], where each
relevance arises from one of the alternative pseudo feedback.
The relevance estimates of all M keywords in all L future intents are collected into a matrix

Ṽt ∈ [0, 1]M×L . The estimates of future intents are derived from the model and enable projections
to different directions in the information space thatmay become relevant for the user in subsequent
iterations.

3.4 Visualization of the Intent-Model

We now describe a computational method for the purpose of laying out the top L keywords in the
inner circle of the visualization (Figure 1(B)) and the keywords representing future intents in the
outer circle of the visualization (Figure 1(C)).
We use a radial layout that has a good tradeoff between the amount of shown information and

comprehensibility. A simple list of keywords would only use one degree of freedom and would
not show keyword relationships, whereas higher than two-dimensional visualizations could make
interaction with the visualization more difficult [37]. The radial layout also has a natural reference
point representing the user in the center.
We first start by describing the outer circle (Figure 1(B)). In Section 3.3, we described how, at each

iteration of the interactive search process, each keyword has been computed a high-dimensional
representation: a vector of L future relevances [v̂ fu,1, . . . , v̂ fu,L] where each relevance is in response
to a particular pseudo feedback. For a keyword i , denote this vector by ṽi . The norm | |ṽi | | repre-
sents the overall relevance of the keyword over different possible feedback, and we use it as the
radius of the keyword on the radial layout. We then normalize the vectors, and for the remainder
of the discussion, we simply refer to the normalized vector ṽi/| |ṽi | | as ṽi . For each keyword i ,
the (normalized) vector ṽi characterizes how the keyword behaves in response to feedback. Key-
words that have similar characterizations behave similarly in response to feedback, and therefore
represent a similar direction for directing the search. We aim to present such directions to the
user as angles on the radial layout, and accomplish this by dimensionality reduction from the
high-dimensional characterizations to low-dimensional angles [99].

The angles α are computed by a non-linear dimensionality reduction to one dimension. We use
a state-of-the-art nonlinear dimensionality reduction approach that has outperformed others in
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recent comparisons [120]. The approach is based on probabilistic modeling, and aims to preserve
keywords with similar characterizations by giving similar angles to similar keywords.
For the dimensionality reduction, we define similarities as follows. Two keywords are related if

their relevance grows in response to the same feedback, and we assess this simply by comparing
their characterizations. Suppose there areM keywords in total. For each keyword i , similarities to
other keywords j � i , j = 1, . . . ,M are set as probabilities,

p (j |i ) ∝ exp(−||ṽi − ṽj | |2/σ 2
i ). (3)

For the visualization display, similarities are defined analogously based on the angles αi of key-
words:

q(j |i ) ∝ exp(−(αi − α j )2/σ 2
i ). (4)

Both probabilities are normalized to sum to one over the j, and theσi are set as by Venna et al. [120].
Given these definitions of similarities, the dimensionality reduction algorithm finds the optimal
angles for the keywords by minimizing the difference between the probability distributions pi =
{p (j |i )}j�i, j=1, ...,M and qi = {q(j |i )}j�i, j=1, ...,M . The total amount of difference, for all keywords i ,
is measured by a sum of Kullback-Leibler divergences DKL between the distributions,

∑

i

DKL (pi ,qi ) + DKL (qi ,pi ), (5)

and the angles are found by minimizing the divergence with respect to the αi using a gradient
descent algorithm.
Next, we describe the inner circle (Figure 1(C)). To ensure consistency between the inner and the

outer circle, the angles of the L keywords displayed in the inner circle are placed according to the
angles of the M − L keywords displayed in the outer circle. Thus, the keywords of future intents
are shown close to the respective keywords of the current intent that they are most related to. The
radius is chosen to be directly proportional to the relevance estimate of the keyword: the top L
keywords are positioned in the inner circle (the closer to the center the more relevant) and the
remaining keywords in the outer circle. Finally, the keywords are colored based on agglomerative
clustering applied to the angles of keywords.

3.5 Intent-Model Based Retrieval

The purpose of the retrieval model is to provide at each iteration t a list of ranked documents
(Figure 1(E)) given the estimated relevance scores v̂t,i for the L most relevant keywords, i.e., the
top-ranked keywords, which are also displayed for the user in the inner circle of the visualization
(Figure 1(C)) .
For each of the documents in the collection, we compute the relevance score, for which we use

the language modeling approach of information retrieval. This approach computes the probability
of the intent model generated by the given document [85]. To avoid zero probabilities and improve
the estimation, we use an estimate smoothed by Bayesian Dirichlet smoothing [127].

The final list of k documents is shown to the user and selected from the ranked list. The simplest
solution to establish the final list of documents shown for the user would be to select the top-k
ranked documents according to the language model ranking. However, to favor diversity, and to
ensure the final results list represents the different intents present in the intent model, we diversify
the ranked list of documents. The diversification is conducted by sampling a set of documents by
using Dirichlet Sampling [44] from the top documents. To collect the session history, the new
unique documents from the top ranked documents are added to K at each iteration of the search
session.
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4 EXPLORATORY SEARCH EXPERIMENT

The goal of exploratory search systems is to support users in discovering information to resolve an
open-ended problem rather than maximizing short-term query-response performance. Therefore,
a controlled task-based user experiment that situates the participants in open-ended tasks was
designed.

4.1 Research Questions

The exploratory search experiment sought answers to the following research questions:

RQ1 Task performance: Does interactive intent modeling lead to better task outcome?
RQ2 Retrieval performance: Does interactive intent modeling result in high-quality re-

trieved information?
RQ3 Interaction support: Does interactive intent modeling elicit useful interactions?
RQ4 User experience:Does the increased complexity of the user interface design, compared

to standard search interfaces, affect the subjective user experience?

4.2 Experimental Design

We chose a 3 × 2 between-subjects design with three system configurations and two tasks. This
design was chosen to avoid the learning effects of participants, as each participant only used one
of the systems and performed a single task with the system.

4.3 System Configurations

Three systems were configured to study the roles of the intent modeling and the interactive visu-
alization of the intent model. The system configurations and the associated features are as follows:

• IntentRadar system is a full system as presented in the previous sections and contained
the intent modeling functionality and the radial visualization component.

• IntentList system is a system with the intent modeling functionality, but with a simpler
list visualization of the top-10 keywords from the estimated intent model.

• Typed Query system is a baseline system, in which the interactions were constrained to
typed-keyword queries and the results were presented as a ranked list.

A screenshot of the IntentRadar system is shown in Figures 1 and 2. A screenshot of the In-
tentList is shown in Figure 3, and a screenshot of the Typed Query baseline system in Figure 4.
The underlying document ranking model was the same for all three systems and all systems

had the conventional typed-query interaction option: In all system configurations it was possible
to type queries in the search box instead of using the intent model component.

4.4 Task and Topics

We chose a task type that is complex enough to ensure that exploration is necessary for participants
to acquire the information to accomplish the task and complex enough to allow participants to
choose the kind of interaction that best supports solving the task. The task was expected to reveal
exploratory search effectiveness both at the level of the system and in the interaction behavior.
The task was defined as a scientific writing scenario, i.e., the participants were asked to prepare

materials and an outline for writing an essay on a given topic. The assignments were:

(1) Search for relevant articles to be used as references in the essay.
(2) Search for relevant keywords representing topics to be used to structure the essay.
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Fig. 3. A screenshot of the IntentList system. Relevance feedback can be provided by interacting with the
estimated intents visualized as a list on the right side of the search result list.

Fig. 4. A screenshot of the Typed Query baseline search user interface. Relevance feedback cannot be pro-
vided and the user is expected to reformulate the typed query to express alternative search intents. The Typed
Query baseline system reflects standard search engine usage, where the interaction is via typing queries.

We recruited two post-doctoral researchers to define the topics and specific assignments for
these topics. The topics chosen by the experts were “semantic search” and “robotics.” The experts
wrote task descriptions using the following template: “Imagine that you are writing a scientific
essay on the topic. Search for scientific information that you find useful for this essay.” To provide
clear goals for exploration, the experts were asked to provide questions about specific aspects of
the topic. The question defined by the experts for the robotics topic was: “What are the sub-fields,
application areas and algorithms commonly used in the field of robotics?,” while the question for
the semantic search topic was: “What are the techniques used to acquire semantics, methods used
in practical implementation, organization of results, and the role of semantic Web technologies
in semantic search?.” The participants were asked to both search for documents to support their
answers to these questions and to write short answers under each question to fill in the essay
outline.
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4.5 Participants

We recruited 30 participants from two universities to participate in the study. The participants
were 20–40 years old. There were nine female and 21 male participants. All the participants were
graduate students with a technical background. Through a prior background survey, we ensured
that every participant was familiar with the concept of a literature search and had conducted one
in their past experience.
We also screened the participants to avoid bias caused by pre-knowledge levels. The screening

allowed to avoid recruiting participants who might be highly knowledgeable about a topic, e.g.,
an expert on robotics who would know almost all literature prior to the experiment, or an novice
who might not know anything, e.g., a first-year student without technical knowledge about the
topic. The participants with high and low prior knowledge of the topic of the assigned search task
were not allowed to participate. Prior knowledge was assessed via self-assessment on a scale of
1 to 5 ((1) no knowledge at all, (2) some knowledge, (3) moderate knowledge, (4) knowledgeable,
(5) expert knowledge). We only allowed students to participate if they rated their prior knowledge
between 2 and 4.

4.6 Procedure

The basic protocol for each experiment scenariowas the following: instructions and demonstration
of the system (10min); processing of the search task by the participant (30min); and completion of
two questionnaires (10min).
Prior to the experiment, the participants were asked to read written instructions. The instruc-

tions explained the task that the participants were expected to perform. The participants were
then demonstrated the system. Then the participants watched a 2min video illustrating an exem-
plar task with the system variants and they had a 3min trial using the systems via a pre-defined
query that was not related to the topics used in the actual experiment.
After this phase, the actual experiment started. In the experiment, the participants had full free-

dom to use the provided search system as they wished. The participants had 30min to complete
the task. The participants were notified 5min before the end of the experiment to ensure that they
were able to compete their essays before the end of the experiment. After the experiment, the
participant filled in post-task questionnaires selected from the ResQue questionnaires [86].

4.7 Apparatus

The experiments were performed in an office-like environment using standard equipment (20′′–
24′′ monitor, mouse, and keyboard). The demonstration of the system was done by the instructor
using a separate computer.
During an experiment all interactions by the participants with the systems were logged with

timestamps, including typed queries, the documents and keywords presented by the system in
response to interactions, and all interactions with the interactive components of the systems.

4.8 Data and Settings

We used a dataset of over 50 million scientific documents from the following data sources: the
Web of Science prepared by THOMSON REUTERS, Inc., the digital library of the Association of
Computing Machinery (ACM), the Digital Library of the Institute of Electrical and Electronics En-
gineers (IEEE), and the digital library of Springer. The dataset contains the following information
about each document: title, abstract, keywords, author names, publication year and publication
forum. Both systems used the same document set.
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For the experiment, we fixed the parameters in the system to the following values. The number
of retrieved documents at each iteration by the language model ranked was set to 300, and we
used μ = 2,000 for the Dirichlet smoothing. The number of documents shown to the user at each
iteration was set to 20. The number of keywords included in the present intent model was set to
L = 10. The maximum number of keywords representing future intents displayed for the user was
set to 200.

4.9 Relevance Assessments

After the completion of the experiments, the experts who designed the tasks conducted two types
of relevance assessments. First, assessments were done for the quality of information displayed and
second, the quality of responses of the essay materials and outlines created by the participants.
All documents and keywords that were retrieved and displayed for the participants by any of the

systems during the tasks were pooled, resulting in a pool of 5,612 documents and 4,097 keywords.
Out of the 5,612 documents, 3,384were labeled as relevant. Out of the relevant documents, 731were
labeled as obvious, and 2,653were labeled as novel. Out of the 4,097 keywords, 2,225were labeled as
relevant. Out of the relevant keywords, 1,284 were specific, and 938 were general. Each document
and keyword was assessed by two experts who created binary assessments of the documents on
the following assessment categories:

(1) Relevance—Is this article relevant to the search topic?
(2) Obviousness—Is this a well-known overview article in the given research area?
(3) Novelty—Is this article uncommon yet relevant to the given topic or specific subtopic in

a given research area?

The experts also assessed the keywords by using the following assessment categories:

(1) Relevance—Is this keyword relevant for the topic?
(2) General—Does this keyword describe a relevant subfield?
(3) Specific—Does this keyword describe a relevant specifier for the subfield?

The obvious and novel sets were disjoint and their union was the set of relevant documents.
Analogously, the general and specific sets were disjoint and their union was the set of relevant
keywords.
The quality of essay materials and outlines created by the participants were also assessed by

experts. All the essay outlines from the participants were pooled and experts assessed each aspect
of the essay, according to the questions specified in the task description, on a six point scale from
0 (no answer) to 5 (perfect answer).
A three-step process was used separately for documents and keywords. First, the assessors pro-

vided binary relevance assessment for each item. Second, all relevant items were categorized in
the subcategories. Finally, all categorizations were checked again. All assessment procedures were
double blind meaning that the assessors did not know the participants or the treatment conditions.
To measure the inter-annotator agreement between the two experts, an overlapping randomly
sampled subset of 10% of the articles and keywords was assessed by two experts. The Cohen Kappa
test indicated a substantial agreement between the experts (Kappa = 0.71393, p < 0.001).

4.10 Evaluation Measures

Measures were defined to quantify each evaluation aspect defined in the research questions.
Task performance (RQ1) was the main measure of success. It was measured as the mean score

of the expert grading of the participants’ essay outlines.
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Retrieval performance (RQ2) was measured by temporal and cumulative variants of the con-
ventional effectiveness measures of information retrieval. We generalized precision, recall and F-
measure to take into account the temporal dimension as new information was cumulatively gained
while searching. Standard evaluation measures were not directly feasible, because in our setting
participants were shown a limited set of documents in response to an interaction, i.e., top-20, on
each iteration instead of the total ordering. We also did not choose to use session-level discounted
cumulative gain [55] as that measure penalizes the documents ranked lower and found later in
the search session, which is against our intuition of evaluating the whole-session outcome. The
goals of an exploratory search system are not minimizing time-on-task or the quality of an individ-
ual query-response, but information gain over the session. Consequently, we focus on measuring
the gain of information within the search space and operationalize the evaluation as temporal
recall and precision. Temporal recall and precision measures were adjusted to capture the perfor-
mance of the system as a function of time. They measure the proportion of relevant documents
cumulatively retrieved by the user up to a certain time point, in response to interactions with the
system.
We start with a definition of cumulative document set Prest denoting all unique documents

presented to the user at a time point t , the set Presrelt denoting all unique relevant documents
presented to the user at time point t , andAllpres denoting all unique relevant documents in the as-
sessment pool constructed from all documents found by any of the participants in the experiment.
We define temporal precision as

Pt =
Presrelt
Prest

, (6)

which measures the proportion of relevant documents cumulatively shown to the user, compared
to all documents cumulatively shown to the user until time point t . Similarly, the the temporal
recall is defined as

Rt =
Presrelt
Allpres

, (7)

which measures the proportion of relevant documents cumulatively shown for the user compared
to all relevant documents in the assessment pool.
For example, if a user finds relevant documents on the first iteration, just 10s after starting to

use the system, but the system does not assist the user to direct the search, then the performance
may not be much better when investigated after 120s of use. However, if the system assists the
user to gain more relevant documents, the recall after 120s may have been increased, because the
user could easily interact with the system to gain more relevant results.
For example, by setting t = 60s, we could investigate how many relevant articles a user was

able to collect during the first minute of use by measuring Rt and what proportion of the collected
articles were relevant by measuring Pt .
These measures are used to investigate how the precision/recall tradeoff develops over time and

to compare systems in task settings where participants may use varying queries and interactions
at varying points of time. The measures were computed with respect to the different assessment
aspects: relevant, novel, and obvious.
Interaction support (RQ3) for directing exploration was measured using three separate types

of measures. First, we measured the amount and type of interactions: typed query or interaction
with the intent model. Second, we measured the quality of the keywords displayed for the user and
the quality of keywords that the participants interacted with. Third, we measured the time as a
function of the richness of the visualization, i.e., comparing the amount of keywords on the screen
and the duration to interaction when this amount of keywords was presented. The hypothesis was
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Fig. 5. Key performance measures for the mean performance of an average user at the end of the task:
task performance, retrieval performance, interaction support, and user experience. All differences between
the IntentRadar system and the Typed Query baseline are statistically significant, retrieval performance,
interaction support and user experience differences between the IntentList and the Typed Query baseline
are statistically significant, but in case of the task performance the the IntentList and the Typed Query
systems perform equally. See the following sections for test details.

to reveal whether the increased amount of information displayed would cause the participants to
spend more time scanning to make the decision to which direction to explore.
User experience (RQ4) was measured using two standard post-test questionnaires: the stan-

dard System Usability Survey (SUS) [20] and ResQue, a recently proposed user-centric evaluation
framework designed for the evaluation of recommender systems [86]. ResQue was chosen be-
cause it can be used to measure the subjective experience of interaction adequacy and preference
expression capabilities offered by a system. The visualization system can be seen as a variation
of a recommender system as it offers the users additional information to direct the search and
present information. Participants filled in the questionnaires after completing the task and used
a 5-point Likert scale to provide their answers (Strongly disagree (1), Disagree (2), Neither agree
nor disagree (3), Agree (4), Strongly agree (5)).

5 RESULTS OF THE EXPLORATORY SEARCH EXPERIMENT

The results show that interactive intent modeling, as implemented in both the IntentList and the
IntentRadar systems, yields significantly improved retrieval performance and interaction support,
and modest, but significant gain in user experience. The visualization and increased amount of
information visualized in the IntentRadar system yielded a higher amount of interactions and im-
proved task performance. These main findings are illustrated in Figure 5 and discussed from sev-
eral points of view in the following sections: task performance, retrieval performance, interaction
support, and user experience.

5.1 Task Performance

The participants who used the IntentRadar system achieved significantly better task performance
than the participants who used the IntentList system or the Typed Query baseline system. The
participants’ responses to the tasks were graded significantly higher by experts. The mean ex-
pert grade for the IntentRadar system was μ = 2.79, for the IntentList system μ = 1.87, and for
the Typed Query baseline system μ = 1.88. The differences between the IntentRadar and the other
systems were statistically significant (Two-sidedWilcoxon rank sum test between the IntentRadar
and the IntentList,W = 1025.5,p = 0.007, and between the IntentRadar and the Typed Query base-
line systems,W = 937,p = 0.005). Both differences are significant using Bonferroni adjusted alpha
levels of p < 0.0167(0.05/3)). Significant difference was not found between the IntentList and the
Typed Query baseline system (Two-sided Wilcoxon rank sum test between the IntentList and the
Typed Query baseline systems,W = 691.5,p = 0.925).
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Table 2. Retrieval Effectiveness for the Compared Systems in Terms of Precision, Recall, and
F1 Measure and Computed for the Different Assessment Categories: Relevant, Obvious, Novel

System Precision Recall F1

Rel Obv Nov Rel Obv Nov Rel Obv Nov

IntentRadar 0.65 0.26 0.40 0.10 0.15 0.09 0.17 0.17 0.14

IntentList 0.79 0.33 0.46 0.10 0.16 0.08 0.17 0.19 0.13

Typed Query baseline 0.71 0.35 0.32 0.06 0.13 0.03 0.10 0.18 0.05

Bold entries denote significant differences between the typed query baseline system and the compared sys-

tem. See the main text for test details.

5.2 Retrieval Performance

Table 2 summarizes the retrieval performance in terms of the effectiveness measures for the com-
pared systems for relevant, obvious, and novel categories. The values represent the effectiveness
at the end of the task (at 30min). Precision varied between 0.65 and 0.79 for the relevant category,
between 0.26 and 0.35 for the obvious category and between 0.32 to 0.46 for the novel category.
Significant differences were not found between the systems for precision of the retrieved docu-
ments in any category nor for any measure in the obvious category. Recall varied between 0.06
and 0.10 for the relevant category, between 0.13 and 0.16 for the obvious category, and between
0.03 and 0.09 for the novel category.
Both of the systems with interactive intent modeling show significantly higher F1-measure (In-

tentRadar W = 10,p = 0.002 and IntentList W = 15, p = 0.007) and recall (IntentRadar W = 12,
p = 0.005 and IntentListW = 16, p = 0.009) for the novel documents than the Typed Query base-
line system without sacrificing precision. These differences are significant using Bonferroni ad-
justed alpha levels of p < 0.0167(0.05/3).
On average, participants found around 15% (109.65) of the obvious documents and between 3%

to 9% of the novel documents. While the absolute recall may seem to be low, the measure counts
for the overall effectiveness over the session as opposite to the conventional recall measure that
counts for the mean individual query effectiveness. As a consequence, the actual count of the
retrieved relevant documents has a significant variance between the systems. For example, in the
case of novel documents the participants who used the Typed Query baseline system retrieved on
average 79.6 (3% recall) novel documents, while the participants who used the IntentRadar system
retrieved on average 238.7 (9% recall) novel documents.
These results indicate that while the participants were able to retrieve equally relevant and

equally obvious documents, the participants’ ability to explore to novel, yet relevant, areas was
significantly improved when they were interacting with a system that employed interactive intent
modeling. The effect sizes (F1-measure for IntentRadar novel μ = 0.14,σ = 0.07 and for IntentList
μ = 0.13,σ = 0.08) when compared to the Typed Query baseline system (F1-measure μ = 0.05,σ =
0.02) are substantial and similar effect sizes hold for both systems that incorporate interactive
intent modeling.

5.3 Temporal Performance Analysis

Retrieval effectiveness was measured after completing the task, i.e., measuring what the partici-
pant retrieved with the system during the 30min session. To gain more insights into the retrieval
effectiveness, we analyzed the temporal effectiveness within the search session. Figure 6 (nine sub-
figures) shows temporal retrieval effectiveness of the compared systems with respect to precision,
recall, and F1 on the three assessment categories: relevant, obvious, and novel.
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Fig. 6. Retrieval effectiveness of the compared systems in terms of precision, recall, and F-measure averaged
over the participants and tasks, with respect to the elapsed task time. The three top figures show F1 values
for relevant, obvious, and novel documents; the three figures in the middle show precisions; and the bottom
three figures show recalls, respectively. No significant differences were found between the systems in regard
to precisions, nor retrieval of obvious information. The systems with interactive intent modeling support
achieved significantly improved effectiveness for novel informationmeasured for the whole session duration.

The results suggest that precision stays relatively constant for relevant documents throughout
the session, but is slightly decreasing in the case of obvious documents. This is an intuitive result
based on the experiment: since all users started the sessions by simply typing the name of the topic
as the initiator query, the initial set of information contains many obvious documents, whereas
after the initial set of obvious information had been retrieved, other interaction support becomes
more important; as participants use such interactions to go beyond the initial obvious results,
precision with respect the obvious documents will naturally decrease, whereas the fact that the
overall precision of all relevant documents stays relatively constant means the system has allowed
users to retrieve relevant documents beyond the obvious ones.
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Fig. 7. Left: Amount of elicited interaction with respect to the elapsed task time. Middle, right: Time between
interactions in relation to the number of documents and keywords displayed (middle) and summarized per
system (right). The participants who used the IntentRadar interface had richer keyword visualization, inter-
acted more and primarily with keywords, without affecting the time between interactions.

An interesting insight is that for the IntentRadar system, precision is slightly increasing toward
the end of the session for novel documents. This suggests that richer interaction becomes crucial
to discover novel information, in particular for these exploratory tasks that were studied in the
experiment. The recall for relevant and novel information is increasing already after 250s, sug-
gesting that users can benefit from the intent modeling in much shorter sessions than our 30min
test setup but also suggests that interactive intent modeling has limited benefits in short look-up
sessions. This is intuitive as if the users can successfully create a typed query for which the system
can respond with few highly-ranked documents, the benefits from intent modeling and interac-
tive visualization are limited. However, temporal analysis suggest that interactive intent modeling
shows improvements for long-lasting exploratory search sessions, where users’ goals are vague
and evolving as they discover new information.

5.4 Interaction Support

Interaction support was first quantified by the amount of interaction to express information needs
that was elicited by a system: typed queries or interactions with the intent model. Query reformu-
lations were counted as queries, and interaction with the visualization were counted only when
the dragging was successfully completed.
The left side of Figure 7 shows the total amount of interaction elicited by the different systems.

The results show that participants adopt and make use of interactive intent modeling. The partici-
pants who used the IntentRadar system interacted four times more (μ = 38.9) than the participants
who used the Typed Query baseline system (μ = 8.7) and the participants who used the IntentList
system interacted nearly twice as much (μ = 21.2) as the participants who used the Typed Query
baseline system. The differences between the systems with interactive intent modeling were found
to be statistically significant (two-sided Wilcoxon rank sum test, IntentRadar vs. Typed Query
baselineW = 4223,p = 0.00005, IntentList vs. Typed Query baselineW = 3536.5,p = 0.0001). Both
differences are significant using Bonferroni adjusted alpha levels of p < 0.00033(0.001/3)). De-
spite the higher amount of interactions of the participants who used the IntentRadar system, no
statistically significant difference was found between the IntentRadar and the IntentList systems.
This suggests that the intent model improved the interaction of the users, but the different types
of intent model visualizations did not affect the interaction behavior.
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To study the distribution of different types of interactions that the different systems elicited, the
interactions were split into the two types logged: typed queries and interactions with the intent
model. The mean amount of typed queries was not found to be significantly different between the
systems. The mean amount of typed queries for the IntentRadar was (μ = 7.8), for the IntentList
(μ = 7.1) and for the Typed Query baseline (μ = 8.7). The systems where the participants used the
intent models for their interactions were used in cycles in which typed keyword queries were first
issued and then interaction with the intent model was used to direct the search. However, the
primary interaction method, for example, for the IntentRadar system was interaction with the in-
tent model by interacting with the visualized keywords (μ = 31.2), which is over three times more
common than typed query interaction (μ = 7.8). This indicates that participants did not replace
the typed queries with interaction with the intent model, but rather directed their search further
from the initially issued potentially imprecise query.
The middle panel of Figure 7 shows the amount of information on the screen as a function

of time spent between interactions. Query typing and query reformulations were counted when
the queries were issued. Interaction with the visualization were counted only when the dragging
was completed. The dragging or typing time was excluded. In the Typed Query baseline system,
the participants were always shown 20 documents and keywords associated to the documents
were shown under each document. In the IntentRadar interface, the participants were shown 20
documents and keywords in the radar, and keywords associated to the documents were shown
under each document. The right side of Figure 7 shows that the participants were able to provide
the feedback in faster loops using the systems with interactive intent modeling despite having
more information on screen. The mean duration between interactions for the participants in the
IntentRadar condition was μ = 62s, in the IntentList condition μ = 59s, and for the Typed Query
baseline system μ = 113s. The difference between the IntentList and IntentRadar systems was not
statistically significant, but the differences between the IntentList (Two-sided Wilcoxon rank sum
test,W = 3536.5, p = 0.0001) and IntentRadar (Two-sided Wilcoxon rank sum test,W = 4223, p =
0.000005) systems compared to the Typed Query baseline systemwere significant. Both differences
are significant using Bonferroni adjusted alpha levels of p < 0.00033(0.001/3)). This suggests that
the participants were able to utilize the intent model rapidly and despite the increased amount of
information on screen, the time to make decisions in directing the search was faster than in the
Typed Query baseline condition.
As the amount of interaction was significantly increased and participants chose the IntentRadar

as the main interaction method to direct their search, it was important to investigate the relevance
of the keywords that were displayed and which ones the participants used in their interactions.
Table 3 shows the precision, recall, and F1-measure of the displayed keywords and the keywords
that the participants interacted with. Participants who used the IntentRadar system achieved on
average the recall of 0.3, which indicates that in the search session participants are able to cover
approximately one-third of the relevant keyword space. Participants who used the IntentList sys-
tem covered only 0.06 of the relevant keywords. More importantly, the participants interacted with
less and less of the relevant keywords using the IntentList system. In both systems, the participants
interacted with relevant keywords as indicated by precisions of 0.84 and 0.96, and the precision
of relevant and general keywords is higher for the keywords that were interacted with than it is
for the displayed keywords. This suggests that even though the participants were shown more
keywords in the IntentRadar system, they were able to select relevant keywords from the display.
Notably, the higher recall of displayed keywords also did not cause longer interaction durations
as shown in Figure 7, but participants were able to react equally fast to the presented information
in all compared conditions.
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Table 3. The Keyword Effectiveness in Terms of Precision, Recall and F-measure of
Displayed Keywords and the Keywords that the Participants Interacted with, for the

Different Assessment categories: Relevant, General, Specific

Precision Recall F1
Cumulative keyword effectiveness (displayed):

Rel Gen Spe Rel Gen Spe Rel Gen Spe
IntentRadar 0.65 0.19 0.45 0.30 0.34 0.29 0.39 0.23 0.33
IntentList 0.80 0.29 0.51 0.06 0.08 0.05 0.11 0.13 0.09
Cumulative keyword effectiveness (interacted):

Rel Gen Spe Rel Gen Spe Rel Gen Spe
IntentRadar 0.84 0.43 0.41 0.02 0.01 0.01 0.04 0.02 0.02
IntentList 0.96 0.43 0.54 0.01 0.004 0.004 0.02 0.01 0.01

The results are reported only for the IntentRadar and IntentList systems as the typed query base-

line system did not enable keyword visualization or interaction.

5.5 User Experience

Analysis of the questionnaire data further supports the benefits of interactive intent modeling.
General usability measured using the SUS questionnaire was perceived to be relatively high for
all systems, but no significant differences could be found between the systems based on SUS ques-
tionnaires (SUS score for the Typed Query baseline was 65.7, SUS score for the IntentList system
65.7, and SUS score for the IntentRadar system was 60).
The ResQue questionnaires shown in Table 4 revealed significant differences between the sys-

tems. The mean user experience based on normalized answers of ResQue questionnaires (i.e.,
scores from the negative questions were inverted so that higher is always better) was found to be
significantly higher (two-sidedWilcoxon rank sum test with Bonferroni corrected Alpha,W = 347,
p < 0.05) for the IntentRadar system (μ = 3.5) and for the IntentList system (μ = 3.5) (two-sided
Wilcoxon rank sum test with Bonferroni corrected Alpha,W = 351, p < 0.05) when compared to
the Typed Query baseline system (μ = 3.2). No differences between the IntentList and the Inten-
tRadar Systems were found (two-sided Wilcoxon rank sum test with Bonferroni corrected Alpha,
W = 233.5, p = 1.0).

The individual questions also revealed differences in participants’ subjective preferences be-
tween the Typed Query baseline and the systems with interactive intent modeling, but differences
did not emerge between the IntentList and the IntentRadar systems.
Both systems with interactive intent modeling assisted the participants to more adequately ex-

press their preferences and easier to alter the outcome of the results. The IntentRadar interface was
found to have significantly better support for exploration of related areas without getting stuck
and the participants felt that the system influenced their choice of items. Interestingly, the partici-
pants who used the IntentRadar system were significantly less convinced that they had found the
right articles during the task. Given that the retrieval effectiveness was found to be significantly
better for the IntentRadar system, and therefore the responses from the system were of better
quality, a possible explanation is that because of the visualization the participants became more
aware of other potentially relevant directions that they could not explore in the given time, and
therefore might have been more informed about potentially relevant, but not yet explored, topics.
Another possible explanation is that since the participants had little experience with the system,
it may have increased their caution of additional, yet immediately not obvious information [33];
simply having more information might have raised doubts about whether better answers exist.
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Table 4. Results of the Selected ResQueQuestions

Question IR TQ IL

This system provides adequate
way to express preferences 3.6 3.2 3.7
This system provides adequate support
to revise preferences 3.4 3.1 3.3
This system helps me to understand
why the suggested articles should be important 2.7 2.8 3.5
The information provided by the system
is sufficient to make decisions 3.5 3.0 3.1
The labels/keywords/information
provided by the system are clear 4.0 3.2 4.0
The layout of the system is clear 2.8 2.7 2.5
I learned to use the system quickly 3.7 3.9 4.2
It did not take too much effort
to find useful articles 2.5 2.3 3.0
I found it easy to
express information need and preferences 3.5 3.0 3.2
I found it easy to
train the system with updated preferences 2.3 2.3 2.3
With this system it is easy to
alter the outcome of results 3.6 2.3 3.4

It is easy to get
new set of items instead of what I already have 2.6 1.6 3.0
The system offered me useful options
and avoided me getting stuck 3.2 2.8 3.3
I found it easy to
explore the related areas without getting stuck 2.9 1.8 2.1
I feel in control to tell what I want 3.3 3.5 3.5
The system helps me to
understand and keep track of why the
items were relevant and offered for me 3.0 3.6 4.0
I’m satisfied with the system 3.6 3.4 3.1
I am convinced that I found the right articles 2.6 3.6 3.0
I would like to use the system, if offered for me 3.7 3.5 3.5
With this system it is easy
to find answers to my information needs 2.8 2.4 3
I was able to take advantage
of the system easily 3.5 3.5 3.7
The system influenced
my choice of items 4.1 2.4 3.5
Mean of all questions 3.2 2.9 3.2

The mean user experience based on the ResQue questionnaire was found to be sig-

nificantly higher for the systems (IR and IL) that use the intent modeling-based in-

teraction. The significantly higher values after correcting for multiple comparisons

for each question are in bold face (IR denotes IntentRadar, IL denotes IntentList, and

TQ denotes the Typed Query baseline).
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6 INFORMATION COMPREHENSION EXPERIMENT

The findings from the exploratory search experiment show that interactive intent modeling sig-
nificantly improves retrieval performance over the search session. Simultaneously, however, par-
ticipants’ task performance is only improved when using the IntentRadar visualization and partic-
ipants’ subjective usability responses suggest that the IntentRadar visualization may have broader
benefits in comprehending the retrieved information rather than just providing adequate feedback
to direct the search.
Motivated by these findings, the IntentRadar visualization was studied in an additional experi-

ment to reveal the effect of the visualization component to the user’s information comprehension
performance.
Whereas the exploratory search experiment evaluated performance over a search session, the

information comprehension experiment aims to evaluate how well participants can comprehend
a momentary set of search results presented to them.
In this experiment, the focus is therefore not on feedback capabilities of the systems. Instead, in

this experiment predefined queries will be presented to participants to allow comparing compre-
hension of the same search result sets across different systems. This allows decoupling the com-
prehension of a momentary search result set from how the results can be changed via feedback
and to remove a confounding factor of which search result sets different participants would see.

6.1 Research Questions

In detail, the focus of the study was threefold. First, to study if the visualization would assist
users in the comprehension process. Second, to study if the users preferred interaction with the
visualization. Third, if the visualization would improve the output of the comprehension process.
The experiment sought answers to the following research questions:

RQ5 Comprehension process: Do participants in the visualization condition inspect the
search result space using the visualization more often than using the result list?

RQ6 Interaction support: Do participants in the visualization condition select keywords
from the visualization more often than from the result list?

RQ7 Comprehension outcome: Does the visualization result in improved information
comprehension outcome?

RQ8 User Experience: Does the result presentation using the visualization result in im-
proved user experience?

6.2 Experimental Design

The independent variable of the experiment was the system configuration: a system with the visu-
alization component and a system without the visualization component. We chose a 2 × 8 within-
subjects design with two system configurations and eight topics. This design was chosen as tasks
were short repetitive comprehension tasks, and we wanted to avoid the cognitive effects due to
the differences of participants. The ordering of the system conditions and the topics were counter-
balanced and rotated using a Latin square design.

6.3 System Configurations

Two systems were configured: a system with the visualization component and a system with-
out the visualization component. The system with the visualization component is illustrated in
Figure 8. The system without the visualization component is exactly the same, but pertains only
the conventional search result listing and the visualization component is removed (Figure 9). Both
systems had the keywords visualized within search results (i.e., a list of keywords describing each
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Fig. 8. A screenshot of the user interface that was used by the participants. The visualization component
and the ranked list of search results (left) and the workspace (right). In the experiment, the workspace was
placed under the visualization component as a floating element to ensure equal screen estate with the Typed
Query baseline system.

Fig. 9. A screenshot of the Typed Query baseline system without the visualization component. The ranked
list of search results (right) and the workspace (left).
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document was placed under each document appearing in the result list). The systems were aug-
mentedwith a workspace that was used by the participants to collect the information. This allowed
a simple interaction to select information by dragging from the actual interface without switching
to another application. The workspace also enabled accurate logging and data collection.

6.4 Task and Topics

The participants were situated in a simulated work task in which they had to comprehend
and summarize the search results. The participants were asked to use two-level hierarchical
conceptualization:

(1) Find as many main topic keywords, but at least two, that you find important to cover the
overall topic.

(2) Find as many subtopic keywords under each main keyword that you find important to
cover the main keyword.

The work task scenario was: “You are searching information about a pre-defined topic using
an information retrieval system. Your task is to comprehend the topic by describing, at least two,
main keywords related to the overall topic and describe as many as possible subconcepts by se-
lecting keywords under the main keywords related to each main keyword.” Eight topics were
used: Human Memory, Web Design, Cognition, Distributed Systems, Language Processing, Kernel
Function, Wearable Sensors, and Compiler Design.

6.5 Participants

We recruited 24 participants from two universities. Six were females. The participants were 20–
40 years old. All the participants were graduate students with a technical background. As the
text in the user interface was in English, only participants with a self-reported good knowledge
of English were eligible to take part. Participants were told they could ask the experimenter for
clarification at any time during the experiment. All participants had experience with interactive
search engines, but participants were not familiar with any of the systems used in the experiments.
Users were recruited by word of mouth and received no compensation for participation.

6.6 Procedure

Prior to the experiment, the participants were asked to read written instructions. The instruc-
tions explained the purpose of the experiment and the task that the participants were expected to
perform. The participants were then informed that the systemwould automatically launch queries
and return and present search results, and the participant was only expected to gather information
by examining the presented search results using the given system. The participants were informed
that they will use two different systems to gather information and store their conceptualization in
a workspace component, which will be the same for both systems. Then the participants watched a
2min video illustrating an exemplar task with the system variants and they had a 3min trial using
the systems via a pre-defined query that was different from the ones used in the actual experiment.
After this phase, the actual experiment started. Participants performed eight tasks correspond-

ing to the eight topics. Each task had two phases: comprehension phase and composition phase.
The rationale of the comprehension phase was to study the quality of the keywords that the par-

ticipants were able to produce given a system variant. The rationale in separating the composition
phase was to let the users concentrate in producing the conceptualization as fast as possible and to
allow them to organize the selected keywords in a separate composition phase. Previous research
has shown that humans often spend significant amount of time in composing their answers instead
of looking for information to support their answers and that these two tasks are interleaved and
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cause task-switching costs [80]. The separation of the phases was important as the participants
had a strictly limited time to perform the comprehension phase and the output of that phase may
have been interfered with the answer composition when performed under restricted time. The
experimental design where these tasks were separated ensured that the participants focused on
collecting the best possible keywords comprehending the result space in the given time without
having to interleave this activity with composition of their answer.
In the comprehension phase, the system automatically launched queries corresponding to the

tasks. Each querywas run either on timer (5min), or when the participant clicked the “next” button.
The query that was automatically issued by the system was exactly the name of the topic. For
example, for the topic Web Design, the system automatically issued a query “Web design.” This
allowed us to remove possible variance originating from participants’ subjective interpretations
of the topics. The time limit was used to make sure that there was no variance in the time that the
participants used in the comprehension phase. The timer was visible for the participants so that
they were aware of how much time they had left to complete the task. The participants had 2min
to read and collect the information on the screen and after 2min all the information on the screen
disappeared, except the information on the workspace, which was used to store the results to be
used in the composition phase.
In the composition phase, the participants could still use the information that they had col-

lected to the workspace to compose a written answer that comprehended the search result space.
The workspace was visible for additional 3min. Such experimental procedure ensured that the par-
ticipants were working under strict time limits to complete the task as fast as possible and use the
preferred interface element when they knew that their time is limited. After the experiment, the
participants filled in post-task questionnaires selected from the ResQue questionnaires [86].

6.7 Apparatus

The experiment was run on a standard desktop PC connected to a vertically mounted 24-inch
wide-screen monitor. The vertical position of the monitor was chosen, because the workspace
was placed under the result list and visualization component and the additional screen estate al-
lowed fair comparison to the Typed Query baseline system. The systemwas implemented as aWeb
application accessed using the Google Chrome browser. During the experiment, participants could
use a mouse and a keyboard to operate the interface. The search engine automatically logged the
timestamp and the action performed by the user. The recorded actions were: selection of a keyword
to represent the main or subtopic, the position of the documents in the ranked list that contained
the particular keyword, and the state of the workspace.

6.8 Data and Settings

We used the same data, indexing, and ranking models with the same settings as in the exploratory
search experiment described in Section 4.8.

6.9 Relevance Assessments

After the experiment all responses from all participants and systems were pooled so that each
main topic keyword and each subtopic keyword associated with the main topic keyword were listed
in a matrix. Two assessors assessed the relevance of the main topic keywords and the subtopic
keywords using a graded relevance on a 5-point Likert scale:

(1) Relevance of main topic—Does this keyword represent an relevant overall area for the
task topic? (very relevant (4), relevant (3), moderately relevant (2), somewhat relevant (1),
irrelevant (0))
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(2) Relevance of the subtopic—Is this keyword relevant for the main topic? (very relevant (4),
relevant (3), moderately relevant (2), somewhat relevant (1), irrelevant (0))

Essentially, the assessment provided a goodness measure of each subtopic keyword and main
topic keyword per task topic by removing overlapping instances. The scores were created by one
expert and checked by another, resolving disagreements by consensus. Some topics were ambigu-
ous, because they had several interpretations. For example, the topic “language processing” had
interpretation in computer science and human language processing. The experts also evaluated
ambiguous topics accordingly; more comprehensive response would include the different inter-
pretations of the concepts in the task.

6.10 Measures

The quality of comprehension process (RQ5) was measured as the inspection source detected from
the mouse positions of the participants when inspecting the user interface. In particular, we quan-
tified the share of information inspection source: the time spent browsing the visualization com-
pared to the time spent browsing the result list. It has been shown that mouse positions are as-
sociated with attention [26] and attention can be associated with human information processing
[103, 108].
Interaction support (RQ6) was measured as the frequency of the usage of the interaction el-

ements. In particular, we quantified the share of information selection source: the frequency of
selection of keywords from the visualization compared to selection from the result list.
Comprehension outcome (RQ7) was measured as the cumulative gain of selected keywords.
The cumulative gain was computed as the sum of the relevance assessed for the keywords se-

lected by the participants. The gain is computed separately over main topics and within each
subtopic identified in the set of keywords. Thus, the cumulative gain quantifies both the main
topic coverage associated with the diversity of the keywords and coverage within each subtopic
associated with comprehensiveness of the keywords in each subtopic.
User experience (RQ8) was measured using the ResQue questionnaires: how participants sub-

jectively rated the usefulness and usability of the compared systems.
We next present the results of the above-described measurements, and the conclusions to the

research questions RQ5-RQ8 will then be summarized in Section 8.2 along with the research ques-
tions RQ1-RQ4 of the exploratory search experiment.

7 RESULTS OF THE INFORMATION COMPREHENSION EXPERIMENT

7.1 Share of Information Inspection Source

Recorded mouse movements over time were available from 18 of the users (mouse-movements of
6 users were not available due to a technical problem). Figure 10 shows the locations as a scatter
plot. Based on the mouse locations, users on the system with the visualization spent 30.5% of time
browsing the map, and 55.4% of time browsing the search result list. In comparison, users on the
Typed Query baseline system spent 83.4% of time browsing the search result list. This further
illustrates the fluency of the visualization: users spent a reasonable portion of time browsing the
map. While less time was spent over the map than over the result list, the majority of keywords
were dragged from the map.

7.2 Share of Information Selection Source

Users of the Typed Query baseline system dragged in total 1,286 keywords from under articles in
the result list to the workspace, on average 6.7 per user and task. Users of the system with the
visualization dragged in total 1,068 keywords to the workspace, on average 5.6 per user and task.
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Fig. 10. Mouse position scatter plots from 18 users over the two systems: the one with the visualization (left)
and the Typed Query baseline (right). Dots are mouse positions recorded at 3s intervals. The areas of the
workspace and the visualization are outlined in red and green, respectively. Dots in the bottom-half of the
figures are from situations where the user has scrolled the screen to see more results.

The total amount of keywords selected was not found to be statistically significant (Welch Two
Sample t-test, df = 44.842, p = 0.15). Participants in the IntentRadar condition strongly preferred to
use the IntentRadar visualization and dragged on average 4.8 keywords from the visualization and
only 0.8 keywords from the list. The difference was found to be statistically significant (Welch Two
Sample t-test, df = 29.85, p<0.00001). All in all, on the system with the visualization, 89.8% of the
keywords were dragged from the visualization. As we discuss in the next section, the cumulative
gain of the selected keywords is higher for the IntentRadar system than for the Typed Query
baseline; thus, even though users overall dragged slightly fewer keywords onto the workspace in
the IntentRadar system than in the Typed Query baseline, the visualization allowed them to reach
a more comprehensive selection of keywords than the Typed Query baseline system.
The effect of the IntentRadar substituting the list was confirmed by comparing the amount

of keywords dragged from the list in the Typed Query baseline system and in the IntentRadar
system (Welch Two Sample t-test, df = 32.766, p<0.00001). The result shows that the differences
were because the keywords were not only selected from the IntentRadar as complementary to the
list, but used as a substitute to the list. Figure 11 shows these results graphically.

7.3 Cumulative Gain of Selected Keywords

Users had been asked to provide answers organized as main-topic keywords and sub-topic key-
words under each main topic, and both were evaluated separately by cumulative gain of expert-
given scores for the keywords. Average within-task standard deviation over users was 3.9 for
main-topic scores and 17.2 for sub-topics; we focus on between-system difference. Figure 12 shows
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Fig. 11. Sources of information selected to be dragged to the workspace. Numbers are average amounts of
keywords dragged to the workspace, for both systems, on average over all tasks and users. For the system
with the visualization, we also report separately the amounts of keywords dragged from the map and from
the document list and give their relative percentages. On the system with the map, users drag from the map
most of the time.

Fig. 12. Cumulative gain of main-topic keyword scores from experts. Numbers are cumulative-gain scores
averaged over the users, for each task and each system. The tasks are: Human memory (HM), Web design
(WD), Cognition (CG), Distributed systems (DS), Language processing (LP), Kernel functions (KF), Wearable
sensors (WS), Compiler design (CD). The rightmost “Mean” bars are the mean over all tasks per system. The
IntentRadar system is statistically significantly better than the IntentList system, by right-tailed two-sample
t-test at the p = 0.05 threshold (p = 0.0192).

Fig. 13. Cumulative gain of sub-topic keyword scores from experts, with respect to their correspondingmain-
keywords. Numbers are cumulative-gain scores averaged over the users, for each task and each system. The
tasks are the same as in Figure 12, and the rightmost bars are the mean over all tasks per system. The overall
difference between the systems is not statistically significant.

that the IntentRadar users yielded a statistically significantly improved score for main-topic key-
words; since the main topics represent the breadth of information content discovered from the
results, the visualization helped users reach a more comprehensive understanding of the results.
Figure 13 shows the results for sub-topic keywords, representing depth of understanding for each
main topic; the difference between systems was not statistically significant, hence the visualization
increased overall comprehension without sacrificing depth of comprehension.
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Table 5. Post-taskQuestionnaires, Selected from the ResQue Questionnaires,
in Which Significant Differences Were Found

Question IR TQ p-value

I found the system unnecessarily complex 2.5 1.7 0.004
I thought the system was easy to use 3.8 4.4 0.002
I think that I would need the support of a technical personto be
able to use this system

1.9 1.5 0.03

I found the various functions in this system were well integrated 3.1 3.6 0.03
I thought there was too much inconsistency in this system 2.8 1.9 0.0002
I would imagine that most people would learn to use this system
very quickly

3.3 4.2 0.003

I found the system very cumbersome to use 2.9 2.1 0.04
I felt very confident using the system 3.0 3.8 0.01
I needed to learn a lot of things before I could get going with the
system

2.3 1.7 0.03

The system can be trusted 3.0 3.8 0.003
I became familiar with the system very quickly 3.7 4.4 0.008
The labels/keywords/information
provided by the system are clear 3.0 3.7 0.03
The system influenced my selection of topics and subtopics 4.1 3.0 2 · 10−4
Which system do you prefer? 16 8

Numbers are 5-point Likert Scale Agreement Scores (strongly disagree (1), disagree (2), neither agree nor disagree (3),

agree (4), strongly agree (5)) with the statements in the question column, averaged over the 24 users for each system:

IntentRadar (IR), Typed Query Baseline (TQ), and the t-test p-value of the difference. The better score for each question

is in bold. The last line is the question of system preference, where we directly list how many users preferred each

system; 67% preferred the IntentRadar.

7.4 Subjective Preference

In the post-task questionnaires (Table 5), users indicated through ratings of several questions that
the simpler and more familiar interface was found easier to use and learn, and they felt more con-
fident using the conventional system with only search result listing. This is natural when compar-
ing a traditional interface to a new one with only a small amount of training time. However, users
clearly felt the visualization influenced their selection of topics and subtopics. While users’ overall
satisfaction score for the systems was similar, in a separate question about system preference, a
two thirds majority of the 24 users preferred to use the system with the visualization.

8 DISCUSSION AND CONCLUSIONS

The current generation of information retrieval systems, such as the major Web search engines, is
effective at identifying a small set of the most relevant documents given a well specified informa-
tion need. However, it is easy to identify many situations where more complex exploratory search
support is required and increasing real-world evidence suggests that users are struggling with
exploratory search [81]. As a consequence, an important goal of an information retrieval system
is to assist the user in understanding and specifying his/her information needs [50]. In particular,
when users are engaged in complex tasks, search may not be best supported with simplistic search
user interfaces and ranking optimized to maximize relevance to a single query, but rather users
are engaged with the system to maximize whole-session relevance [90]. In exploratory search,
what is encountered along the exploration affects the search intents and goals. Consequently, the
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system must provide the user with affordances to comprehend the information space, direct the
search, and engage the user in the exploration process. At the same time, the system can learn
from user interactions to assist the user in accomplishing the user’s task. Achieving a common
understanding about search intents and goals requires an intrinsic interplay between the user and
the information retrieval system.

8.1 Methodological Contributions

We contributed the principle of interactive intent modeling for exploratory search and demon-
strated the technique as a part of a real interactive information retrieval system. Interactive intent
modeling allows interactive modeling of user’s information needs and diversified presentation of
concepts that the user can utilize as exploration affordances. This allows improved communica-
tion between the information retrieval system and the user. As a result, the user can learn about
the available exploration possibilities and comprehend the potential directions around the user’s
present position in the information space. Conversely, the system can adapt to the user’s evolving
intentions that arise during the exploration process.
In our approach, the present and potential future search intents are estimated at the task level.

The estimation is based both on task context and on user interaction that rewards or penalizes the
intent model implemented as a multi-armed bandit reinforcement learning system. In this way,
the intent modeling allows the user to retrieve information relevant for the present search in-
tent estimate and to interact with anticipated search intents that help in reducing the system’s
uncertainty related to the user’s evolving intents. The intent model is visualized for information
comprehension and interaction to allow the user to direct the search. Unlike the conventional rel-
evance feedback approach, the key idea is to estimate the relevances of keywords using the model
that can consist of information beyond what is present at the top-ranked results. Our technique
also demonstrates how the visualization of the model can turn the human memory recall task into
a fluid visual recognition task, which in turn can assist the user in expressing intents by interacting
with the visual interfaces.
Some recent information-seeking research on task-level relevance and task performance point

to similar results as we reported. For example, improved task performance has been associated
with improvements in recall despite higher search efforts or degrading precision [119]. In com-
plex tasks, users have also been shown to have trouble in finding and assessing relevance of novel
information [107] and that successful search sessions tend to involve more user effort than un-
successful sessions [93]. This is in line with our findings showing that more engagement and
search effort seems to lead to improved retrieval performance over the session and improved task
outcomes. Recent research has also found exploration/exploitation to be effective in acquiring
novel information [52]. This supports our findings that rigorously modeling relevance and uncer-
tainty, while keeping humans in control, even with a tradeoff of increased interaction and momen-
tary decrease in precision, are key factors in succeeding in exploratory search.
We reported on two experiments, studying exploratory search support and information com-

prehension support. Next, we summarize and reflect our findings in light of the research questions.

8.2 Empirical Evidence

The exploratory search experiment and the information comprehension experiment were carried
out to answer the specific research questions that are reflected below.
RQ1 Task performance in the exploratory search task: Does interactive intent model-

ing lead to better task outcome? Yes, but the improvements are dependent on combining the
intent modeling with a visualization that helps comprehending the search results (Section 5.1).
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RQ2 Retrieval performance in the exploratory search task: Does interactive intent

modeling result in high-quality retrieved information? Yes, the improvements can be at-
tributed to recall of novel information over the session, while sustaining the precision and recall
of novel and obvious information (Sections 5.2 and 5.3). However, the retrieval results only transfer
to improved task performance when they are visualized appropriately.
RQ3 Interaction support in the exploratory search task: Does interactive intentmodel-

ing elicit useful interactions? Yes, the systems with interactive intent modeling elicited signifi-
cantly more interaction (Section 5.4) that in turn transferred into improved retrieval performance.
However, the interactions with the intent model did not replace but rather complemented typed
query interaction.
RQ4 User experience in the exploratory search task: Does the increased complexity of

the user interface design, compared to standard search interfaces, affect the subjective

user experience? Yes, participants found support for influencing their search behavior, altering
the outcome of the system, and exploring without getting stuck (Section 5.5). However, the system
also raised participants’ concerns whether they found the right results.
RQ5 Comprehension process in the search result comprehension task: Do the partic-

ipants in the visualization condition inspect the search result space using the visualiza-

tion more often than using the result list? Yes, the participants, in the visualization condition,
inspected the search results using the visualization. The recordings of the mouse movements (Sec-
tion 7.1) showed that over one-third of the time the users inspected the search results using the
visualization. However, the visualization did not replace the conventional result list as one-third
of the time was spent inspecting the result list.
RQ6 Interaction support in the search result comprehension task: Do the participants

in the visualization condition select keywords from the visualization more often than

from the result list? Yes, participants, in the visualization condition, selected a large major-
ity (89.8%) of their dragged keywords from the visualization rather than from the result list
(Section 7.2).

RQ7 Comprehension outcome in the search result comprehension task: Does the vi-

sualization improve information comprehension outcome? Yes, the visualization improved
the comprehension outcome, as measured by topic feature coverage, for the main topic keywords
(Section 7.3). However, differences were not found in the case of the subtopic keywords. This sug-
gests that the visualization enabled participants to obtain a broader view on the search results but
did not help gather better information under an individual subtopic.
RQ8 User experience in the search result comprehension task: Does the result presen-

tation using the visualization result in improved user experience? No, in the search result
comprehension task, the participants felt that the visualization was, in general, not improving
their user experience (Section 7.4), and they were more confident when using the conventional
system wih only a search result listing. However, when asked which user interface they would
prefer, a significantly larger portion of the participants preferred the visualization over the con-
ventional system with only the result list. This might suggest the participants found the better
comprehension enabled by the visualization condition was worth any additional complexity and
lesser confidence in the user experience.

8.3 Implications

The implications of the results for user modeling and exploratory search interfaces are significant,
because they open opportunities to learn user models from natural user interactions by visualizing
the the task-level knowledge model representing the present and potential search intentions of
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a user and allowing relevance feedback directly on the model. This has direct implications for
designing exploratory search systems that can be summarized as follows.
Implication 1: interactive intent modeling improves retrieval performance. Our results

indicate that the retrieval performance of the system is improved as a result of interactive intent
modeling. Retrieval performance is not dependent on the type of visualization and can be attrib-
uted to the intent modeling.
Implication 2: Retrieval performance transfers to task performance when the intent

model is visualized for effective comprehension of the information space. Users’ task per-
formance is dependent on how they can comprehend the retrieved information and improved
retrieval performance is only transferred to improvements in task performance with the Inten-
tRadar visualization. This implies that while reduced visualizations or other query augmentation
techniques may be sufficient for improving document retrieval performance, the benefits may not
transfer to task performance in exploratory search tasks.
Our results suggest that exploratory search can benefit from visual search support. Support for

concept recovery and mental work in the form of visually-supported reasoning in the visual space
suggest opportunities for improved task outcomes and improved retrieval performance over the
session. The cognitive demands of exploratory search are possibly associated with a preference of
recognition over memory recall for users present domain knowledge and reflecting new informa-
tion confronted during exploration for assisting users to move toward their task goals [46]. These
benefits can be operationalized by externalizing memory and knowledge representation that can
be particularly beneficial in exploratory search scenarios in which users are investing substantial
time and cognitive resources for reaching their goals [115].
Implication 3: Interactionwith the intentmodel complements typed query interaction.

The interactions with the intent model were found to be complementary to the conventional typed
query interaction. Participants used the interactive intent model to direct the search, while typed
query interaction was used to “teleport” to a new area in the information space. Participants also
subjectively reported that the system influenced their search behavior and allowed them to express
and revise search preferences. Visualizing more information may be associated with increased
user effort and the users may exhibit increased scanning times and difficulty of expressing their
intentions. Our experiments, however, suggest that interactive visualization of search intentions
improves user performance without compromising search effort.
Implication 4: Optimized intent model visualization improves search result compre-

hension, but does not increase user effort. The interactions with the intent model did not in-
crease user effort in terms of interaction time, but participants interacted even faster with complex
visualizations and visualizations were found to assist the participants in obtaining an improved
information coverage of the search result space. The participants also voluntarily spent most of the
time investigating the visualization instead of the conventional search result list. The subjective
feedback indicated that the systems positively affected the participants’ search behavior. Partici-
pants also reported that they were less certain that they found all the right results. These findings
suggest that visualized models can provide the users affordances, not only to direct their search
but also to make sense of the information potentially available. The users also take advantage of
these affordances without compromising the time spent between interactions.
Implication 5: Direct visual manipulation of the modeled intent is beneficial for ex-

ploratory search.Our results imply that supporting exploratory search behavior requires support
for both information comprehension and search directing. The experiments suggest that these are
best conveyed to the users by using the visualization for twomeans: allowing users to perceive and
comprehend the information space but also to directly manipulate the model to provide feedback
on their evolving intentions while they reflect the retrieved information. Our results also show
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that increased information on the IntentRadar visualization allows effective and efficient direct
manipulation of the intent model without compromising time to make decisions. We believe it is
evidence that users are able to process the information presented to them and provide effective
feedback to the system. Together with the improved results in task and retrieval performance, fast
and effective interaction shows that user can make efficient and effective decisions and that these
decisions are beneficial for their task performance.

8.4 Limitations and Future Work

The specific limitation of the chosen experiments was the sole focus on aspectual exploratory
search tasks. Participants were given simulated work tasks to cover multiple aspects of a topic. The
effects and results are therefore limited to aspectual exploratory search settings and the benefits
of interactive intent modeling should be interpreted in this context.
Another limitation is the selection of the factors that were studied in the user experiments.

For example, while we implemented different system variants and interactive visualizations, some
other visualization techniques may be equally effective and engaging. Moreover, users might make
increased use of the visualization elements by quick glances that are not revealed in mouse move-
ments. While the mouse logs provide evidence for attention allocation, eye tracking instrumen-
tation would provide more accurate information and could be used to confirm the proportion of
attention allocation in the search support spaces. Similarly, the present experimental setup did
not separate different cognitive states that the users may experience, such as scanning, deciding,
hesitation, or confirming. Associating more precise cognitive states to user behavior with intent
modeling and search result visualization are interesting future endeavours to increase our under-
standing on the specific type of user support.
The experiments were designed to minimize confounding factors and biases caused by task

and system ordering, as well as domain-knowledge effects. However, as the IntentRadar system
contains novel visualization, a novelty bias toward the system with the visualization is possible;
the participants may have focused their attention to the novel visualization partly because it is
novel—an effect that may have been less strong when participants would have used the system
for a longer period. The participants in the experiments were screened for low and high pre-
knowledge. However, the possibility of domain-knowledge effects are hard to exclude completely
and their association with the utility of the visualization, and intent modeling, in general, remains
an interesting future research direction.
Different approaches to balance exploitation and exploration could also be studied in principle,

and an extensive simulation could be conducted to study different tradeoffs of such models. The
present experiments were limited to aspectual search tasks and future work should be conducted
to generalize an intent model algorithm over the range of complex exploratory tasks. These could
investigate combining the reinforcement learning approach with diversification, modeling task
stages, exploratory tasks that have distinctive contextual structures, for example, searching and
combining information simultaneously from distinct areas or their intersections, and automatically
learning exploration/exploitation tradeoffs suitable for different types of tasks and phases within
tasks.
In the present experiments, we did not intend to study all possible interaction means that could

be deployed in search systems. Future work could compare implementations of interactive intent
modeling within other types of search user interfaces, such as parts of query suggestion or query
autocompletion interfaces, or the modeling technique in combination of faceted search or interac-
tive tag clouds. These are potentially important aspects when considering deployment in real-life
settings beyond tasks studied in our experiments.
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Moreover, experiments that would allow capturing more precise user signals for studying users’
attention allocation, such as eye tracking instrumentation, could allow confirming the proportion
of attention allocation in the search support spaces to refine conclusions. It is possible that partic-
ipants make increased use of the visualization elements by quick glances that are not revealed in
mouse movements as measured in our experiments. Mouse movements also require motor control
planning and may therefore be only partially indicative of the user’s attention targets when a user
is considering a visual element but not fully committed to an interaction.
However, the principle of interactive intent modeling can enable the user to interact with the

intent model through a visualization to provide feedback directly on the model. The technical
realization of the approach by using reinforcement learning with rewards obtained from user in-
teractions and the effectiveness of the intent model for retrieval and the visualization for search
result comprehension can be applied to information seeking beyond the present studies, for ex-
ample, information exploration on the Web.
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