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Abstract—In this paper, we present a multispeaker local-
ization method using the time delay estimates obtained from
the spectral features derived from the single frequency filter
(SFF) representation. The mixture signals are transformed into
SFF domain from which the temporal envelopes are extracted
at each frequency. Subsequently, the spectral features such as
mean and variance of temporal envelopes across frequencies
are correlated for extracting the time delay estimates. Since
these features emphasize the high SNR regions of the mixtures,
correlation of the corresponding features across the channels
leads to robust delay estimates in real acoustic environments.
We study the efficacy of the developed approach by comparing
its performance with the existing correlation based time delay
estimation techniques. Both, a standard data set recorded in
real-room acoustic environments and simulated data set are used
for evaluations. It is observed that the localization performance
of the proposed algorithm closely matches the performance of
a state-of-the-art correlation approach and outperforms other
approaches.

Index Terms—Time delay estimation, Multispeaker localiza-
tion, Single frequency filter, Cross correlation.

I. INTRODUCTION

Speaker localization is a challenging task, especially in
real-world environments. In most of the applications such as
videoconferencing, hands-free voice communication, speech
recognition and in hearing-aid devices, localization is a pri-
mary task to capture high-quality speech. One approach to
source localization is to, first, estimate the time delays between
microphone pairs and then use these estimates to find the di-
rection of arrival of speech sources. In this two step approach,
cross correlation based techniques are typically used for time
delay estimation (TDE). The other methods are average mag-
nitude difference function (AMDF) [5], adaptive eigenvalue
decomposition [3] and information theoretic approaches [19].
Among the cross correlation methods, the cross correlation of
filtered signals, called generalized cross correlation (GCC),
is widely used [12]. GCC with phase transform (PHAT)
weighting is proved to be the most robust among all the GCC
weightings in low noise and reverberation environment [23].
However, in GCC-PHAT, the errors in direction of arrival
(DoA) estimates increase as the SNR decreases. To address
this issue, researchers proposed SNR based weights on GCC-
PHAT to highlight the speech dominant time-frequency (TF)
bins and to de-emphasize TF bins with noise or reverberant
speech [11], [21]. The SNR based masks estimated by deep

learning are applied on GCC-PHAT in [21]. In [11], both
SNR variations and noise characteristics are considered for
adaptive setting of the power normalization factor. GCC-PHAT
is modified not only by SNR weighting but also by alternative
techniques. GCC-PHAT is weighted by the reciprocal of
AMDF to improve the accuracy of DoA estimates [4]. A
smoothing filter is applied on the GCC-PHAT function to
eliminate the frame wise fluctuations of the DoA estimates
[8]. In GCC-PHAT, the sparsity in TF bins is ignored due to
summing across frequencies. It is proposed to apply mel-scale
filter bank on GCC-PHAT to use the sparsity of speech signals
at sub-band level [7].

The central idea in most of the above mentioned approaches
is to enhance the high SNR TF components while performing
GCC-PHAT. Alternatively, we investigate the effect of GCC-
PHAT on signals in which instants of significant excitation
(high SNR regions) are emphasized. Earlier studies have
shown that features extracted from single frequency filtering
(SFF) time-frequency representation emphasize the high SNR
regions in the speech signal [10]. However, these SFF based
features were used for epoch extraction. In this paper, we
explore the use of SFF based features for TDE.

A. Relation to previous work

A TDE approach that exploits the high SNR regions was
proposed in an earlier study [20]. In [20], the signals in which
GCIs are emphasized by linear prediction (LP) analysis are
correlated for TDE. The obtained time-delay estimates are
shown to be closer to the ground truth values than those
obtained by GCC method. However, LP analysis deteriorates
in low SNR conditions [22]. Recently, a more robust SFF
based method of epoch extraction was proposed [10]. In
addition, in [14], a method of TDE by SFF was proposed.
It is a narrowband approach where the spectral envelopes at
various frequencies are cross-correlated with the correspond-
ing envelopes in the other channel. The drawback of this
approach is that it has high computational complexity since
cross-correlations are performed at all frequencies and at all
instants. To address this issue, in our study we propose a
SFF based broadband approach of localization with reduced
computational complexity. SFF spectral features that highlight
the high SNR regions are estimated. Subsequently, the SNR
enhanced signals are correlated for TDE.



B. Organization of the paper

The paper is organized as follows: In Section II, we explain
the motivation for the study and the methodology of using
SFF for source localization. In Section III, the localization
performance of the proposed method is compared with a
few broadband approaches in various acoustic settings and a
discussion on the results is presented. Section IV provides the
summary and conclusions from our study.

II. PROPOSED APPROACH FOR LOCALIZATION

The objective is to accurately estimate the time-delay from
the mixtures collected at two microphones in a room acoustic
environment. It is to be noted that the microphone signals are
not the original source signals but are degraded source signals
due to reverberation and noise. In most TDE techniques, the
time-delay is estimated by cross-correlation of the signals at
the microphones. The peak in the cross-correlation function
gives accurate time-delay estimate if the signal at one mi-
crophone is a delayed version of the other. However, in real
acoustic environments, the degraded microphone signals are
not the time shifted versions of one another. Hence, cross-
correlation of the microphone signals does not yield distinct
and accurate peaks in the cross-correlation function. It is
to be mentioned that the effects of noise and reverberation
are reduced to some extent around the epoch locations in
the speech signals, leading to correlated components around
epochs [20]. In addition, the relative epoch locations in the
production of speech are not modified by degradations [13].
Henceforth, cross-correlation of the signals in which the
excitation source information (epoch locations) in the speech
is emphasized will give clear peaks in the cross-correlation
function. In this study, the robust excitation source features
that we choose are the impulse-like events in the microphone
speech signals because the location of epochs corresponds to
the location of the impulse-like events in speech. The SFF
representation (described in Sec. II-A) is used for detecting
these events. Among various methods of epoch or impulse-
like event extraction, SFF is chosen for the following reasons.

• In SFF time-frequency representation, the time resolution
of impulses is high and also the spectral resolution of
harmonics and resonances is high [10], [16].
In Figure 1, better time-frequency resolution trade-off
offered by SFF spectrum over STFT spectrum is demon-
strated with the analysis of a synthetic signal consisting
of a sequence of impulses and a few narrow band signals.
Figure 1(a) and Figure 1(b) depict the analysis with STFT
obtained with 512 DFT points, a small (frame size of 20
ms) and large (frame size of 64 ms) Hamming window
respectively and hop size = 1 sample. Figure 1(c) shows
SFF of the same signals with r = 0.992 and K = 256.
It can be observed that, in Figure 1(a) the temporal
resolution is good, while spectral leakage between the
bands is seen. On the other hand, in Figure 1(b), closely
spaced spectral components are visible but at the cost of
decreased time resolution. In Figure 1(c) good spectral

and temporal resolution (at impulses) is obtained. SFF,
thus gives a good trade off between frequency and time
resolution for 0.95 ≤ r ≤ 0.995 [9].

• SFF is a filtering approach and hence no block processing
artifacts are present.

• SFF method of epoch extraction is superior to traditional
methods of epoch extraction [10].

A few of the SFF spectral features, such as mean and
variance of the envelopes extracted at various frequencies
emphasize the impulse-like events.

A. Single frequency filter (SFF) representation of speech sig-
nals

SFF output is a complex TF representation of a given speech
signal. It is obtained by passing the speech signal through a
single pole filter after frequency shifting. The pole is near
fs/2, where fs is the sampling frequency. The amplitude
envelope of SFF output has accurate values as it is calculated
at the highest possible frequency fs/2. The spectral resolution
is high because the pole at fs/2 is near the unit circle where
the affect of other frequency components is minimum [6]. The
steps in SFF method are:

1. The pre-emphasized speech signal x[n] is frequency
shifted by f̄k, where f̄k = fs

2 − fk and the resulting
signal is given by:

x̃[k, n] = x[n]e−j
2πf̄k
fs

n, (1)

for n = 1, 2, . . . , N , and k = 1, 2, . . . ,K, where N is
the total number of samples in the signal, and K is the
total number of frequencies in SFF.

2. The signal x̃[k, n] is passed through a single-pole filter
with transfer function:

H(z) =
1

1 + rz−1
, (2)

where the value of r is less than 1 to ensure filter
stability. Since SFF is a very low bandwidth filter, r
is close to unity.

3. The output of the filter is given by:

y[k, n] = −ry[k, n− 1] + x̃[k, n]. (3)

where y[k, n] is a complex number with real part yr[k, n]
and imaginary part yi[k, n].

4. The envelope of the signal y[k, n] is given by:

e[k, n] =
√
y2
r [k, n] + y2

i [k, n]. (4)

where e[k, n] is the SFF amplitude envelope of the
filtered output at the kth frequency.

The SFF output can be obtained for several frequencies at
interval of 4f. That is,

fk = k∆f, k = 1, 2, . . . ,K, (5)

where K = (fs/2)
∆f . From the amplitude envelope of SFF,

e[k, n], we can get the SFF spectrum of the signal at every
instant of time.



Fig. 1. (a) and (b) show STFT of synthetic signal (consisting of sequence of impulses and narrow band frequencies) for a frame size = 20 ms and 64 ms,
respectively and hop size = 1 sample. (c) shows the SFF of the same signal for r = 0.992. In (a), (b) and (c) number of frequency components between 0
and fs

2
is 256.

B. Spectral features of SFF for detection of impulse-like events

In this section we introduce two SFF spectral features, mean
and variance, that emphasize impulse-like events of excitation
in the given speech [10]. The usefulness of these features is
that they highlight the individual speaker’s significant charac-
teristics in multispeaker waveform.

Spectral mean: Spectral mean, µ[n], is the mean of the
envelopes and is given by:

µ[n] =
1

K

K∑
k=1

e[k, n]. (6)

The high energy impulse-like events when averaged across
frequencies lead to peaks in the spectral mean.

Spectral variance: The spectral variance, σ2[n], at the
instants of glottal closure is low because an impulse-like
excitation has a flat spectrum. Therefore, the valleys in the
spectral variance depict the instants of impulse-like excitation.
The spectral variance is calculated from normalized amplitude
envelope, ê[k, n] [10], and is given by:

σ2[n] =
1

K

K∑
k=1

(ê[k, n]− µ̂[n])2, (7)

where ê[k, n] = e[k,n]∑K
k=1 e[k,n]

and µ̂[n] = 1
K

K∑
k=1

ê[k, n] = 1
K ,

as the envelopes are normalized across frequency at each time
instant.

Figure 2 gives an illustration of the SFF spectral mean
property on a voiced segment of two concurrent speakers. In a
simulated room environment, two concurrent speakers data is
collected at a pair of microphones separated by 1 m. The plots
in Figure 2 are obtained from one of the two microphones.
Similar plots may be obtained at the other microphone. Figure
Figure 2(a) is a voiced segment of a single speaker (Speaker
1). The SFF spectral mean of the speaker 1 is shown in Figure
2(b). The red marks indicate the instants of impulse-like events

of speaker 1. Figure 2(c) corresponds to a voice segment of
Speaker 2. In Figure 2(d), the SFF spectral mean of Speaker
2 is shown. The instants of significant excitation of Speaker
2 are depicted with blue marks. Figure 2(e) is the mixture
of Speaker 1 and Speaker 2. Figure 2(f) is the SFF spectral
mean of the mixture signal. The red and blue dots, marked
at the peaks of the spectral mean, correspond to high SNR
regions of speakers 1 and 2 respectively. It is interesting to
note the differences in Figure 2(e) and Figure 2(f). While the
peaks in Figure 2(f), corresponding to speakers’ significant
excitation, are prominent, no such peaks are present in Figure
2(e). Further, it can be clearly observed that the red and blue
markers shown in Figure 2(f) are aligned across the plots in
Figure 2(b) and Figure 2(d), respectively. This means that both
the speakers’ impulse-like events in Figure 2(f), closely match
those of the individual speaker. Also, the derived spectral
mean from the mixture signal, in Figure 2(f), clearly shows
the time-delay of arrival of between the two speakers at a
given microphone. From this, the relative locations of the
speakers can be derived. Correlation of spectral means (Figure
2(f)) would yield distinct and prominent peaks in the angular
spectrum than the correlation of original signals (Figure 2(e)).
This is because, the spectral mean nicely captures the impulse-
like events, where the effects of noise and reverberation are
reduced. Similar conclusion can be drawn about SFF spectral
variance feature, the only difference is that the impulse-like
events are the valleys in spectral variance.

C. The proposed localization approach

Given the two mixture signals collected at two microphones,
the first step in the proposed algorithm is to obtain the SFF
representation of the two signals. For SFF estimation, r is
set to 0.995. The parameter K is set to 150. We chose a
lower value of K to reduce the computation time. Also, it is
experimentally observed that an increase in K does not lead
to a significant improvement in localization results. The next
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Fig. 2. (a) and (c) show a voiced segment of Speaker 1 and 2 respectively;
(b) and (d) show the mean of SFF amplitude envelopes of Speaker 1 and 2
shown in (a) and (c); (e) shows the segment with both Speaker 1 and Speaker
2 active; and (f) shows the mean of SFF amplitude envelopes derived from
(e). X-axis is Time in milliseconds.

step is to find the spectral mean and spectral variance of the
two SFF representations as given by:

µi[n] =
1

K

K∑
k=1

ei[k, n]; (8)

σ2
i [n] =

1

K

K∑
k=1

(êi[k, n]− µ̂i[n])2, (9)

where i = 1, 2; ei[k, n] is the amplitude envelope of the
filtered output at the the kth frequency and nth time instant
in ith microphone channel; µi[n] is the SFF spectral mean
of the signal at channel i; êi[k, n] is the normalized envelope
at channel i; µ̂i is the mean of normalized SFF envelopes at
channel i and σ2

i [n] is the SFF spectral variance at channel i.
The spectral features obtained from 2 microphone channels

in Equations (8) and (9) are correlated using GCC-PHAT,
resulting in an angular spectrogram. The angular spectrograms
are pooled over time, resulting in a averaged angular spectrum.
The indices of the peaks in the averaged angular spectrum
are the source time difference of arrival (TDoA) estimates.
In Figure 3, angular spectrogram and the averaged angular
spectrum obtained from the mean SFF envelopes on a mixture
of 3 concurrent sources are shown. The target direction of
arrival (DoA) estimate, which is the azimuth angle of arrival
of the source with respect to the microphone axis is obtained
by:

θ̂ = arccos (τ̂C/d); (10)

where τ̂ is the estimated TDoA corresponding to the peak
location in the mean angular spectrum; C is the speed of
sound which is 340 m/s and d is the distance between the
microphones in meters. The proposed speaker localization
approaches using SFF spectral mean and SFF spectral variance
are referred to as SFF-mean and SFF-var, respectively.
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Fig. 3. Angular spectrogram and averaged angular spectrum (top and bottom
figures respectively), which are obtained by correlation of mean of SFF
envelopes across 2 channels. The mixture signals consist of 3 concurrent
speakers. The dotted lines are the ground truth DoAs.

TABLE I
PARAMETER SETTINGS FOR THE BASELINE APPROACHES. − DENOTES

”NOT APPLICABLE”.

Algorithms GCC-PHAT WC HE
Window size 50 ms 50 ms 50 ms
Hop size 1 sample 1 sample 1 sample
No of spectral
components 513 - -

III. PERFORMANCE EVALUATION AND DISCUSSION

Proposed SFF-based approaches (SFF-mean and SFF-var)
are compared with three broadband approaches, namely: GCC-
PHAT, waveform correlation (WC) and Hilbert envelope of LP
residue (HE) [20]) on simulated and real data. WC is cross
correlation obtained by time domain correlation of mixture
signals. HE is cross correlation obtained by time domain
correlation of Hilbert envelopes of LP residue of mixture
signals. Localization is performed on 2.5 s data, whose fs is
16 kHz. Maximum TDoA in 1 m microphones is 2.9 ms (47
samples). Number of TDoAs/DoAs used in all the approaches
is 95, corresponding to a resolution of 2 degrees.

For a fair comparison, in all the approaches the temporal
resolution is equal. The parameters chosen for the baseline
approaches and SFF approach are shown in Table I. The reason
for choosing lesser number of SFF spectral components is
mentioned in Section II-C.

Root mean square error (RMSE) is reported for all test
cases. In addition to RMSE, the number of missed detections
(MD) is tabulated. If the estimated DoA is not within ±5o

of the ground truth angle, then we consider it as a missed
detection. For a better performing method, both RMSE (in
degrees) and MD should be lower. We assume that that the
number of sources to be localised are known priorly.

A. Simulated Data and Results

Two omnidirectional microphones placed 1 m apart in a
simulated rectangular room with dimensions 5.6×4.5×2.6 m
are used as in [20]. The details of the simulator are available
at [18]. Clean speech data (sampled at a rate of 16 kHz) of 4
male and 4 female speakers from the SiSEC dev1 database are
used as source speakers [2]. A source is placed at 2 m and at
one of the 7 angles from the centre of the array. The 7 DoAs



considered in this study are [30o, 50o, 70o, 90o, 110o, 130o and
150o]. The room impulse response is calculated between 7
different locations of a given source and the fixed microphone
pair for 4 reverberation times of [0.0 s, 0.1 s, 0.2 s and 0.3 s].
Thus for each source, 28 (7x4) mixture files are generated. In
total we have 224 (8x7x4) mixture files for all combinations
of speakers, speaker locations and reverberation times.

1) Effect of reverberation: For each reverberation time,
8 speakers at 7 different locations result in 56 mixtures.
The subset of 56 mixtures from the 224 files are used to
evaluate the various localization algorithms. Average RMSE
(in degrees) and missed detections obtained over these 56
mixtures are reported in Table II. From the table, it can
be observed that as the reverberation time increases, RMSE
and the number of missed target sources increase for all the
methods. Among the methods, the SFF-mean and GCC-PHAT
methods are performing better in both RMSE and MD. SFF-
var method is better than the HE and WC in terms of RMSE,
and HE method is better than the WC and SFF-var in terms
of MD. Overall, the approaches that are performing well with
comparable results are GCC-PHAT, SFF-mean and HE. With
a high number of missed detections, WC and SFF-var perform
poorly.

2) Effect of noise: To study the effects of noise, we consider
the 56 mixtures with 0.0 s reverberation from the 224 files.
Three noise samples (pink, pub, and work) taken from ETSI
noise database [1] are added at SNRs of 0 dB, 5 dB and 10
dB. For a given noise and a given SNR, simulations on 56
mixture files are evaluated and the resulting RMSE and MD
are tabulated in Table III. From the table, it can be observed
that as the SNR increases, RMSE and MD decrease. SFF-var
is better than HE in terms of both RMSE and MD and it is
better than WC in terms of RMSE only. In most cases, SFF-
mean outperforms SFF-var in terms of both RMSE and MD.
Overall, in all the noises and at all the SNRs, GCC-PHAT,
SFF-mean and WC methods perform equally well with low
RMSE and MD, while HE and SFF-var perform less.

To summarize, GCC-PHAT and SFF-mean give good local-
ization results in both low SNR and reverberation conditions.
While WC is robust only in noisy conditions, HE is robust in
reverberation only.

B. Real Data and Results

The real datasets chosen are dev1 and dev2 development
data in SiSEC [2], [15]. The SiSEC (dev1 and dev2) live
speech recording datasets consist of ten 10 s stereo mixtures of
3 female and 4 male speakers. The mixtures are recorded with
reverberation times of 130 ms and 250 ms with microphone
separation of 1 m. The ground-truth data is provided in the
dataset. RMSE is calculated over all the files and the results are
reported in Table IV for 3 speakers and 4 speakers, separately.
From the table, it can be observed that RMSE and MDs of
GCC-PHAT, HE and SFF-mean are the least and comparable.
WC and SFF-var methods have not detected all the speakers.
Further, between SFF-mean and SFF-var methods, SFF-mean
method seems to be more robust and performs well.

TABLE II
AVERAGE RMSE (IN DEGREES) OBTAINED BY GCC-PHAT, WC, HE,

SFF-MEAN AND SFF-VAR AT DIFFERENT REVERBERATION TIMES. TOP 2
BEST PERFORMING ALGORITHMS ARE IN BOLD. MISSED DETECTIONS

(MD) ARE IN THE BRACKETS.

Rev. time GCC-PHAT WC HE SFF-mean SFF-var
0.0 s 0.43 0.81 0.81 0.43 0.43
0.1 s 0.5 1.1(3) 1.0 0.62 0.75
0.2 s 0.8 1.26(8) 1.09 0.69 0.78(3)
0.3 s 0.8(1) 1.2(22) 1.12 0.71(1) 0.93(13)

TABLE III
AVERAGE RMSE (IN DEGREES) OBTAINED BY GCC-PHAT, WC, HE,
SFF-MEAN AND SFF-VAR AT SNRS VARIED FROM 0 DB TO 10 DB BY

ADDING DIFFERENT NOISES. TOP 2 BEST PERFORMING ALGORITHMS ARE
IN BOLD. MISSED DETECTIONS (MD) ARE IN THE BRACKETS.

Noise SNR GCC-PHAT WC HE SFF-mean SFF-var
Pink 0 dB 0.86 0.9 1.57(4) 1.39 (4) 1.34(4)

5 dB 0.68 0.86 1.1 0.94 0.89
10 dB 0.54 0.83 1.0 0.47 0.6

Pub 0 dB 0.54 0.9 0.6(2) 0.64 0.6(2)
5 dB 0.51 0.84 0.94 0.54 0.62

10 dB 0.43 0.84 0.9 0.43 0.43
Work 0 dB 0.55 0.92 0.99 0.51 0.62

5 dB 0.54 0.88 1.0 0.47 0.47
10 dB 0.47 0.81 0.83 0.43 0.47

TABLE IV
AVERAGE RMSE (IN DEGREES) OBTAINED BY GCC-PHAT, WC, HE,

SFF-MEAN AND SFF-VAR ON SISEC dev1 AND dev2 DATASETS
CONSISTING OF 3 AND 4 SPEAKERS. BEST PERFORMING ALGORITHMS

ARE IN BOLD. MISSED DETECTIONS (MD) ARE IN THE BRACKETS.

Number of GCC-PHAT WC HE SFF-mean SFF-var
Speakers

3 1.87 2.01(3) 1.8 1.87 2.23
4 1.29 1.42(3) 1.22 1.29 1.29(2)

C. Discussion

The results of the baseline approaches are inline with the
merits and demerits as mentioned in the literature. WC is a
GCC without PHAT weighting. It is vulnerable to multiple
reflections and does not perform well in reverberative condi-
tions [17]. On the other hand, GCC with PHAT weighting
gives good DoA estimates in low noise and reverberative
conditions [23]. The performance of HE mainly depends on
the performance of linear prediction (LP) analysis. The LP
analysis deteriorates in low SNR conditions [22]. On the
other hand, the proposed approaches exploits the high SNR
property (impulse-like events) present in the speech production
characteristics of the speakers for the localization. Hence, it
works reasonably well in all the conditions, i,e., clean, noise
and reverberation. Between the two proposed methods, SFF-
mean seems to be better than SFF-var method.

IV. SUMMARY AND CONCLUSIONS

In this paper, we explored the benefits of SFF-based features
for localization of multiple speakers in a room acoustic envi-
ronment. The rationale for choosing the mean and variance



features of SFF were explained with illustrations. Various
broadband cross-correlation approaches were compared to the
proposed approaches by evaluating them on simulated as well
as real data sets. It was observed that the performance of SFF-
mean is better than that of SFF-var. Also, the performance
of the SFF-mean closely matches the performance of GCC-
PHAT (which is the state-of-the-art localization approach) and
is better than the other localization methods. In future, other
SFF based spectral features or combinations of SFF features
may be explored to improve the performance. Several options
for further exploration have opened up after this initial study
and SFF features seem promising for localization.
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