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Abstract. The ongoing global change and the increased interest in macroecological pro-
cesses call for the analysis of spatially extensive data on species communities to understand and
forecast distributional changes of biodiversity. Recently developed joint species distribution mod-
els can deal with numerous species efficiently, while explicitly accounting for spatial structure in
the data. However, their applicability is generally limited to relatively small spatial data sets
because of their severe computational scaling as the number of spatial locations increases. In this
work, we propose a practical alleviation of this scalability constraint for joint species modeling
by exploiting two spatial-statistics techniques that facilitate the analysis of large spatial data sets:
Gaussian predictive process and nearest-neighbor Gaussian process. We devised an efficient
Gibbs posterior sampling algorithm for Bayesian model fitting that allows us to analyze commu-
nity data sets consisting of hundreds of species sampled from up to hundreds of thousands of
spatial units. The performance of these methods is demonstrated using an extensive plant data
set of 30,955 spatial units as a case study. We provide an implementation of the presented meth-
ods as an extension to the hierarchical modeling of species communities framework.

Key words: community modeling; ecological communities; Gaussian process; hierarchical modeling of
species communities; joint species distribution model; latent factors; spatial statistics.

INTRODUCTION

Increased interest in large-scale ecological processes,
such as those triggered by the ongoing global change,
requires the use of spatially extensive data. High-resolution
data sets covering large spatial scales are increasingly
available to the scientific community, making more
extensive analyses possible (Graham et al. 2004, Gural-
nick et al. 2007, Franklin et al. 2017). One of the key
challenges is that most traditional statistical frameworks

used by ecologists are computationally intractable for
large data sets when the researcher aims to account for
the spatial nature of the data. This leads to inefficiencies,
with the data either being subsampled, or the statistical
method being compromised, for example, by ignoring
the spatial dependency. This illustrates the urgent need
for robust statistical frameworks that enable efficient use
of big spatial data for accurately describing and predict-
ing patterns of global biodiversity.
A recent focus in statistical ecology has led to the

development of approaches that jointly model the
dynamics and distributions of entire species communi-
ties or ecosystems (see D’Amen et al. 2017 and refer-
ences therein). In particular, joint species distribution
models (JSDMs) have emerged as efficient tools for

Manuscript received 21 October 2018; revised 24 July 2019;
accepted 23 August 2019. Corresponding Editor: Andrew O.
Finley.

8 E-mail: gleb.tikhonov@aalto.fi

Article e02929; page 1

Statistical Reports
Ecology, 101(2), 2020, e02929
© 2019 The Authors. Ecology published by Wiley Periodicals, Inc. on behalf of Ecological Society of America
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.

https://orcid.org/0000-0003-3040-0307
https://orcid.org/0000-0003-3040-0307
https://orcid.org/0000-0003-3040-0307
https://orcid.org/0000-0001-9750-4421
https://orcid.org/0000-0001-9750-4421
https://orcid.org/0000-0001-9750-4421
info:doi/10.1002/ecy.2929
mailto:
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fecy.2929&domain=pdf&date_stamp=2019-12-20


modeling data on large numbers of species, typically
incorporating species dependencies through latent factors
(Clark et al. 2014, Warton et al. 2015, Ovaskainen et al.
2017). Spatial extensions of JSDMs (Thorson et al. 2015,
Ovaskainen et al. 2016) borrow from multivariate spatial
statistics by allowing latent factors to be spatially auto-
correlated (Latimer et al. 2009). These works exploit the
linear model of coregionalization approach to account
not only for spatial autocorrelation within each species,
but also for spatial cross-correlation among species (Gen-
ton and Kleiber 2015). However, even for the case of sin-
gle-species distribution modeling, classical spatial
statistics methods require the inversion of a dense spatial
covariance matrix and hence are not feasible for a large
data set involving thousands of spatial locations (Banerjee
et al. 2008). Because the computational burden of multi-
variate spatial modeling is even higher, enabling the use
of JSDMs for big spatial data remains a key challenge in
statistical ecology (Ovaskainen et al. 2016).
The aim of this study is to alleviate this computational

impasse such that spatial JSDMs can be applied to global
high-resolution species data sets and earth observation
data. To do so, we consider two spatial statistics tech-
niques: Gaussian predictive process (GPP; Banerjee et al.
2008) and nearest-neighbor Gaussian process (NNGP;
Datta et al. 2016). Both methods approximate the full
Gaussian process (GP) in a manner that enables model-
ing spatially extensive data (Banerjee et al. 2008), but
they are based upon fundamentally different underlying
mathematical constructions, leading to important differ-
ences in their properties. We implement both the GPP
and NNGP approaches in the latent factor structure of
hierarchical model of species communities (HMSC),
which is a Bayesian JSDM framework that enables the
joint analysis of data on species occurrences, environmen-
tal covariates, species traits, and phylogenetic relation-
ships (Ovaskainen et al. 2017). We present a block Gibbs
sampler that enables computationally efficient sampling
from the posterior distribution of model parameters. To
demonstrate the utility of the HMSC models augmented
with a GPP or a NNGP, we compare their predictive and
computational performances to a GP-based spatial
HMSC model as well as to a nonspatial model.

MATERIALS AND METHODS

Hierarchical modeling of species communities (HMSC)

Our work extends HMSC proposed by Ovaskainen
et al. (2016) to large, spatially explicit, ecological data
sets. We consider a set of species surveyed across a set of
spatial locations, hereafter called sites. We denote the
sites by index i ¼ 1; . . .ny, and the species by index
j ¼ 1; . . .ns, where ny is the number of sites and ns is the
number of species. We denote the spatial coordinates of
site i by si ¼ si1; . . .; sind½ �, with typically nd ¼ 2 for eco-
logical data. To accommodate various types of data
(e.g., presence–absence, count, biomass, or timing), we

follow the generalized linear modeling paradigm and

model the observations as yij �Dj Lij ;r2
j

� �
, where Dj is

a statistical distribution compatible with the particular
type of measured data, so that commonly the expecta-
tion E yij

� � ¼ g�1
j Lij
� �

is parametrized by the latent vari-

able Lij transformed with gj link function, and r2j is the
additional variance parameter of distribution Dj , which
is omitted for certain distributions, for example, Ber-
noulli. The latent variable is modeled as a combination
of a linear regression and spatially structured residuals:

Lij ¼
Xnc
k¼1

xikbkj þ eij ; where eij ¼
Xnf
h¼1

gihkhj: (1)

In the linear regression part, the index j runs over a
set of nc covariates, xik is the covariate k for site i, and
bkj is the response of species j to this covariate. The
intercept is included by setting xi1 ¼ 1 for all sites i, so
that the number of included environmental covariates is
nc � 1. To exploit potentially available information on
species-specific traits and phylogenetic relationships, we
follow the approach of Ovaskainen et al. (2017) (see
Appendix S1).
In this work, our particular focus is on the term eij of

Eq. 1. It models species associations through a linear
combination of nf site-specific latent factors gih with spe-
cies-specific latent loadings kjh. With the classic factor
analysis assumption of factors gih having standard Gaus-
sian prior, the species-to-species covariance structure (at
the scale of the model’s latent variable Lij) is given by
ei� �N 0;Xð Þ, where the species-to-species covariance
matrix can be written as X ¼ KTK, and K is the matrix
of latent loadings khj (Ovaskainen et al. 2017). For many
practical applications with large communities, the effec-
tive number of independent factors is much smaller than
the total number of observed species nf � ns, which
leads to a low-rank approximation of X. Following the
notation from Ovaskainen et al. (2017), the species-to-
species association matrix is defined as the correlation-
scaled covariance matrix X. We assume the sparse Baye-
sian infinite factor model (Bhattacharya and Dunson
2011) for the latent loadings, so theoretically the number
of factors is infinite, but in practice their number is trun-
cated either by omitting negligible ones or by setting it
to a value chosen by the user.
The spatial structure is added to the latent factors g�h

by assuming a Gaussian process (GP) prior
wh sð Þ�GP 0; kh s1; s2ð Þð Þ (Banerjee et al. 2014). This
implies that the hth latent factor a priori follows the mul-

tivariate Gaussian distribution g�h �N 0ny�1;K
hð Þ
SS

� �
,

where the K hð Þ
SS is the covariance matrix for sites

S ¼ s1; . . .; sny
� �

, with covariance K hð Þ
SS

h i
i1i2

¼ kh si1 ; si2ð Þ
for the pair of sites i1 and i2. At the level of the matrix of
residuals E, this implies the spatial cross-covariance
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structure vec Eð Þ�N 0nyns�1;
Pnf
h¼1

KT
h�Kh� � K hð Þ

SS

� �� 	
. It

also implies marginal single-species covariance structures

e�j �N 0ny�1;
Pnf
h¼1

k2hjK
hð Þ
SS

� �� 	
. Here we assume the

exponential covariance function kh s1; s2ð Þ ¼
exp �a�1

h jjs1 � s2jj
� �

, parametrized by a single spatial
range parameter ah, which is learned during model fitting.
This covariance function implies stationarity and iso-
tropy, and it has been applied in previous work on spatial
JSDMs (Thorson et al. 2015, Ovaskainen et al. 2016).

Approximate models for big spatial data

The motivation of this work is the computational
complexity of the GP-based HMSC—the Gibbs Markov
chain Monte Carlo (MCMC) updates are of the order

O n3y
� �

in processing time and O n2y
� �

in memory stor-

age. This means that the model is practically infeasible
to apply to data sets even with moderately large numbers
of sites, such as ny being in the order of thousands. In
this study we explore two approaches from spatial statis-
tics that has been shown to enable efficient modeling of
big spatial data sets: Gaussian predictive process (GPP;
Banerjee et al. 2008, Finley et al. 2015) and nearest-
neighbor Gaussian process (NNGP; Datta et al. 2016),
although we note that various alternative techniques are
also available (Heaton et al. 2018). We summarize the
GPP and NNGP approaches briefly and provide more
detailed descriptions in Appendix S1.
The GPP ~w sð Þ assumes that all information on the

original GP w sð Þ can be summarized by a multivariate
Gaussian distribution at m “knot” locations S	 ¼
s	1; . . .; s

	
m

� �
(a.k.a. inducing points). Therefore, the value

of the GPP at any location s0 can be reconstructed as
~w s0ð Þ ¼ E w s0ð Þjw	ð Þ ¼ Ks0S	K�1

S	S	w	, where w	 ¼
w s	1
� �

; . . .;w s	m
� �
 �T denotes the vector of the original

GP values at the knot locations S	. With this definition,
it follows that ~w is itself a GP, where the covariance func-
tion is nonstationary but leads to a factorizable covari-
ance matrix (Banerjee et al. 2008). This key property of
GPP greatly decreases the computational complexity of
the model when m � ny, as sampling the posterior dis-
tribution is O nym2

� �
in processing time and O nym

� �
in

memory storage (Banerjee et al. 2008). For simplicity, in
this study we assigned the knot locations on a uniform
grid, but other knot configurations can potentially yield
improved performance (Diggle and Lophaven 2006). We
apply a correction to the nonstationary marginal prior
variance imposed by GPP, so that it always coincides
with original GP variance (Finley et al. 2009). As far as
we are aware, the most similar model that combines
GPP with factor modeling was proposed by Ren and
Banerjee (2013) for analysis of multivariate environmen-
tal data under the assumption of Gaussian noise.
The NNGP builds upon the conditional representa-

tion of the original GP (Datta et al. 2016). Given a

specified ordering over the set of sites S ¼ s1; . . .; sny

 �

,
the process w sð Þ�GP 0; k s1; s2ð Þð Þ over this set corre-
sponds to multivariate Gaussian distribution

w ¼ w s1ð Þ; . . .;w sny
� �
 �T �N 0;KSSð Þ that can be speci-

fied in the conditional manner: w1 �N 0;K11ð Þ,
wijwj ; j\i
� ��N li; dið Þ8i 2 2. . .ny; where li and di are
the conditional mean and variance. This leads to a
factorization of the covariance matrix K ¼
Iny � A
� ��1D Iny � A

� ��T , where A is the strictly lower
triangular matrix with elements aij and D is the diagonal
matrix with elements di. The NNGP approximates the
above-defined exact conditional distribution
wijwj ; j\i
� �

by conditioning only on the m preceding
closest neighbors of si: wijwj ; j 2 N ið Þ� �

. This results in
an approximate factorization of covariance matrix

K 
 K̂ ¼ I� Â
� ��1

D̂ I� Â
� ��T

, with sparse matrix Â;

hence the precision matrix K̂
�1 ¼ I� Â

� �T
D̂

�1
I� Â

� �
is also sparse with O nym

� �
nonzero entries. The

enhanced computational efficiency of this method is
achieved because of the decreased cost of sparse matrix
operations compared to their dense counterparts.
Recently, Taylor-Rodriguez et al. (2018) proposed a sim-
ilar blend of NNGP and latent factors to build a two-
stage probabilistic model linking together aerial LiDAR
data and forest inventory observations. However, their
sequential Gibbs updater for latent factors is different
from our block implementation that uses sparse Cho-
lesky as was proposed by Datta et al. (2016) and further
detailed in Finley et al. (2019).
Ovaskainen et al. (2017) presented the software

HMSC-Matlab for sampling the posterior distribution
of the HMSC model with a spatial structure imple-
mented through GP with an exponential covariance
function. We present an extension to this software that
allows users to choose between GP, GPP, and NNGP
implementations.9 As detailed in the Appendix S1, we
devised a full-conditional block Gibbs sampler that
updates all latent factors simultaneously in a computa-
tionally efficient manner.

Case study—plants community in Australia

We used plant data (1) to test the feasibility to apply
the methods developed here to data that are large in
terms of both the number of sampling sites and the num-
ber of species, and (2) to determine how their perfor-
mance compares to full spatial and nonspatial model,
assuming different parameters of the methods (number
of knots in GPP and number of neighbors in NNGP,
and number of factors in both methods). The analyzed
data set involved the occurrences of 623 species recorded
at 30,955 sites within the State of Victoria, Australia
(Fig. 2A).

9 https://github.com/gtikhonov/HMSC-Matlab-BigSpatial.
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We selected four environmental covariates that were
essentially uncorrelated and were considered potentially
important to vegetation and plant distribution. These
measure (1) climatic conditions (average maximum tem-
perature in January), (2) water proximity (vertical dis-
tance to the nearest water body within the relevant
watershed), (3) soil type (for which we used the radioele-
ment count of thorium as a proxy—see Read et al.
(2018)), and (4) solar radiation (based on the local
topography). We included the squared value of each
variable to allow the modeled occurrence probabilities to
peak at an intermediate value of the covariate (see
Appendix S1 for more details on the models).
We randomly selected 5,000 sites as validation data

that were not used for model fitting. We randomly
selected training data sets with ny = 100, 400, 1,600,
6,400 and 25,955 sites from the remaining locations,
each smaller data set being included within the larger
ones. To examine how the performance of the methods
depended on the size of the species community, we fitted
the model to subsets of ns = 40, 160, and 623 species. We
selected these subsets uniformly from all species, sorted
in terms of their prevalence, ensuring an unbiased repre-
sentation of both common and rare species. We further
selected the subsets iteratively so that smaller species
subsets were included within the larger ones. The combi-
nation of five sample sizes and three community sizes
yielded 15 data sets, which we used to compare the per-
formance of four kinds of models, named according to
what assumptions were made about latent factors: non-
spatial, GP-based, GPP-based, and NNGP-based. In
the GPP model, we repeated all analyses with m = 16,
64, 256, and 1,024 knots, chosen as nodes of a uniform
hexagonal grid covering the study area (Fig. 2A). In the
NNGP model, we repeated all analysis with m = 10 and
20 neighbors. In the full GP model we restricted the
analyses to ny ≤ 1,600, as larger data sets were not com-
putationally feasible because of insufficient RAM. In
our first analysis, we fixed the number of latent factors
to nf ¼ 2 in all models to restrain their flexibility and
facilitate comparison. In our second set of analyses, we
investigated the effect of number of latent factors on the
predictive performance for a subset of models. We used
all ny = 25,955 training sites, ns ¼ 40, and ns ¼ 623 spe-
cies, GPP with 64 nodes, and NNGP with 10 neighbors,
and varied the number of factors nf from 2 to 32.
We fitted all models with 10,000 MCMC steps, out of

which we discarded the first 2,000 steps as burn in. We
thinned the remaining samples by 10, resulting in 800
posterior draws. We examine the convergence of the
MCMC chains by fitting the models 40 times with initial
parameter values sampled from the prior distribution.
We characterized the performances of the models in
terms of their out-of-sample predictive power and com-
putational demand. To evaluate the predictive power, we
used the fitted models to predict species occurrence
probabilities for the 5,000 validation sites not used for
model fitting and evaluated their accuracy using Tjur’s

R2 (Tjur 2009) and deviance. To compare the computa-
tional demand, we fitted all models for the first analysis
with the same software and hardware (Matlab 2017a; a
desktop with Intel i5 3.00 GHz CPU and 16 GB of
1,600 MHz RAM) and evaluated the execution time
required to run the model for 10,000 MCMC iterations.
We additionally estimated the effective sample size of
the fitted chains and evaluated the expected time
required to obtain 1,000 effective posterior samples.
To illustrate ecological inference that can be derived

from the modeling approaches, we used the GPP model
with the largest number of knot points (m = 1,024,
Fig. 2A) and the NNGP model with the largest number
of neighbors (m ¼ 20), both fitted to the entire training
data (ny = 25,955, ns ¼ 623) with nf ¼ 2. We visualized
posterior mean correlation matrices of species associa-
tions and constructed predictive distribution maps for
individual species and species richness. We further
divided the study area into regions of common composi-
tion profile, performing clustering with a 5 9 5 self-or-
ganizing map that seeks to assign similar species
composition profiles to nearby clusters (Kohonen 1982).

RESULTS

Comparison of predictive performance and execution
times

Predictive performance generally increased with model
complexity, so that the nonspatial model performed the
worst, and the performance of the predictive process
improved with the number of knots (Fig. 1). Even a very
coarse approximation of spatial structure with only 16
knots provided a substantial gain in the predictive per-
formance, as compared to the nonspatial model. The
performances of the GP and both NNGP models were
essentially equal and outperformed the GPP model
when the number of knots was lower than number of
training points. Our results with the number of factors
fixed to nf ¼ 2 suggest that predictive performance
reduces with increasing size of the community (Fig. 1G–
L). This behavior is at least partially due to the fact that
predictive performance increases with the number fac-
tors especially for the case of many species (Fig. 1M, N),
i.e., successful modeling of many species calls for many
factors.
The computational times needed for a single Gibbs

update step were consistent with theoretical expectations
(Appendix S1): the computational time increased
approximately linearly with sample size in nonspatial
and GPP models, slightly faster in NNGP, and cubically
in the full GP. The effective sample size substantially
decreased with increased number of training sites, which
is a known deficiency of the classic probit data augmen-
tation scheme (Duan et al. 2017) applied in HMSC.
Thus, the computational time needed for obtaining a
given effective number of posterior samples increases
steeper with number of sample size than the time per

Article e02929; page 4 GLEB TIKHONOV ETAL. Ecology, Vol. 101, No. 2
St

a
ti
st
ic
a
l R

ep
or

ts



(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

(J)

(M) (N)

(K) (L)

FIG. 1. Comparison of nonspatial, full Gaussian process (GP), Gaussian predictive process (GPP), and nearest-neighbor Gaus-
sian process (NNGP) models. Panels (A)–(C) show time elapsed for model fitting to small (ns ¼ 40), medium (ns ¼ 160), and large
(ns ¼ 623) species communities with nf ¼ 2 using a hierarchical model of species communities (HMSC) Gibbs sampler with 10,000
Markov chain Monte Carlo (MCMC) iterations. Panels (D)–(F) depict the same results adjusted for the autocorrelation in the sam-
ples, showing the time required to obtain 1,000 effectively independent samples from the posterior. Panels (G)–(I) show predictive
performance measured in terms of Tjur R2 for models fitted, and panels (J)–(L) in terms of deviance. The colors indicate nonspatial
models (gray), GP models (black), GPP models with 16, 64, 265, and 1,024 knots (gradation of blue from light to deep), the NNGP
models with 10 and 20 neighbors (light and dark red). Note that because of very similar results, red and black lines often overlap.
Panels (M) and (N) depict the predictive performance results with respect to number of factors. Dashed lines depict cases with
ns ¼ 40 species and solid lines cases with ns ¼ 623 species; blue lines correspond to GPP with 64 knots and red lines correspond to
NNGP with 10 neighbors.
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(B)

(D) (E)

(F) (G)

(H) (I)

(C)

(A)

FIG. 2. Ecological inference with Gaussian predictive process (GPP) and nearest-neighbor Gaussian process (NNGP) models
fitted to the full training data set. Panel (A) shows the spatial locations of observed sites (black), and 1,024 knots used in the biggest
GPP model (magenta). Panels (B) and (C) show species association patterns, with red (respectively, blue) depicting species pairs that
co-occur more often (respectively, less often) based on the latent factor part of the hierarchical model of species communities
(HMSC) model, and white color stands for the species pairs for which association sign was not credibly estimated at 95% threshold.
Species ordering is the same in both panels and selected for enhanced visual clarity of association structure. Panels (D) and (E) visu-
alize predicted spatial distribution of species richness, (F) and (G)—predicted occurrence probability of Acaena novae-zelandiae;
(H) and (I)—predicted regions of common profile, with nodes of 5 9 5 self-organizing map mapped to YUV color space.
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MCMC iteration (Fig. 1A–F). The comparison of 40
independent MCMC chains showed that obtaining satis-
factory mixing in the spatial models with large numbers
of sampling units and species is challenging
(Appendix S1). This suggests that the performance of
the spatial models reported in Fig. 1 may be suboptimal,
even if the models present a clear improvement over the
nonspatial model.

Ecological inference with GPP and NNGP

The GPP and the NNGP provided essentially identi-
cal estimates of species association matrices, revealing
numerous positive and negative residual associations
(Fig. 2B, C). However, these models substantially dif-
fered in their spatial predictions (Fig. 2D–I). The NNGP
model predicted more fine-scaled patterns and exhibited
discontinuities, especially in areas distant from the train-
ing sites. The GPP model predicted smoother patterns
that in some regions vaguely resembled the structure of
the grid of knots used.

DISCUSSION

In this paper, we have transferred methods from spa-
tial statistics (Banerjee et al. 2008, Datta et al. 2016) to
enable statistical modeling of species communities with
big spatial data. The HMSC model augmented with a
GPP or a NNGP displayed much better scaling of com-
putational complexity than the originally proposed spa-
tial HMSC, and much better performance than the
nonspatial HMSC. Our results indicate that the NNGP-
augmented HMSC performs the best in terms of the
trade-off between computational time and predictive
performance, which mirrors similar findings for univari-
ate models (Datta et al. 2016). However, the superiority
of NNGP over GPP may have been favored by some
case-specific factors. First, the spatial range of the latent
factors in our study was estimated to be rather small,
making only nearby locations effectively nonindepen-
dent. Second, the spatial distribution of sampling sites in
our data was spatially uneven, with multiple sites often
closely proximal to each other. Both these features natu-
rally suit the NNGP approximation’s assumptions but
require GPP with a uniform distribution of knots to fea-
ture a very high number of knots to approximate the
original GP closely. We further note that the NNGP
approach leads to rather discontinuous spatial predic-
tions. If this is considered inconsistent with the studied
ecological phenomena, an ecologist may wish to apply
the GPP, for example, for making predictive maps even
if it performs worse in cross validation. We also note
that, in addition to the considered GPP and NNGP,
there exist other prominent spatial statistical methods
(Heaton et al. 2018) that could prove useful for spatial
JSDMs in the future.
Our results indicate that obtaining satisfactory

MCMC convergence is challenging for large data. As

the challenge is present also in nonspatial models, the
deficiency of the traditional data augmentation
approach for probit model is likely to be the main source
of the problem (Duan et al. 2017). On top of this, Gibbs
MCMC convergence can be especially difficult in the
spatial models because of conditional interdependencies
of model components, as shown by Finley et al. (2019)
for univariate NNGP with Gaussian noise. One possible
solution might build on the approximate inference tech-
niques for GPP-like models with non-Gaussian
responses (Hensman et al. 2015), but the applicability of
similar approach to NNGP is yet to be explored.
The methodological advances presented in this work

facilitate the efficient use of rapidly accumulating high-
resolution large-scale ecological data sets toward
explaining and predicting how ecological communities
are structured and how they respond to ongoing glo-
bal change. Our implementations of GPP- and
NNGP-based latent factors to HMSC also allow
researchers to integrate such analyses with information
on species traits and phylogenetic relationships, provid-
ing the potential to address a large number of funda-
mental and applied questions in community ecology
(Ovaskainen et al. 2017). As we have briefly illustrated
with our case study on Australian plants, the methods
developed here open a great array of possibilities for
ecologists working on problems related to fundamental
or applied community ecology, conservation biology,
and macroecology. Most importantly, it is now possible
to use spatially extensive data to examine how species
occurrences and co-occurrences are associated with
environmental variation, how species traits and phylo-
genies influence such variation, and to generate and
validate predictive maps at the levels of single species
and community characteristics.
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