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Abstract

Both in speech and singing, humans are capable of generating sounds of different phonation types
(e.g., breathy, modal and pressed). Previous studies in the analysis and classification of phonation
types have mainly used voice source features derived using glottal inverse filtering (GIF). Even
though glottal source features are useful in discriminating phonation types in speech, their perfor-
mance deteriorates in singing voice due to the high fundamental frequency of these sounds that
reduces the accuracy of source-filter separation in GIF. In the present study, features describing the
glottal source were computed using three signal processing methods that do not compute source-
filter separation. These three methods are zero frequency filtering (ZFF), zero time windowing
(ZTW) and single frequency filtering (SFF). From each method, a group of scalar features were
extracted. In addition, cepstral coefficients were derived from the spectra computed using ZTW
and SFF. Experiments were conducted with the proposed features to analyse and classify phona-
tion types using three phonation types (breathy, modal and pressed) for speech and singing voice.
Statistical pair-wise comparisons between the phonation types showed that most of the features
were capable of separating the phonation types significantly for speech and singing voices. Clas-
sification with support vector machine classifiers indicated that the proposed features and their
combinations showed improved accuracy compared to usually employed glottal source features
and mel-frequency cepstral coefficients (MFCCs).

Key words: Phonation type, Voice quality, Singing voice, Glottal source, Glottal inverse filtering,
Zero frequency filtering (ZFF), Zero time windowing (ZTW) and Single frequency filtering
(SFF).

1. Introduction

Human perception of voiced sounds can be roughly described in four dimensions: pitch, loud-
ness, vowel identity (or voiced consonant identity) and quality [1]. The last item, quality, is
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defined in speech science as the auditory colouring of a person’s voice [2]. This perceptual di-
mension, which is present both in voiced speech sounds and singing voices, is affected by the
shape of the transglottal airflow excitation pulse–the glottal pulse–generated by the vocal folds.
By regulating the activation of the laryngeal muscles and the respiratory effort, humans are capa-
ble of changing the glottal pulse shape and generating sounds of different phonation types such
as breathy, modal and pressed [3, 4]. In this study, phonation types are analysed and automatically
classified from two categories of voiced sounds–speech and singing voice. Analysis and classifi-
cation of phonation types from speech can be used in different areas of speech research such as
in occupational voice care [5, 6], in automatic classification of speaking styles in audiobooks [7]
and in modern parametric speech synthesis [8, 9, 10]. Analysis and classification of phonation
types from singing could help to diagnose voice production problems such as hypo-function and
hyper-function [11, 12, 13]. In addition, since many singing students exhibit varying degrees of
these malfunctions throughout the course of their studies, automatic recognition of such vocal be-
haviour would be useful for self-monitoring since it is difficult for students to analyze their voice
production while singing.

In the following, first an overview of the previous studies on analysis and classification of
phonation types in speech and singing voice is given, and then the goals of the present study are
summarized. The topic is studied in the current investigation based solely on the pressure signal
(either speech or singing voice) captured by a microphone.

1.1. Phonation Types in Speech
According to Ladefoged [14], phonation types occur on a continuum ranging from voiceless

to glottal closure. Different phonation types such as whisper, breathy, tense, creak and falsetto can
be produced by changing the activation of the laryngeal muscles [2, 8, 15]. Breathy and tense are
often considered to be the two opposite ends of the voice quality continuum [3, 16]. In this study,
three phonation types of speech (breathy, modal and tense) from the continuum are considered as
subjects of interest. Phonation type has an important role in signalling paralinguistic information
(such as mood, attitude and emotions) in speech [17, 18, 19, 20, 21]. Breathy phonation has been
shown to be associated with expression of politeness, familiarity and intimacy [22]. On the other
hand, tense voice has been shown to be associated with emotional states of high arousal such as
anger and happiness [23, 4]. In addition to signalling paralinguistic information, phonation types
are used in certain languages to generate phonological contrasts [14, 24, 25, 26, 27].

Modal phonation is typically used as the reference for comparing the produced phonation
types [1, 2, 14]. In modal voice, the laryngeal tension settings are low and moderate in range [1, 2].
Vibrations of the vocal folds are mostly periodic with minimum irregularity in a sequence of glottal
cycles with complete glottal closure. Breathy voice typically involves weaker levels of laryngeal
tension, partial glottal closure of the glottis and often a posterior glottal chink [1, 2]. These settings
lead to the generation of some amount of aspiration or turbulence noise. In addition, the harmonic
structure of breathy speech is more prominent at low fundamental frequencies compared to that of
modal voices [4, 28]. On the other hand, the laryngeal settings of tense voice involve an increase
in the longitudinal and adductive tension [1, 2]. The sharpness of the glottal closure of tense voice
results in prominent high-frequency harmonics [3, 28].
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Variations in the vibration mode of the vocal folds described above result in differences in the
shape of the glottal flow pulse between phonation types. The glottal flow waveform varies from
a smooth, almost symmetric pulse in breathy phonation to an asymmetric pulse with sharp edges
in tense phonation [16, 29]. This kind of time domain variation is reflected in the decay of the
spectral envelope of the glottal source in the frequency domain [30, 31]. By taking advantage
of both the time and frequency domain, many glottal source features have been developed to
discriminate phonation types using flow waveforms estimated by glottal inverse filtering (GIF)
[16, 3, 32]. Time domain features (such as the open quotient, the quasi-open quotient (QOQ),
the closing quotient (CQ) and the speed quotient (SQ)), and amplitude-based features (such as the
normalized amplitude quotient (NAQ)) have been widely used to parameterize the glottal flow and
its derivative [16, 28, 33]. Examples of frequency domain features are the amplitude difference
between the first and second harmonic (H1-H2) [31], the harmonic richness factor (HRF) [8] and
the parabolic spectral parameter (PSP) [34], which measure the decay of the glottal flow spectrum.
In [30], it was found that NAQ and H1-H2 were the best features to discriminate phonation types in
speech. In addition to the parametrization methods described above, a few previous investigations
(e.g., [4, 35]) have analysed phonation types by using a scheme that is based on fitting the estimated
glottal flow pulse (or its derivative) with an artificial glottal source model (e.g. the Liljencrants-
Fant model).

Instead of first estimating the glottal flow with GIF, some studies have measured the impact
of the glottal source directly from the speech spectrum by using features such as the fundamen-
tal frequency (F0), H1-H2, H2-H4 (the amplitude difference between the second and the fourth
harmonics), the spectral slope between H4 and 2 kHz, and the spectral slope between 2 kHz and
5 kHz [36, 37]. In other studies (e.g., [31, 38]), the amount of aspiration noise in speech has
been analysed to detect breathy phonation based on the observation according to which the third
formant region is noisier in breathy phonation compared to modal phonation.

It is known that the performance of GIF deteriorates for high-pitched speech and expressive
voices [28, 33]. To overcome this, attempts have been made to directly use the time domain
speech signal or the linear prediction (LP) residual to extract features describing phonation types.
To capture sharp changes in the glottal closure characteristics, a feature called maximum dis-
persion quotient (MDQ), which uses the LP residual signal was proposed in [3]. In [30], voice
source characteristics such as breathy voices showing higher open quotients and pressed voices
indicating smaller open quotients, were analysed using a spectral feature called the low-frequency
spectral density (LFSD). The effect of the subglottal system in the speech spectrum is larger for
breathy voices owing to their higher open quotient compared to pressed voices. This results in
an increase in the low-frequency spectral energy in breathy voices, typically around the region
of the glottal formant. In [30], it was observed that the discrimination capabilities of LFSD and
MDQ were closer to the discrimination capability of NAQ, and harmonic-to-noise ratio (HNR)
seems to provide poorer discrimination between the three phonation types (breathy, modal and
tense). However, HNR was shown to provide good performance in the discrimination of modal
and breathy voices compared to modal and pressed voices. In [3, 32], a set of glottal source fea-
tures such as NAQ, QOQ, H1-H2, PSP and MDQ, along with mel-frequency cepstral coefficients
(MFCCs) derived from speech signals, were investigated for classification of phonation types in
speech. The combination improves the discrimination in relation to using either glottal features
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alone or MFCCs alone.

1.2. Phonation Types in Singing Voice
Voice quality, a perceptual attribute partly defined by phonation type, is one of the most salient

features in singing. A singer’s feelings and identity are expressed through variations in voice
quality. In singing, phonation types have been categorized using four classes: breathy, modal,
flow (or resonant) and pressed [39, 40, 41, 42]. The main characteristics of the four phonation
types that have been studied in singing voice are described below.

Breathy phonation shows reduced vocal fold adduction and minimal vocal fold contact area,
which result in laxed singing voice with a high level of turbulent noise. Therefore, HNR is gener-
ally larger in breathy singing voice compared to other phonation types [8]. In addition, it has been
reported that a strong perceptual indicator of breathiness is the sensation of excessive laryngeal
airflow [43]. Modal voices show full vibration of the vocal folds, along their entire length. Flow
phonation is associated with a large peak-to-peak glottal flow and a small glottal leakage and is
typically produced using a lowered larynx [44]. Flow phonation differs from other phonation types
in the sense that its production is used as a vocal exercise, for example, in voice therapy [45, 46].
Loudness is key in using flow phonation and this phonation type enables achieving greater loud-
ness by increasing the flow amplitude rather than by decreasing the closing phase duration as in
pressed phonation [44]. Pressed phonation is associated with an elevated larynx position, which
influences the vocal tract shape, and also stronger muscular tension around the vocal folds. The
spectrum of a pressed singing voice shows typically a weaker fundamental and more dominating
higher harmonics [47].

In [39, 47], phonation types were studied in singing using features derived from the glottal
source waveform estimated with GIF. It was found that the glottal source features alone are not
sufficient for classification. This is mainly due to problems of GIF for singing voice, as singing
voices are typically of high pitch and source-filter coupling is strong [48, 49, 28]. In the GIF
methods, the glottal source waveform is estimated by filtering the signal through the inverse of the
vocal tract transfer function [28]. The glottal source estimates tend to become unreliable in the
analysis of high-pitched voices (such as singing voice) due to the fact that the true glottal pulse
typically shows a shorter closed phase, i.e., fewer samples for high-pitched voices and hence the
estimation of the vocal tract transfer function during the closed phase is difficult for GIF [28, 48].
In other words, the coupling between the subglottal system and supraglottal system (vocal tract) is
larger in the case of high-pitched voices. In [50], subglottal pressure was found to correlate with
the amount of pressedness. In [51], frequency domain features–such as the spectral centroid, the
spectral flux and spectral energies in different bands–were used for the classification of phonation
types in singing with various glottal source features and MFCCs. In addition, features such as
amplitudes of harmonics, formant frequencies and their bandwidths and amplitudes, HNR, and
glottal source features were studied recently in [47]. It was observed that the largest confusions
occurred between breathy and modal voices and between flow and pressed voices.

1.3. Goals of the present study
The review presented in the previous two subsections indicates that the analysis and classifica-

tion of phonation types have been studied mainly by using one of the following two approaches:
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(1) by first estimating the glottal flow using GIF and then parametrizing the estimated glottal flow
using features such as NAQ, QOQ, H1-H2, and PSP [16, 3], or (2) by estimating the influence of
glottal source on the spectrum of the speech signal directly using features such as H2-H4, spectral
slope between H4 and 2 kHz, spectral slope between 2 kHz and 5 kHz, and cepstral peak promi-
nence (CPP) [19, 20, 36, 52, 37]. Even though glottal source features have been shown to be useful
for the analysis and classification of phonation types in speech (e.g., [3, 30, 53]), their performance
drops when analysing phonation types in singing voice (e.g., [39, 54]). This is due to the reduced
accuracy of GIF methods to conduct source-filter separation due to high pitch and strong source-
filter coupling, which are typically present in singing. Furthermore, to the best of our knowledge,
there are no previous studies in the analysis and automatic classification of phonation types using
the same set of features for both speech and singing voice. Therefore, the first goal of the present
study is to propose features that quantify the glottal excitation without conducting the source-filter
separation as in GIF. Statistical distributions of these features are then analysed between different
phonation types both in speech and singing voice. By taking advantage of the novel features, the
second goal is to study how phonation types can be automatically classified for speech and singing
voice signals.

The list of abbreviations used in this study are given in Table 1.

2. Methods of Feature Extraction

In this section, three signal processing methods that are used as the basis for feature extraction
in the current study are described. These three methods are: the zero f requency f iltering (ZFF)
method [55], the zero time windowing (ZTW) method [56], and the single f requency f iltering
(SFF) method [57]. It is to be noted that none of these methods use the source-filter model of voice
production. All three methods use the microphone pressure signal as input (i.e., either speech or
singing voice), which is referred to as s[n] throughout the study. This time domain input signal is
normalized in amplitude to lie between -1 and +1. After the presentation of each technique, the
features based on the corresponding method are described.

2.1. Zero frequency filtering (ZFF)
ZFF [55] is a straightforward signal processing method to compute an approximate voice

source waveform in the time domain without explicitly using any source-filter model. ZFF is
based on the observation that the impulse-like nature of the voice excitation, caused by abrupt
closure of the vocal folds, is reflected across all frequencies including the zero frequency (0 Hz).
In order to compute the approximate voice source signal, the differentiated microphone pressure
signal (x[n] = s[n] - s[n − 1]) is first passed through a cascade of two zero frequency resonators (a
pair of poles on the unit circle at the positive real axis in the z-plane) and is given by:

yo[n] =

4∑
k=1

akyo[n − k] + x[n], (1)

where a1 = +4, a2 = −6, a3 = +4, a4 = −1. The resulting signal yo[n] is equivalent to integrating
(or cumulatively summing in the discrete-time domain) the microphone signal four times. Hence
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Table 1: List of abbreviations.

ANOVA Analysis of variance
BER Band energy ratio
CoG Center of gravity
CPP Cepstral peak prominence
CQ Closing quotient

DPA Dominant peak amplitude
DPL Dominant peak location
EoE Energy of excitation
FS Feature set
GCI Glottal closure instant
GIF Glottal inverse filtering
H Entropy
H1-H2 Amplitude difference between the first and second harmonics
HNR Harmonic-to-noise ratio
HRF Harmonic richness factor
LFSD Low-frequency spectral density
LP Linear prediction
MDQ Maximum dispersion quotient

MFCCs Mel frequency cepstral coefficients
NAQ Normalized amplitude quotient

NGD Numerator of group delay function
PSP Parabolic spectral parameter
QOQ Quasi-open quotient

SF Spectral flatness
SFF Single frequency filtering
SFFCCs Single frequency filtering cepstral coefficients
SQ Speed quotient

SSG Slope of spectral gain
SSV Slope of spectral variance
SVM Support vector machine
VQ Voice quality

ZFF Zero frequency filtering
ZFFS Zero frequency filtered signal
ZTW Zero time windowing
ZTWCCs Zero time windowing cepstral coefficients
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it approximately grows or decays as a polynomial function of time. The growing or decaying trend
in yo[n] is removed by subtracting the local mean computed over the average pitch period at each
sample. The resulting signal (y[n]) is referred to as the zero frequency filtered signal (ZFFS) and
can be expressed as follows:

y[n] = yo[n] −
1

2N + 1

N∑
i=−N

yo[n + i], (2)

where 2N + 1 corresponds to the number of samples in the window used for trend removal. The
negative-to-positive zero crossings of the ZFFS correspond to the glottal closure instants (GCIs).

2.1.1. Features derived using ZFF
The ZFFS can be regarded as an approximate voice source waveform, and therefore it can be

used in the estimation of the voice source characteristics in the time domain [55]. Four features
are computed in the current study to quantify the voice source characteristics using the ZFFS at
GCIs. These features are the slope of the ZFFS (ZFFS slope), the energy of excitation (EoE), the
loudness measure (Loudness) and the energy of the ZFFS (ZFFS energy). By denoting GCIs in
a voiced segment as G = {g1, g2, ..., gM}, where M is the number of GCIs, these four features are
computed as follows:

ZFFS slope is defined as the slope of the ZFFS around the cth GCI and is given by:

ZFFS slopegc = |y[gc + 1] − y[gc − 1]|, c = 1, 2, . . . ,M. (3)

This feature was used in the analysis and classification of vocal emotions in [58, 59], where
the feature was shown to be large for emotions of low arousal (such as sadness), and small for
emotions of high arousal (such as anger and happiness). Therefore, this feature reflects changes in
the relative duration of the glottal closed phase in a similar manner to CQ and NAQ [16, 60].

EoE is computed from the Hilbert envelope (he[n]) of the LP residual of x[n] over a 1-ms
region around the cth GCI [59] and is given by:

EoEgc =
1

2K + 1

K∑
i=−K

he2[gc + i], c = 1, 2, . . . ,M, (4)

where 2K+1 corresponds to the number of samples in the 1-ms window. This feature was shown
to reflect the changes in vocal effort [58, 59]. The experiments in [58, 59] indicated that EoE was
generally large for emotions of high arousal and small for emotions of low arousal.

Loudness is defined as the ratio between the standard deviation (σgc) and mean (µgc) of the
samples of he[n] in a 1-ms window around the cth GCI and is given by:

Loudnessgc =
σgc

µgc

, c = 1, 2, . . . ,M. (5)

The loudness measure has been shown to indicate the abruptness of glottal closure [61].
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ZFFS energy is computed as the energy of y[n] over a window of L samples around the cth

GCI and is given by:

ZFFS energygc =
1
L

L/2∑
i=−L/2

y2[gc + i], c = 1, 2, . . . ,M, (6)

where L is the window length over which energy is computed. Since the ZFFS is a low-pass
filtered signal, a large value of ZFFS energy reflects a prominent low-frequency content of the
signal.

2.2. Zero time windowing (ZTW)
ZTW is a frequency domain method to analyse voice source characteristics. The computation

of ZTW [56] begins by multiplying the microphone signal in the time domain with a heavily
decaying window. The window consists of two parts, w2

1[n]w2[n], that are defined as follows:

w1[n] = 0, n = 0,

=
1

4sin2(πn/2P)
, n = 1, 2, . . . , P − 1, (7)

w2[n] = 4 cos2(πn/2P), n = 0, 1, . . . , P − 1, (8)

where P is the window length in samples. Multiplying a signal with window w2
1[n] emphasizes

the values near the beginning (the zeroth sample) of the signal and hence the name ’zero time
windowing’. This time domain multiplication is approximately equivalent to integrating the signal
four times in the frequency domain. The numerator of the group delay function (NGD) of the
windowed signal (i.e., of u[n] = w2

1[n]w2[n]s[n]) is computed to estimate the spectrum. NGD is
computed as follows:

ngd [k] = Re{U[k]}Re{V[k]} + Im{U[k]}Im{U[k]}, k = 0, 1, 2, . . . ,N − 1, (9)

where U[k] is the N-point FFT of u[n] and V[k] is the N-point FFT of v[n] (v[n] = nu[n]). The
NGD function is double-differentiated to emphasize the resonances of the vocal tract system. Fur-
thermore, the low-amplitude peaks in the double-differentiated NGD (DDNGD) are highlighted
by computing the Hilbert envelope of DDNGD, and the resulting spectrum is referred to as the
ZTW spectrum. The ZTW spectrogram can be obtained by computing the ZTW spectrum at each
instant of n, and this is denoted by S [n, k] in this study. More details of the computation of the
ZTW spectrum can be found in [56].

The ZTW method provides high temporal resolution with the use of a heavily decaying window
being shifted at each sample and simultaneously maintaining a good spectral resolution with the
use of group delay. Hence, it is capable of quantifying the time varying characteristics of the voice
production mechanism [56]. The ZTW spectrum has been shown to effectively model various
voice excitation characteristics, such as the glottal open phase [62, 63], but also time varying
vocal tract system characteristics, such as formants [56].
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Figs. 1 and 2 show examples of average ZTW spectra and ZTW spectrograms, respectively, for
speech signals (the vowel /e/) produced in breathy, modal and pressed phonation types. The ZTW
spectra were computed by averaging the ZTW spectrograms over all time instants of the utterance.
The spectra show distinguishable differences among the three phonation types. Breathy phonation
exhibits a larger low-frequency emphasis in the spectrum compared to modal and pressed. The
spectrum of both the modal and pressed utterance shows a prominent peak between 0 Hz and 1000
Hz. This peak is located at a lower frequency (around 400 Hz) in the modal utterance compared
to the pressed one (where it is located around 500 Hz). The location of the prominent peak varies
with the open phase characteristics of the speech signal. For a longer open phase, the prominent
peak in the spectrum shifts to lower frequencies. This is due to the fact that for a longer open
phase, the resulting tract (consisting of the subglottal and supraglottal system) is longer, which
gives rise to dominant low-frequency characteristics [62, 64, 65]. It is known that breathy voices
exhibit longer open phases compared to pressed voices [30]. It can also be observed from Fig. 1
that the energy of high frequencies is larger in pressed phonation compared to modal and breathy,
which is in line with previous studies (e.g., [61]).
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2.2.1. Features derived using ZTW
In order to parameterize the frequency domain phenomena related to the voice source described

in the above examples, five scalar features are first derived using the ZTW spectrum. In these
features, spectral moments are used to measure the global spectral shape and the local spectral
peak of the spectrum. These five features are the dominant peak location (DPL), the dominant peak
amplitude (DPA), the centre of gravity (CoG), the entropy (H) and the band energy ratio (BER).
In addition, as the sixth method, the ZTW spectrum is represented using cepstral coefficients and
the corresponding feature vector is referred to as the zero time windowing cepstral coefficients
(ZTWCCs) [53].

DPL is the location of the dominant peak in the ZTW spectrum. DPL is computed at the cth

GCI as follows:

DPLgc = arg max
k
{S [gc, k]}, c = 1, 2, . . . ,M, (10)

where S [gc, k] denotes the ZTW spectrum at time instant gc.
DPA is the amplitude of the largest peak in the ZTW spectrum. DPA is computed at the cth

GCI as follows:

DPAgc = max{S [gc, k]}, c = 1, 2, . . . ,M. (11)

CoG is a measure for the centre of the mass distribution along the frequency axis. CoG indi-
cates tilting of the spectral distribution towards lower or higher frequencies. CoG is computed at
the cth GCI as follows:

CoGgc =

N∑
k=1

k S [gc, k]

N∑
k=1

S [gc, k]
, c = 1, 2, . . . ,M. (12)

H is a measure of the average amount of uncertainty of the spectral distribution and it is defined
as

Hgc = −

N∑
k=1

Ŝ [gc, k] log2 Ŝ [gc, k], c = 1, 2, . . . ,M, (13)

where
Ŝ [gc, k] =

S [gc, k]
N∑

k=1
S [gc, k]

, c = 1, 2, . . . ,M. (14)

The entropy satisfies the following inequality:

0 ≤ H ≤ log2 N. (15)

The lower bound in Eq. (15) corresponds to no uncertainty, which occurs when the value of one
spectral bin is equal to one and all other bins are zero-valued. The upper bound corresponds to the
maximum uncertainty which occurs when all the spectral bins are of an equal value.
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Figure 3: Block diagram of the extraction of zero time windowing cepstral coefficients (ZTWCCs) [53].

BER is the ratio between the high-frequency and low-frequency energy, defined as

BERgc =

Nπ∑
k=Nc+1

S [gc, k]2

Nc∑
k=1

S [gc, k]2
, c = 1, 2, . . . ,M, (16)

where Nc denotes the FFT index of the cut-off frequency (here 1.5 kHz), and Nπ corresponds to
the Nyquist frequency.

ZTWCCs are obtained by computing the cepstrum using the ZTW spectrum at the cth GCI as
follows:

Cgc[i] = IFFT(log10(S [gc, k])), c = 1, 2, . . . ,M. (17)

From cepstrum Cgc[i], the first 13 cepstral coefficients (1 ≤ i ≤ 13) are considered. In addition to
the static coefficients, delta and double-delta coefficients are also included, which makes ZTWCCs
39-dimensional. The schematic block diagram for computing ZTWCCs is shown in Fig. 3.

2.3. Single frequency filtering (SFF)
SFF [57, 66] is a time-frequency analysis technique that can be used to compute an amplitude

envelope of the microphone signal as a function of time at a selected frequency. The amplitude
envelope is obtained by first frequency-shifting (i.e., modulating) the microphone signal s[n] by
multiplying it with an exponential function as follows: ŝ[n, k] = s[n]e− j2π f̄kn/ fs , where fs is the
sampling frequency, f̄k =

fs
2 − fk, and fk is the kth desired frequency. The modulated signal is

filtered using a single-pole filter, whose transfer function is H(z) = 1
1+rz−1 . The pole of the filter

(z = −r) is located on the negative real axis close to the unit circle. In this study, we chose
r = 0.995. The output of the single-pole filter is given by

y[n, k] = −ry[n − 1, k] + ŝ[n, k]. (18)

The amplitude envelope (v[n, k]) of y[n, k] at frequency fk is given by

v[n, k] =
√

(yr[n, k])2 + (yi[n, k])2, (19)

where yr[n, k] and yi[n, k] correspond to the real and imaginary parts of y[n, k], respectively. The
amplitude envelope of the microphone signal can be computed for several frequencies at intervals
of ∆ f by defining fk as follows:

fk = k∆ f , k = 1, 2, . . . ,K, (20)
11
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Figure 4: SFF spectra for breathy, modal and pressed speech signals (the vowel /e/).

Breathy

0 0.2 0.4 0.6
1

1.5

2

2.5

3

3.5

4

F
re

q
u

e
n

c
y

 (
k

H
z
)

5

10

15

20

25

30

Modal

0 0.2 0.4 0.6 0.8

5

10

15

20

25

30

Pressed

0 0.2 0.4 0.6 0.8

5

10

15

20

Time (sec)

Figure 5: SFF spectrograms for breathy, modal and pressed speech signals (the vowel /e/).

where K =
( fs/2)

∆ f . In this study, we chose ∆ f =10 Hz. The SFF magnitude spectrum can be obtained
for each instant of time from v[n, k].

Figs. 4 and 5 show examples of average SFF spectra and SFF spectrograms, respectively, for
speech signals (the vowel /e/) produced in breathy, modal and pressed phonation types. The SFF
spectra were computed by averaging the SFF spectrograms over all time instants of the utterance.
The breathy voice shows a more prominent first harmonic compared to the modal and pressed
utterances. The pressed voice shows a dominant fourth spectral harmonic, which is beyond the
dominant harmonic (the second harmonic) in the spectrum of the modal utterance. This is in line
with previous studies reported in [28]. It can also be observed that the spectrum of the pressed
voice appears to be flatter than the spectra of the modal and breathy voices. As previously reported
in [61], this is most likely due to sharper glottal closures in pressed phonation.

2.3.1. Features derived using SFF
The spectral examples above demonstrate that the SFF spectrum is associated with the sharp-

ness of the glottal closure. In order to parameterize the spectrum, three scalar features based on
a previous study [66, 63] are used. These three features are the slope of spectral gain (SSG), the
slope of spectral variance (SSV) and the spectral flatness (SF). In addition, cepstral coefficients
are computed from the SFF spectrum, and they are referred to as single frequency filtering cep-
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stral coefficients (SFFCCs) [54]. Moreover, the five scalar features (DPL, DPA, CoG, entropy and
BER) that were described in Section 2.2.1 related to the ZTW spectrum are computed from the
SFF spectrum.

SSG is based on the fact that glottal closure is a high-energy event in the time domain. There-
fore, the sum (i.e., the spectral gain) of the amplitude envelope v[n, k] reaches local maximum at
glottal closure. Spectral gain (SG) is computed as follows:

S G[n] =
1
K

K∑
k=1

v[n, k], n = 0, 1, . . . ,Ns − 1, (21)

where Ns corresponds to the number of samples of the microphone signal. The slope of SG (SSG)
at the cth GCI is computed as follows:

S S Ggc = |S G[gc + 1] − S G[gc − 1]|, c = 1, 2, . . . ,M. (22)

SSV is based on the fact that an impulse-like excitation in the time domain results in a flat
spectrum with a low variance. Spectral variance (SV) is computed as follows:

S V[n] =
1
K

K∑
k=1

(v̂[n, k] − µ[n, k])2, n = 0, 1, . . . ,Ns − 1, (23)

where
v̂[n, k] =

v[n, k]
K∑

k=1
v[n, k]

, n = 0, 1, . . . ,Ns − 1, (24)

µ[n, k] =
1
K

K∑
k=1

v̂[n, k] =
1
K
, n = 0, 1, . . . ,Ns − 1. (25)

Due to normalization, the amplitude information at each sample is lost. The slope of SV (SSV) at
the cth GCI is computed as follows:

S S Vgc = |S V[gc + 1] − S V[gc − 1]|, c = 1, 2, . . . ,M. (26)

SF is the ratio between the geometric and arithmetic means [67]. It is justified to be used as a
feature to characterize the sharpness of glottal closure because a sharp closure results generally in
a flat spectrum. SF at the cth GCI is computed as follows:

S Fgc =

K

√
K∏

k=1
v̂[gc, k]

1
K

K∑
k=1

v̂[gc, k]
, c = 1, 2, . . . ,M. (27)

SF is always between 0 and 1. For a perfectly flat spectrum, the value of SF is 1.
13



SFFCCs are computed as the cepstrum from the SFF spectrum at the cth GCI as follows:

Cgc[i] = IFFT(log10(v[gc, k])), c = 1, 2, . . . ,M. (28)

From Cgc[i], the first 13 cepstral coefficients (1 ≤ i ≤ 13) are considered. In addition to the
static coefficients, delta and double-delta coefficients are also included, which makes SFFCCs 39-
dimensional. The schematic block diagram describing the computation of SFFCCs is shown in
Fig. 6.

       SFF 
Cepstrum
   (Cgc[i])s[n]

v[n,k]
 Evaluate                                                                                                                                       
v[n,k] at gc

  Log(.)      IFFT
log(v[gc,k])v[gc,k]

Figure 6: Block diagram of the extraction of single frequency filtering cepstral coefficients (SFFCCs) [54, 68].

3. Analysis of Phonation Types in Speech and Singing Voice

In this section, phonation types are analysed both from speech and singing voice using the
features described in Section 2. Feature distributions (Figs. 7–12) are depicted between phonation
types for all the features using box plots, where the central mark indicates the median, and the
bottom and top edges indicate the 25th and 75th percentiles, respectively. Whiskers describe all
points within 1.5 times the interquartile range, and points beyond these whiskers are plotted as
outliers using the ′+′ symbol. In addition to depicting feature distributions, statistical tests are
carried out using 1-way ANOVAs to analyse how different features are capable of separating
phonation types.

3.1. Databases
3.1.1. Phonation type database of speech

The database used in the current investigation to study phonation types in speech consists of
eight different Finnish vowels uttered in three phonation types (breathy, modal and pressed) by six
female and five male speakers, aged between 18 and 48 years. Each vowel was uttered three times,
resulting in a total of 3 · 3 · 8 · 11 = 792 isolated vowels. The database was originally recorded at a
sampling frequency of 44.1 kHz in an anechoic chamber and later downsampled to 16 kHz. More
details of the database can be found in [16, 69].

3.1.2. Phonation type database of singing voice
The singing voice database used contains sustained vowels sung by a professional Rus-

sian soprano female singer [39]. The phonation types include breathy, neutral/modal, flow and
tense/pressed voice [41]. The database consists of 763 voice signals, including nine different vow-
els whose pitch ranges from A3 to G5. In this study, voices produced using flow phonation are not
considered because they do not correspond to Sundberg’s definition of flow phonation [41, 70].
The data were originally recorded using a sampling frequency of 96 kHz. More details of the
database can be found in [39].
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In this study, both of the databases are downsampled to 8 kHz for feature extraction. It is to
be noted that even though the absolute feature values for some of the features may vary with the
sampling frequency, the trend with reference to phonation type (from breathy to modal and then
to pressed) will not change.

Both of the databases described above are much smaller than databases that are used currently
in speech technology areas such as speech recognition and speech synthesis. However, to the
best of our knowledge, these two corpora are the only phonation type databases that are publicly
available currently for research purposes. We would also like to point out that acquiring data with
reliable ground truth (i.e., phonation type label) is not simple because phonation types occur on a
continuum in natural production of speech and singing voice. Ideally, each recorded voice sample
should be evaluated by a panel of expert listeners to ensure that the sample represents perceptually
the desired phonation type.

3.2. Feature Analysis in Speech
The distributions of the features derived using the ZFF, ZTW and SFF methods are shown in

Figs. 7, 8 and 9, respectively, for the three phonation types (breathy, modal and pressed) of the
speech database described in Section 3.1.1.

Fig. 7 shows the distributions of the features derived using the ZFF method. It can be seen
that both ZFFS slope and ZFFS energy show a decreasing trend when the phonation type changes
from breathy to modal and then to pressed. For ZFFS slope, this trend reflects the increase of
the duration of the glottal closed phase. The decreasing trend in ZFFS energy in turn depicts the
reduction of the low-frequency contents of the voice source spectrum when the phonation type
changes from breathy to modal and then to pressed. EoE and Loudness follow an increasing
trend. The trend in EoE depicts the increased vocal effort and the trend in loudness describes the
increased sharpness of glottal closure when moving from breathy to modal and then to pressed.

Fig. 8 shows the distributions of the features derived from the ZTW method. It can be seen
that all the features except DPA show an increasing trend when the phonation type changes from
breathy to modal and then to pressed. This increasing trend is caused by the reduction of the
duration of the glottal open phase as a function of phonation type. For a longer open phase of the
glottal flow, the spectral energy of the glottal source concentrates mainly on lower frequencies,
whereas for a shorter open phase the energy is more spread to higher frequencies. For the same
reason, DPA shows a decreasing trend when the phonation type changes from breathy to modal
and then to pressed.

Fig. 9 depicts the distributions of the features computed using the SFF method. From the eight
SFF features, five (SF, DPL, CoG, H, BER) show an increasing trend when the phonation type
changes from breathy to modal and then to pressed. This increasing trend is caused by the increase
of the duration of the glottal closed phase as a function of phonation type. For a longer closed
phase of the glottal flow, the spectral energy of the glottal source spreads to higher frequencies,
whereas for a shorter closed phase the energy concentrates mainly on lower frequencies. Three
of the features (SSG, SSV, DPA) follow a decreasing trend reflecting the changes in glottal closed
phase, similar to ZFFS slope.

We would like to point out that from the view of their technical definition, the proposed features
should not depend on issues such as intensity, pitch and vowel identity. Instead, the features should
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Figure 7: Distribution of features computed using the ZFF method for breathy, modal and pressed phonation types in
speech.
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Figure 8: Distribution of features computed using the ZTW method for breathy, modal and pressed phonation types
in speech.

reflect changes that occur in phonation type, which is evident from the above results. However,
one should not interpret this in such a manner that the developed features are not affected at all
by, for example, changes in pitch. In natural production of speech and singing voice, pitch and
phonation type are interrelated, which might result in dependencies between the proposed features
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and pitch. This phenomenon is, however, outside the scope of the present study.
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Figure 9: Distribution of features computed using the SFF method for breathy, modal and pressed phonation types in
speech.

In order to analyse whether the different features are capable of yielding statistically signif-
icant differences between the three phonation types, one-way ANOVAs were computed for the
features derived using the ZFF, ZTW and SFF methods. In these statistical analyses, feature was
the dependent variable, and phonation type (breathy, modal and pressed) was the independent
variable (i.e., the number of degrees of freedom was 2). Furthermore, multiple comparisons of the
phonation types with regard to each feature were carried out using Tukey’s honestly significant
difference (HSD) test. The results of the ANOVA tests are given in Table 2. From the table, it
can be observed that all the features showed statistically significant (p < 0.001) differences be-
tween the phonation types. Table 3 shows the results of the multiple comparisons tests. It can be
seen that for all the proposed features, there were statistically significant differences between the
phonation types studied except between breathy and modal with the SSG feature (computed using
the SFF method) and between modal and pressed with the loudness feature (computed using the
ZFF method).
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Table 2: One-way ANOVA results for the features derived from the ZFF, ZTW and SFF methods for phonation types
in speech (the number of degrees of freedom is 2). SS - Sum square, MS - Mean square, χ2 - Chi-Square, F - F value,
p - probability.

Method SS MS χ2 F p
ZFF
ZFFS slope 16x105 7.9x105 0.27 147.4 < 0.001
EoE 0.05 0.03 0.17 077.4 < 0.001
Loudness 3.41 1.71 0.22 107.7 < 0.001
ZFFS energy 8.1x109 4.1x109 0.14 059.4 < 0.001
ZTW
DPL 6.6x106 3.3x106 0.31 171.1 < 0.001
DPA 2.7x108 1.3x108 0.09 038.8 < 0.001
CoG 56x105 28x105 0.25 131.6 < 0.001
H 3.14 1.57 0.18 082.9 < 0.001
BER 2.19 1.09 0.15 065.9 < 0.001
SFF
SSG 5.1x105 2.5x105 0.05 018.1 < 0.001
SSV 7.1x10−9 3.5x10−9 0.12 049.6 < 0.001
SF 0.22 0.11 0.14 060.7 < 0.001
DPL 4.9x106 2.5x106 0.27 146.7 < 0.001
DPA 1.9x103 9.7x102 0.12 052.2 < 0.001
CoG 4.3x106 2.1x106 0.28 155.2 < 0.001
H 1.45 0.73 0.15 070.5 < 0.001
BER 2.76 1.38 0.17 081.5 < 0.001

Table 3: Multiple comparison of phonation types in speech with regard to all proposed features. Symbol ∗ indicates a
significant difference (p < 0.05) between phonation types.

Loudness SSG Remaining features
Modal Pressed Modal Pressed Modal Pressed

Breathy * * – * * *
Modal – * *

3.3. Feature Analysis in Singing Voice
Distributions of the features computed from singing voices using the ZFF, ZTW and SFF

methods are shown in Figs. 10, 11 and 12, respectively. These figures depict feature distributions
as a function of phonation type for the three phonation types (breathy, modal and pressed) of the
singing voice database described in Section 3.1.2. From the figures, it can be observed that all
the individual features extracted from singing voice follow a increasing or decreasing trend as a
function of phonation type, similar to the features’ trend showed for speech in Section 3.2.

To analyse the statistical significance of the features, ANOVAs were carried out and the results
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Figure 10: Distribution of features computed using the ZFF method for breathy, modal and pressed phonation types
in singing.

Breathy Modal Pressed
500

1000

1500

2000

2500

CoG

Breathy Modal Pressed
5

5.2

5.4

5.6

5.8

6

H

Breathy Modal Pressed
0

2000

4000

6000

8000

DPA

Breathy Modal Pressed
0

1000

2000

3000

DPL

Breathy Modal Pressed
0

1

2

3

BER

Figure 11: Distribution of features computed using the ZTW method for breathy, modal and pressed phonation types
in singing.

are reported in Table 4. The feature was again the dependent variable, and the phonation type
(breathy, modal and pressed) was the independent variable (i.e., the number of degrees of freedom
was 2). From the table, it can be observed that all the features showed statistical significance
(p < 0.001). A multiple comparison of different phonation types with regard to each feature
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Figure 12: Distribution of features computed using the SFF method for breathy, modal and pressed phonation types
in singing.

was carried out with Tukey’s HSD test and the results are given in Table 5. From the table, it
can be observed that for all the proposed features, there were statistically significant differences
between the phonation types except between modal and pressed with the EoE and ZFFS energy
features (computed using the ZFF method) and between breathy and modal with the SSG feature
(computed using the SFF method).

4. Classification of Phonation Types in Speech and Singing Voice

In order to study how phonation types can be automatically classified with machine learning,
the proposed features described in Section 2 were used to train and evaluate a classifier. In addition,
the proposed features and baseline features were combined in classification experiments. This
section describes the feature sets used in the classification experiments, the details of the classifier
and the results of the classification experiments for phonation types in speech and singing voice.
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Table 4: One-way ANOVA results for the features computed using the ZFF, ZTW and SFF methods for phonation
types in singing (the number of degrees of freedom is 2). SS - Sum square, MS - Mean square, χ2 - Chi-Square, F - F
value, p - probability.

Method SS MS χ2 F p
ZFF
ZFFS slope 2.5x104 1.2x104 0.19 152.7 < 0.001
EoE 0.07 0.03 0.12 080.3 < 0.001
Loudness 0.22 0.11 0.08 054.9 < 0.001
ZFFS energy 6.9x109 3.4x109 0.11 079.3 < 0.001
ZTW
DPL 1.1x108 0.6x108 0.38 372.1 < 0.001
DPA 1.3x109 0.7x109 0.35 332.6 < 0.001
CoG 7.6x107 3.8x107 0.52 657.5 < 0.001
H 10.51 05.25 0.34 316.0 < 0.001
BER 1.9x102 95.82 0.33 303.3 < 0.001
SFF
SSG 4.2x105 2.1x105 0.09 062.3 < 0.001
SSV 2.1x10−9 1.1x10−9 0.29 258.8 < 0.001
SF 0.42 0.21 0.26 221.6 < 0.001
DPL 9.1x107 4.5x107 0.35 325.7 < 0.001
DPA 6.8x103 3.4x103 0.31 274.9 < 0.001
CoG 5.1x107 2.5x107 0.51 634.5 < 0.001
H 2.63 1.32 0.29 254.3 < 0.001
BER 1.8x102 91.28 0.36 340.2 < 0.001

Table 5: Multiple comparison of phonation types in singing with regard to all proposed features. Symbol ∗ indicates
a significant difference (p < 0.05) between phonation types.

EoE and ZFFS energy SSG Remaining features
Modal Pressed Modal Pressed Modal Pressed

Breathy * * – * * *
Modal – * *

4.1. Feature Sets
The proposed features were grouped into five individual feature sets. Three of these feature

sets consist of the scalar features computed using the three signal processing methods (ZFF, ZTW,
and SFF) described in Section 2. These three sets are referred to as the ZFF feature set (consisting
of ZFFS slope, EoE, Loudness, and ZFFS energy), the ZTW feature set (consisting of DPL, DPA,
CoG, H, and BER), and the SFF feature set (consisting of SSG, SSV, SF, DPL, DPA, CoG, H,
and BER). The remaining two feature sets include cepstral coefficients, ZTWCCs and SFFCCs
described in Sections 2.2.1 and 2.3.1, respectively.
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Glottal source features (referred to here as the voice quality (VQ) features as in [3]) and
MFCCs were chosen as baseline features for comparison. The selection of these features is based
on the results of [3, 16, 30], which indicate that these features gave the best performance in the dis-
crimination of phonation types. The VQ feature set consists of NAQ [60], QOQ [16], H1-H2 [31],
PSP [34] and MDQ [3]. The first four of these features were computed using iterative adaptive
inverse filtering [71] as the GIF method, and MDQ was derived by computing the wavelet decom-
position from the LP residual [3]. All the features were computed using the COVAREP toolbox
[72]. Conventional 13-dimensional MFCCs were computed using 25-ms Hamming-windowed
frames with a 5-ms frame shift. In addition to the static coefficients, delta and double-delta coeffi-
cients were also computed, resulting in a 39-dimensional feature vector.

The feature sets described above were also combined in order to study complementary infor-
mation among the features. In total, 14 feature sets (FSs) were created as listed below. From these
14 feature sets, the first seven (from FS-1 to FS-7) consist of the individual feature sets described
above. The rest of the feature sets (from FS-8 to FS-14) were combined from the existing features
sets (FS-8) and from the proposed feature sets (FS-9 to FS-13). The last of the combined set (FS-
14) was built by combining the existing feature set that showed the highest classification accuracy
with the proposed set that yielded the highest accuracy. In other words, FS-14 included the best set
of the three existing feature sets (FS-1, FS-2 and FS-8) combined with the best set of the ten sets
consisting of the proposed features (from FS-3 to FS-7 and from FS-9 to FS-13). The 14 feature
sets are:

(i). FS-1: VQ feature set

(ii). FS-2: MFCCs

(iii). FS-3: ZFF feature set

(iv). FS-4: ZTW feature set

(v). FS-5: SFF feature set

(vi). FS-6: ZTWCCs

(vii). FS-7: SFFCCs

(viii). FS-8: VQ feature set+MFCCs

(ix). FS-9: ZTW feature set+ZTWCCs

(x). FS-10: SFF feature set+SFFCCs

(xi). FS-11: ZFF feature set+ZTW feature set+ZTWCCs

(xii). FS-12: ZFF feature set+SFF feature set+SFFCCs

(xiii). FS-13: ZFF feature set+ZTW feature set+ZTWCCs+SFF feature set +SFFCCs

(xiv). FS-14: Combination of the best existing feature set (i.e., the best of FS-1, FS-2 and FS-8)
and the best proposed feature set (i.e., the best of FS-3 to FS-7 and FS-9 to FS-13).
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4.2. Classifier
Classification experiments were carried out using support vector machines (SVMs) utilizing

a radial basis function kernel [73]. The SVM classifier was selected because it is known to be
an effective classifier, particularly in cases like the current study where only a small amount of
training data is available [3, 32]. Experiments were conducted using 10-fold cross-validation,
where data was randomly partitioned into 10 equal sets. One set was held out for testing and the
remaining nine sets for training. Classification accuracies were saved for each fold, and finally the
mean and standard deviation of the accuracies were computed.

4.3. Results
This section reports the results of the phonation type classification experiments separately in

speech and singing.

4.3.1. Classification Results for Phonation Types in Speech
Results from the 10-fold cross-validation experiment for phonations types in speech are shown

in terms of the mean and standard deviation of the classification accuracy in Table 6. From the
table, it can be observed that the proposed ZTWCCs (FS-6) and SFFCCs (FS-7) gave the high-
est performance for the individual feature sets. Among the existing feature sets, MFCCs (FS-2)
showed better performance than the VQ features (FS-1). Even though the other individual feature
sets (FS-3 to FS-5) gave lower performance, they showed complementary information when com-
bined with the proposed features, as shown by the accuracies obtained for FS-9 to FS-13. It can
also be observed that there exists complementary information between the existing features: the
performance for the combination of the VQ features and MFCCs (FS-8) was higher than that of
the corresponding individual feature sets. Among the combinations of the proposed feature sets,
the best performance was achieved by FS-13. Hence, FS-14 was selected to consist of FS-8 and
FS-13. It can be observed that this feature set resulted in improved accuracy, indicating that there
is complementary information between the proposed features and the existing features.

Tables 7, 8 and 9 show confusion matrices for the combination of the existing feature sets
(FS-8), for the combination of the proposed feature sets (FS-13) and for the combination of the
existing and proposed feature sets (FS-14), respectively. The confusion matrix for FS-8 (Table 7)
shows good accuracy for breathy phonation, but confusions between modal and pressed speech
signals. This observation is in line with the results reported in [3, 30]. The accuracy shown in
Table 8 is better than in Table 7, but still breathy and pressed voices show confusions with modal
voices. Compared to the results achieved with feature sets FS-8 and FS-13, classification accuracy
shown for FS-14 in Table 9 is remarkably improved. In this case, it can be observed that for all the
phonation types, the classification accuracy is improved.

4.3.2. Classification Results for Phonation Types in Singing Voice
The classification results for phonation types in singing are shown in Table 10. In the case

of individual feature sets, the performance of the proposed ZTWCCs (FS-6) and SFFCCs (FS-7)
is comparable or better than that of MFCCs (FS-2). It is to be noted that the discrimination of
phonation types using the VQ features (FS-1) is slightly worse than in speech. However, as in
speech, there is complementary information between the VQ features and MFCCs (i.e., FS-8).
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Table 6: Mean and standard deviation of the accuracy in phonation type classification of speech for individual feature
sets and combinations of feature sets.

Feature set Mean[%] Standard deviation[%]
FS-1 64.21 4.97
FS-2 68.52 5.14
FS-3 61.26 5.84
FS-4 52.62 5.19
FS-5 54.68 5.49
FS-6 69.38 4.53
FS-7 70.88 3.70
FS-8 73.79 4.31
FS-9 69.11 3.17
FS-10 75.44 4.27
FS-11 72.28 3.84
FS-12 75.32 5.03
FS-13 75.06 3.72
FS-14 78.71 3.58

Table 7: Confusion matrix in phonation type classification of speech with FS-8.

Breathy [%] Modal [%] Pressed [%]
Breathy 80.46 18.01 1.53
Modal 13.67 66.02 20.31
Pressed 2.56 22.71 74.73

Table 8: Confusion matrix in phonation type classification of speech with FS-13.

Breathy [%] Modal [%] Pressed [%]
Breathy 79.41 16.10 4.49
Modal 16.98 66.80 16.22
Pressed 2.27 18.97 78.79

Table 9: Confusion matrix in phonation type classification of speech with FS-14.

Breathy [%] Modal [%] Pressed [%]
Breathy 83.16 15.05 1.79
Modal 14.18 69.70 16.12
Pressed 0.84 15.90 83.26
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Even though the other individual sets consisting of the proposed features (i.e., FS-3 to FS-5) show
low performance, they provide complementary information when combined with ZTWCCs and
SFFCCs (i.e., FS-9 to FS-13). Further, the combination of all the proposed feature sets (FS-13)
resulted in better performance compared to individual feature sets alone (FS-3 to FS-7) and com-
binations represented by the sets from FS-9 to FS-12. This indicates that there is complementary
information among the proposed features. Hence, the final feature set FS-14 was selected to in-
clude FS-8 (the best existing feature set) and FS-13 (the best proposed feature set). As in speech,
the best classification accuracy was achieved with FS-14, indicating complementary information
between the proposed features, and the existing VQ features and MFCCs feature.

Table 10: Mean and standard deviation of the accuracy in phonation type classification of singing voice for individual
feature sets and combinations of feature sets.

Feature set Mean[%] Standard deviation[%]
FS-1 60.82 6.61
FS-2 77.07 5.09
FS-3 62.58 5.25
FS-4 65.34 5.26
FS-5 66.71 4.89
FS-6 77.66 4.03
FS-7 78.84 5.15
FS-8 78.95 4.72
FS-9 79.92 6.11
FS-10 80.17 3.94
FS-11 80.16 4.83
FS-12 80.21 4.72
FS-13 82.58 4.35
FS-14 85.24 4.80

Table 11: Confusion matrix in phonation type classification of singing voice with FS-8.

Breathy [%] Modal [%] Pressed [%]
Breathy 75.27 21.27 03.46
Modal 15.03 63.34 19.93
Pressed 01.12 09.11 89.77

Tables 11, 12 and 13 show confusion matrices when the classification was based on combina-
tion of the existing feature sets, i.e., the VQ features and MFCCs (FS-8), on the combination of all
the proposed feature sets (FS-13), and on the combination of existing features and the proposed
feature sets (i.e., FS-14), respectively. From Table 11, it can be seen that there are clear confusions
between breathy and modal voices, and that modal voices are confused with pressed voices. This
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Table 12: Confusion matrix in phonation type classification of singing voice with FS-13.

Breathy [%] Modal [%] Pressed [%]
Breathy 78.08 18.02 03.90
Modal 17.56 66.96 15.48
Pressed 02.80 02.80 94.40

Table 13: Confusion matrix in phonation type classification of singing voice with FS-14.

Breathy [%] Modal [%] Pressed [%]
Breathy 84.82 12.89 02.29
Modal 17.26 72.62 10.12
Pressed 02.52 04.33 93.15

observation is in line with the results reported in [39, 51, 47]. Compared to Table 11, the classifi-
cation accuracy shown in Table 12 (FS-13) is better for all the three phonation types. Compared to
the results achieved with feature sets FS-8 and FS-13, classification accuracy obtained with FS-14
in Table 13 is higher, and the discrimination between breathy and modal voices as well as between
modal and pressed voices is further improved. It should be noted that even though there is an
improvement, there are still confusions between breathy and modal voices, and modal voices are
confused with pressed voices. Further investigations are required to develop features which better
reflect differences in voice production characteristics between these classes.

5. Conclusions

In this article, analysis and classification of phonation types was studied in speech and singing
voice. Using three signal processing methods (ZFF, ZTW and SFF), several features that reflect
changes in the glottal source when phonation type is altered were derived. The proposed features
were grouped into five individual feature sets. Three of these feature sets consist of the scalar
features computed using the three signal processing methods–they were referred to as the ZFF
feature set (ZFFS slope, EoE, Loudness, and ZFFS energy), the ZTW feature set (DPL, DPA,
CoG, H, and BER) and the SFF feature set (SSG, SSV, SF, DPL, DPA, CoG, H, and BER). The
remaining two feature sets include cepstral coefficients computed from the ZTW and SFF spectra,
referred to as ZTWCCs and SFFCCs, respectively. All the proposed features can be computed
from the microphone signal without computing the source-filter decomposition.

Statistical analyses were computed in order to study how the ZFF feature set, the ZTW feature
set and the SFF feature set are affected when the phonation type in speech and singing voice
changes. Multiple comparisons with Tukey’s honestly significant difference test showed that for
speech, all the features indicated statistically significant differences between the phonation types
except SSG (between breathy and modal) and loudness (between modal and pressed). Similarly,
for the phonation types in singing, all the features indicated statistically significant differences
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between the phonation types except EoE and ZFFS energy (between modal and pressed) and SSG
(between breathy and modal).

Classification experiments with SVM revealed that, among the proposed five feature sets, the
highest classification accuracy was obtained by ZTWCCs and SFFCCs. The classification accu-
racy was, however, improved when individual feature sets were combined. The best performance
was achieved when all the proposed feature sets were combined. In addition, it was observed that
the proposed features provide complementary information to the existing voice quality features
and MFCCs that improved the classification of phonation types.
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