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OPEN: Atomic structures and orbital
paTapescripTor  €nergies of 61,489 crystal-forming
~organic molecules

Annika Stuke®3™, Christian Kunkel?3, Dorothea Golze?!, Milica Todorovi¢(®?,
: JohannesT. Margraf?, Karsten Reuter?, Patrick Rinke (%2 & Harald Oberhofer(?

Data science and machine learning in materials science require large datasets of technologically
relevant molecules or materials. Currently, publicly available molecular datasets with realistic molecular
geometries and spectral properties are rare. We here supply a diverse benchmark spectroscopy dataset
of 61,489 molecules extracted from organic crystals in the Cambridge Structural Database (CSD),
denoted OE62. Molecular equilibrium geometries are reported at the Perdew-Burke-Ernzerhof (PBE)

. level of density functional theory (DFT) including van der Waals corrections for all 62 k molecules. For

. these geometries, OE62 supplies total energies and orbital eigenvalues at the PBE and the PBE hybrid

. (PBEO) functional level of DFT for all 62 k molecules in vacuum as well as at the PBEO level for a subset of
30,876 molecules in (implicit) water. For 5,239 molecules in vacuum, the dataset provides quasiparticle
energies computed with many-body perturbation theory in the G,W; approximation with a PBEO

. starting point (denoted GW5000 in analogy to the GW100 benchmark set (M. van Setten et al. J. Chem.

© Theory Comput. 12, 5076 (2016))).

Background & Summary
. Consistent and curated datasets have facilitated progress in the natural sciences. High-quality reference data sets
. were, for example, essential in the development of accurate computational methodology, in particular in quantum
: chemistry. With the rise of machine learning, datasets have increased in size and have transformed from reference
status to a primary source of data for predictions!~” and discovery®-12.

In this article we present a new dataset for molecular spectroscopy applications. Spectroscopy is ubiquitous
in science as one of the primary ways of determining a material’s or molecule’s properties. However, publicly
available spectroscopic datasets for technologically relevant molecules are rare. Examples include a dataset of
chemical shifts for structures taken from the CSD**!%, the Harvard Clean Energy Project” as well as the QM8'!”

 and QM9!8 datasets. The QM8 database offers optical spectra computed with time-dependent density functional
. theory (TDDFT) for 22 k organic molecules, while QM9, widely known as one of the standard benchmark sets
© for machine learning in chemistry, provides a variety of properties for 134 k organic molecules computed with
* density functional theory (DFT)'%, including energy levels for the highest occupied and the lowest unoccupied
. molecular orbitals (HOMO and LUMO, respectively). Although QM8 and QM9 are of unprecedented size com-
. pared to previous, common benchmark sets in quantum chemistry of several hundred to thousands of molecules,
: they still contain only small molecules with restricted elemental diversity (H, C, N, O and F) and with simple
: bonding patterns®. They lack larger, more complex molecules with, e.g., extended heteroaromatic backbones and
attached functional groups, as commonly targeted in organic synthesis?** and applied in (opto-)electronic?*-2
or pharmaceutical research?>*28,
: We have based the spectroscopic dataset presented in this article on a diverse collection of 64,725 organic crys-
- tals that were extracted from the Cambridge Structural Database (CSD)* by Schober et al.***!. This 64 k dataset of
. experimental crystal structures gathered from a variety of application areas was originally compiled to optimize
© the charge carrier mobility for applications in organic electronics. For our OE62 dataset, we used 61,489 unique
organic molecular structures, extracted from the respective organic crystals. All extracted geometries were then
relaxed in the gas phase with density-functional theory (DFT).
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Chemistry and Catalysis Research Center, Technische Universitdt Minchen, Lichtenbergstraf3e 4, D-85747, Garching,
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Fig. 1 Chemical space spanned by OE62. (a) Molecular size distributions (including hydrogen atoms) for the
OE62 dataset and its 31 k and 5 k subsets. (b) Distribution of the 16 different element types in the datasets.

(c) Typical structures found in the 62 k dataset, with chemical diversity arising from a rich combinatorial
space of scaffold-functional group pairings: The dataset contains aliphatic molecules, as well as molecules
with conjugated and complex aromatic backbones and diverse functional groups of technological relevance.
The refcode_csd identifiers of depicted molecules are (from left to right): ZZTV0O01, VOCMIK, FATVEC,
WASVAN, BIDLUW, KETZAL, EHORAU.

62k

DFT PBE+vdW (vacuum)
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31k
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5k
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Fig. 2 Schematic overview of the three datasets and the applied computational methods. The 31 k set includes
all structures from the 5 k set and the 62 k all structures from the 31 k and 5 k sets.

The molecules in OE62 cover a considerable part of chemical space, as illustrated in Fig. 1. The dataset con-
tains molecules with up to 174 (or 92 non-hydrogen) atoms and a diverse composition of 16 different elements. A
large number of different scaffolds and functional groups are included, representing a multifaceted sample of the
design space available in organic chemistry®3%-3>33,

To go into more detail, all molecules in OE62 are fully relaxed at the Perdew-Burker-Ernzerhof (PBE)* level
of DFT including Tkatchenko-Scheffler van der Waals (TS-vdW) corrections®. For these equilibrium structures,
we then report molecular orbital energies at the PBE and PBE hybrid (PBE0)***” level, in the following referring
to this part as 62 k set. Partial charges and total energies for DFT-calculations are also included. In two subsets,
randomly drawn to span more than half (31 k) and more than 5000 (5 k) of the molecular structures, we provide
additional computational results: the influence of solvation - in this case implicit water — on the energy levels
is addressed on the PBEO level for a subset of 30,876 molecules. For the second subset of 5,239 molecules, we
computed the quasi-particle energies with many-body perturbation theory in the G,W, approximation!***** and
extrapolated to the complete basis set (CBS) limit. Figure 2 gives a schematic overview of the dataset nesting in
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Access to data records
Set Method Computed properties on NOMAD
o relaxed geometry
62k | DFTPBE +vdW (vacuum) Tier2 basis set, ® occupied & unoccupied MO energies 6167
tight settings o total energy
o Hirshfeld charges
® geometry fixed at the PBE + vdW level
62k DFT PBEO (vacuum) Tier2 basis set, tight ® occupied & unoccupied MO energies 68
settings o total energy
 Hirshfeld charges
o geometry fixed at the PBE +vdW level
31k DFT PBEO (water) Tier2 basis set, tight o occupied & unoccupied MO energies 6
settings, MPE implicit solvation o total energy
o Hirshfeld charges
o geometry fixed at the PBE -+ vdW level
DFT PBEO (vacuum) def2-TZVP & def2- - - - 7
Sk QZVP basis sets (see text), tight settings » occupied & unoccupied MO energies
o total energy
® geomety fixed at the PBE + vdW level
GyW,@PBEO (vacuum) def2-TZVP & def2- - - - 7
Sk QZVP basis sets (see text), tight settings * occupied & unoccupied MO energies
® CBS energies of occupied & unoccu pied MOs

Table 1. Overview of the data (sub)sets in OE62: Applied computational method, resulting molecular
properties and DOI-based references to the input and output files of corresponding calculations deposited in
the NOMAD repository.
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Fig. 3 The GW5000 subset compared to the other (sub)sets in OE62. Panel (a) shows distributions of HOMO
energies from Gy W,@PBEO (vacuum), PBE 4+ vdW, PBEO (vacuum) and PBEO (water) computations. Panel (b)
shows the distribution of solvation free energies AG,,, = Efo0t"ater) _ gPBEOCGvacum) 1 (3 and b), distribution
medians are marked by dotted lines. Panel (c) depicts a correlation plot for the approximately linear relationship

between the G,W,@PBEO CBS quasiparticle energies and the DFT HOMO energies (PBE and PBEO in vacuum).

OE62 while Table 1 lists computational settings and computed properties. Figure 3(a,b) illustrate the HOMO level
and solvation free energy distributions of the 5 k subset.

We refer to the 5 k subset of G,W,, quasiparticle energies as GW5000 in analogy to the GW100 benchmark
set’®. GW100 was a landmark dataset of 100 atoms and molecules that for the first time demonstrated the high
numerical accuracy of the computationally costly G, W, approach. GW100 quickly became the standard reference
for GW code development and validation. The GW5000 subset in OE62 is of the same high numeric quality as
GW100, but extends the set of reference molecules by a factor of 50. To illustrate the value of multi-level compu-
tational results we present a first, preliminary finding in Fig. 3. Panel c) shows the correlation between the G,W,@
PBEO quasiparticle HOMO energies and the DFT HOMO eigenvalues for the GW5000 subset. The correlation is
to first approximation linear with PBEO having a lower variance than PBE. This linear relation (slope of 1.195 and
intercept of —0.492 for PBEO) could now be used to predict G,W, quasiparticle energies from the computation-
ally cheaper PBEO method without having to perform G, W calculations. Applying this linear correction to the
PBEO results yields quasiparticle energy predictions with a root mean square error (RMSE) of only 0.17 eV to the
respective GW5000 values.

Given the high-quality computational results from different levels of theory, the (subs)sets included in OE62
can be used to develop, train and evaluate machine learning algorithms, facilitating the search and discovery of
diverse molecular structures with improved properties. In the following, we first describe the procedure used to

SCIENTIFICDATA|  (2020) 7:58 | https://doi.org/10.1038/s41597-020-0385-y 3


https://doi.org/10.1038/s41597-020-0385-y

www.nature.com/scientificdata/

compute molecular structures and properties, followed by a full description of the dataset format and content as
well as by a validation of our DFT and G, W, results. OE62 is freely available as a download from the Technical
University of Munich. The input and output files of all calculations performed for OE62 can be downloaded from
the Novel Materials Discovery (NOMAD) laboratory (https://nomad-repository.eu).

Methods

All crystal structures collected from the CSD for the 64 k dataset are mono-molecular, i.e. they contain only a
single type of molecule per unit-cell. A single molecular structure (conformer) from each crystal was extracted
by a custom Python code®**!. This 64 k dataset of molecular structures provides the starting point for the dataset
published here. A fraction of the crystals contained in the CSD have polymorphic forms or were added multiple
times, coming e.g. from different experimental sources. Although they occur in different crystalline entries in the
64 k dataset, the same molecular structure could enter our molecular database multiple times. First, the SMILES
identifiers were computed for the 64 k dataset*®>! from a combination of Open Babel*! (www.openbabel.org)
and RDKit (www.rdkit.org)*2. We subsequently excluded all extracted molecules whose non-isomeric, canonical
SMILES identifier occurred multiple times, keeping only one case each. Further, molecules with an odd number
of electrons were removed. After these filtering steps 61,539 molecules remained.

We relaxed the geometries of all molecules at the PBE + vdW level of theory, as implemented in the FHI-aims
all-electron code**~*°. We chose the PBE + vdW functional for three reasons: 1) It is an all-purpose functional
with a favorable accuracy/computational cost ratio that is implemented in all the major electronic structure codes.
2) We would like to stay consistent with previous work®#, in which PBE + vdW was also used for molecular
structures optimization of large molecular data sets. 3) While there might be more accuracte semi-local func-
tionals than PBEY, the addition of vdW corrections makes PBE 4 vdW appropriate for organic compounds. For
organic crystals, for which highly accurate, low-temperature experimental geometries are available, PBE + vdW
yields excellent agreement with typical root-mean-squared deviations of only 0.005-0.01 A per atom*$-%,

Given that slightly differing bond assignments in the newly obtained low-energy geometries might change
some of the molecular identifiers, we generated new InChI®' (TUPAC International Identifier’) and canonical
SMILES identifiers using Open Babel (Version 2.4.1 2016), and report these in our dataset. We then checked these
representations for duplicates and concurrently removed them. In addition, 6 molecules were removed for which
geometry optimization or single point calculations had failed. In total, 61,489 unique molecules remained, which
form the basis of the OE62 set.

From the OE62 set we generated two subsets: For the 31 k subset we randomly picked 30,876 molecules. The
same was done for the 5 k set by randomly picking 5,239 molecules from the 31 k subset with the additional con-
straint that the largest molecule should not exceed 100 atoms. The size and element distributions of all three sets
are shown in Fig. 1.

In the following we explain the data and additional subsets we created and provide the computational settings.
All settings are also listed in Table 1.

62 k set: DFT PBE + vdW (vacuum). We pre-relaxed all molecular geometries at the PBE level of theory.
For structure relaxation, we used the trust radius enhanced variant of the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm as implemented in FHI-aims with a maximum atomic residual force criterion of
finax < 0.01eV AL, The electronic wave functions were expanded in a Tierl basis set at light integration set-
tings*®. Since our database only contains closed-shell molecules, we performed spin-restricted DFT calculations.
Dispersive forces were included in the geometry relaxations using the Tkatchenko-Scheffler (TS)** method, while
relativistic effects were treated on the level of the atomic zero-order regular approximation (atomic ZORA)*.
The DFT self-consistency cycle was treated as converged when changes of total energy, sum of eigenvalues and
charge density were found below 106 eV, 10~* eV and 10~° e A3, respectively. Starting from these pre-relaxed
structures, we obtained the final geometries by performing a new relaxation with Tier2 basis sets, tight integration
settings and a convergence criterion of f, .. < 0.001eV A=, The eigenvalues of the molecular states are then stored
in our dataset alongside the molecular geometries. We refer to this part of the dataset as PBE + vdW (vacuum).

62 k set: DFT PBEO (vacuum). Using the relaxed geometries obtained at the PBE 4 vdW (vacuum) level
of theory, we further carried out single point calculations for all structures using the PBEO hybrid functional.
Computational settings as described before were used, employing again the Tier2 basis set with a tight integra-
tion grid. Note, that tabulated total energies obtained at this level also include the vdW contribution computed
through the TS method, while “vdW” was dropped from the name to emphasize the single point character of
these computations. We correspondingly refer to this set as PBEO (vacuum).

31 k subset: DFT PBEO (water). To study the influence of solvation—here by water—on the PBEO results,
we performed calculations using the Multipole Expansion (MPE) implicit solvation method as implemented in
FHI-aims™ for the 31 k susbset. The MPE method facilitates an efficient treatment of the solvation effects on a
solute, by using a continuum model of the solvent around it. In detail, the solute molecule is placed within a cavity
with the dielectric permitivity of vacuum. The position of the cavity surface is determined by an iso-value p, _of
the solute’s electronic density. Outside of this cavity the dielectric constant of water ¢, = 78.36 was applied*. The
density isovalue p. as well as the o and 3 parameters for non-electrostatic contributions to the solvation free
15,

energy were taken from the published SPANC parameter-set®.

In the MPE method, the solvation cavity is discretized using a large number of points homogeneously distrib-
uted at the density iso-surface. Sampling of these points was achieved using an inexpensive pseudo-dynamical
optimisation, allowing up to 1000 optimisation steps and removing the worst 0.1% of walkers at each neighbor-list
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update step®?, to account for the more complex molecules included in the 62 k dataset. To obtain highly converged
eigenvalues, we increased the reaction field- and polarization potential expansion orders [, x and [, o to 14 and
8, respectively, and the degree of overdetermination d,4 to 16, keeping all other parameters at their default val-
ues®%. Note that the molecular geometries were not further relaxed in the presence of the water solvent. We kept
the structures fixed at the PBE 4 vdW level. Tabulated total energies again include the vdW contribution obtained
by the TS method. The resulting data is referred to as PBEO (water).

5 k subset: GaW,@PBEOQ (vacuum).  For the 5 k subset, the relaxed PBE + vdW structures in vacuum were
used as input for the G,W,!***33 calculations, using the FHI-aims G, W, implementation based on the analytic
continuation*. The PBEO hybrid functional was used for the underlying DFT calculation (G,W,@PBEO0) in com-
bination with the atomic ZORA approximation.

In these Gy W, and PBEO calculations, we employed the def2 triple-zeta valence plus polarization (def2-TZVP)
and the def2 quadruple-zeta valence plus polarization (def2-QZVP) basis sets>*. The def2-TZVP and def2-QZVP
basis sets are contracted Gaussian orbitals, treated numerically to be compliant with the numeric atom-centered
orbital (NAO) technology in FHI-aims*. They are fully all-electron for all elements and do not contain effective
core potentials. The def2 basis sets are available from the EMSL database®>*®, except for iodine (see Supplementary
Information). Note that a basis set of def2-TZVP quality is not available for I and all def2-TZVP calculations for
iodine-containing molecules were correspondingly performed with def2-QZVP for I and with def2-TZVP for all
other elements.

Since G, W, calculations converge slowly with respect to basis set size*, we extrapolated the quasiparticle
energies to the complete basis set (CBS) limit. Following the procedure for the GW100 benchmark set*’, the
extrapolated values are calculated from the def2-TZVP and def2-QZVP results by a linear regression against the
inverse of the total number of basis functions (see Technical Validation).

The G, W, self-energy elements were calculated for a set of imaginary frequencies {iw} and then analytically
continued to the real frequency axis using a Padé approximant® with 16 parameters. The numerical integration
along the imaginary frequency axis {iw'} was performed using a modified Gauss-Legendre grid* with 200 grid
points. The same grid was employed for the set of frequencies {iw}, for which the self-energy is computed. The
analytic continuation in combination with the Padé model yields accurate results for valence states®, but is not
reliable for core and semi-core states®®. Therefore, we included only occupied states with quasiparticle energies
larger than —30¢V in the data set, see also Technical Validation for more details.

Data Records
The curated data for all 61,489 molecules is publicly available from two sources:

1. The dataset and related files can be freely downloaded from the media repository of the Technical Universi-
ty of Munich (mediaTUM) under https://doi.org/10.14459/2019mp1507656>. The dataset is provided as
JSON output data of Pandas® DataFrames. Within Python, these dataframes allow structured access to
data in a tabular format, where each molecule is stored in a row of the dataframe, while the data is organ-
ized in columns. The content of the dataframe is summarized and explained in Table 2. We also provide
a tutorial file, which explains loading, filtering and data extraction from dataframes within Python. On
mediaTUM, the dataset is distributed under a Creative Commons licence (https://creativecommons.org/
licenses/by-sa/4.0/).

2. The input and output files of all performed calculations can be downloaded from NOMAD. Due to the size
of OE62 we provide an individual DOI for each applied computational method® -"".

Dataframe format. We provide three dataframes: df 62 k,df 31 kanddf 5 k. For each moleculein
these dataframes, we provide three identifiers (refcode csd, canonical smilesand inchi in columns
1 to 3). In column 5, atomic coordinates of PBE + vdW (vacuum) relaxed structures are stored as a string in a
standard XYZ format (xyz pbe relaxed): The structure information contains a header line specifying the
number of atoms #,, an empty comment line and n, lines containing element type and relaxed atomic coordi-
nates, one atom per line. The structure of all three dataframes is summarized in Table 2.

The following list provides a brief overview over the three dataframes:

o Dataframedf 5 kincludes 5,239 structures with results for all molecular properties in columns 5 to 29.

o Dataframedf 31 kaccommodates 30,876 structures, including all structures from df 5 k. GyW,@PBEO
results are only available for molecules from its 5 k subset, while respective columns are left blank for the
remaining molecules indf 31 k.

o Dataframe df 62 k contains all 61,489 structures, including all structures fromdf 31 kanddf 5 k.
PBEO (water) results are only available for molecules from its 31 k subset, while respective columns are left
blank for the remaining molecules in df 62 k. The same applies for G, W,@PBEO results for the structures
from the 5 k subset. The dataframe is ordered, such that the molecules included in the 5 k subset are included
first, while the remaining molecules of 31 k and 62 k subsets follow subsequently. This data structure facili-
tates the filtering of the dataframe by single lines of code, as shown in the tutorial.

In addition, a spreadsheet file is provided in the distributed archive which contains the total energies of all
atomic species of the dataset. They are computed for the respective levels of theory using similar computational
settings, so that atomization energies for all molecules can be computed from the available molecular total
energies.
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No. | Column name Unit | Method Dataframes | Description
1 refcode csd o i 62k 31k 5k CSD reference code, unique identifier for the crystal from which
— the molecule was extracted
2 canonical smiles - Open Babel 62k 31k, 5k | Molecular string representations derived from DFT PBE +vdW
3 inchi — | Open Babel 62k, 31k, 5k | relaxed geometries.
4 number of atoms — — 62k, 31k, 5k | Number of atoms in the molecule
String in XYZ-file format of DFT PBE + vdW relaxed geometry.
5 xyz_pbe_ relaxed A PBE + vdW (vacuum) 62k,31k,5k | Line 1 contains the number of atoms. Line 2 is empty. The
remaining lines contain atomic type and coordinate (x, y, z).
6 energies_occ_pbe eV PBE 4 vdW (vacuum) 62k,31k, 5k
7 energies occ_pbel_vac_tier2 eV PBEO (vacuum) 62k, 31k, 5k
8 energies occ pbel water eV PBEO (water) 31k, 5k
: List of eigenvalues of occupied molecular Kohn-Sham orbitals.
o energies_occ_pbel_vac_tzvp v PBEO (vacuum) Sk Given in ascending order, the last value is the HOMO energy.
10 energies occ pbel vac gzvp eV PBEO (vacuum) 5k
11 energies_occ_gw_tzvp eV GyW,@PBEO (vacuum) 5k
12 energies occ gw gzvp eV G,W,@PBEQ (vacuum) 5k

List of CBS energies of occupied states computed from G,W,@
13 cbs_occ_gw eV G,W,@PBEO0 (vacuum) 5k PBEO TZVP and QZVP energies from 10 and 11. Same order as
lists described above.

14 energies_unocc_pbe eV PBE 4 vdW (vacuum) 62k,31k, 5k
15 energies_unocc_pbe0_vac_tier2 |eV PBEO (vacuum) 62k, 31k, 5k | List of eigenvalues of virtual (unoccupied) molecular Kohn-

: Sham orbitals. Given in ascending order, the first value is the
16 energies_unocc_pbel_water v PBEO (water) 31k, 5k LUMO energy. Only virtual states below the vacuum level (i.e.
17 energies_unocc_pbe0_vac_tzvp eV PBEO (vacuum) 5k with negative eigenvalue) are listed. If the LUMO energy is

positive, only the LUMO energy is listed. If 20 has more negative

18 energies_unocc_pbel_vac_qzvp | eV PBEO (vacuum) 5k eigenvalues than 19, we also include positive eigenvalues in 19 so
19 energies_unocc_gw_tzvp eV G,W,@PBEO (vacuum) 5k that both lists in 19 and 20 have equal length.
20 energies unocc gw qzvp eV G,W,@PBEO0 (vacuum) 5k

List of CBS energies of unoccupied states computed from G, W,@
21 cbs_unocc_gw eV G,W,@PBEO0 (vacuum) 5k PBEO TZVP and QZVP energies from 19 and 20. Same order as
lists described above.

22 total_energy pbe eV PBE + vdW (vacuum) 62k,31k, 5k

2 total_energy pbe0_vac_tier2 ev PBEO (vacuum) 62k 31k, 5k Total energy of the DFT calculations. Note, for consistency with

24 total_energy pbel_water eV PBEO (water) 31k 5k 22,23 and 24 also include the vdW contribution to the total

25 total_energy pbel_vac_tzvp eV PBEO (vacuum) 5k energy. 25 and 26 do not include it.

26 total energy pbel vac gzvp ev PBEO (vacuum) 5k

27 hirshfeld pbe q. PBE 4 vdW (vacuum) 62k,31k, 5k

28 hirshfeld pbe0 vac tier? Py PBEO (vacuum) 62k 31k 5k List of Hirshfeld partial charges on atoms. Same order as atoms in
— — — xyz_pbe_relaxed.

29 hirshfeld pbe0_water q. PBEO (water) 31k 5k

Table 2. Dataframe structure of all three dataframes df 62 k,df 31 kanddf 5 k.Columns1to3
contain molecular identifiers. Columns 5 to 29 contain molecular properties computed at respective level of
theory. All mentioned energies are given in eV.

Finally, future updated versions of the dataset on mediaTUM will be distributed through the versioned DOI
given above. In such cases, updated descriptions will be provided in the distributed archive alongside the dataset.

Technical Validation

Validation of relaxed geometries. To quantify the degree to which relaxation in vacuum changes the
geometry of the structures compared to their crystalline form, we computed the distance between the two
Coulomb matrices”>” of the original crystal geometry and the PBE + vdW relaxed geometry for each of the 62
k molecules. The distribution of these Coulomb matrix distances is shown in Fig. 4(a). Small distances signify
small changes and large distances signify large differences. Most molecules exhibit only little changes in geometry
during relaxation, where bond lengths are shifted by a small amount, as illustrated for the example of molecule 1.
In some rare cases we find significant shifts in geometry caused by the environmental change from intermolecular
interactions in the crystal to intramolecular interactions in vacuum, as shown for molecule 2. The crystal-ex-
tracted structure is shaped according to intermolecular van der Waals interactions that were present in the crystal.
After relaxation, the intramolecular interactions cause a contraction of the molecular structure.

To validate that the chemical integrity of the majority of the 62 k molecules is preserved during the
PBE + vdW relaxation, we perform a consistency check similarly to ref. . We generated InChl strings from the
relaxed PBE + vdW geometries and compare them to those obtained from the initial crystal-extracted cartesian
coordinates. For 284 pairs, the two InChl strings did not match. Such mismatches can, for example, be caused
by specifics in the implementation, in which Openbabel assigns different InChl strings to molecules with the
same topology, possibly caused by changes in bond lengths, bond angles or dihedral angles. Examples are shown
in Fig. 4(b) with molecule 3 exhibiting a small Coulomb matrix distance or molecule 5, which exhibits a large
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Fig. 4 Coulomb matrix distances between initial crystal geometries and PBE +vdW relaxed geometries.
Panel (a) shows the distribution of Coulomb matrix distances for all 62 k molecules and panel (b) shows

the distribution of Coulomb matrix distances for the 284 cases that did not pass the consistency check. Two
example molecules are shown in (a) for short and large distances between Coulomb matrices (the refcode
csd identifiers are CILWUP (1) and ODAHUW (2)). In (b), 2D structures of three example molecules that failed
the consistency check are shown (DAZIND (3), YOMDUA (4) and FODBAC (5)).
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Fig. 5 Accuracy assessment of HOMO- and atomization energies computed at the PBE0O (vacuum) DFT level
of theory. (a) Four example molecules and their refcode csd identifiers. (b) For the example molecules, the
HOMO energy convergence of the Tierl and Tier2 basis sets is compared against the Tier4 basis set provided
with FHI-aims, always employing tight integration settings. (c) Difference in HOMO-energy between the Tier2
(T2) and QZVP basis sets for all molecules of the 5 k set. The distribution-median is given by a dotted line,
located at —0.008 ¢V. (d) Same as (b), but for atomization energies Ey.

Coulomb matrix distance due to stronger relaxation. Here, stereoassignments change in the molecular structure,
causing the different InChI-identifiers. Conversely, the mismatch can be also caused by changes in molecular
topology during relaxation. This is the case for molecule 4, for which an intramolecular ring-closure takes place.
Compared to 3,054 such inconsistencies found during the collection of the 134 k molecules for the QM9 data-
base!8, the number of 284 found here is considerably small. The reason is most likely that our molecular starting
geometries were derived from experimentally observed, well-resolved solid-form conformers.
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Fig. 6 Accuracy assessment of G,W,, quasiparticle energies. (a) Convergence of the HOMO G, W, energies
with respect to the inverse of the number of basis functions Ny for the four example molecules shown in Fig. 5.
Dashed lines represent linear straight line fits using the def2-QZVP and def2-TZVP points. The intersection

of the straight line with the ordinate gives an estimate for the complete basis set limit (CBS) as indicated for
BMLTAA. (b) Deviation of the HOMO G, W, energies from the CBS limit for the 5 k subset. Median values of
the distributions are indicated by black dashed lines. (c) Percentage of states with negative slope of the CBS

fit. (d) Average G,W,@PBEO quasiparticle spectrum, where each energy state was artificially broadened by a
Gaussian distribution.

Validation of DFT atomization and orbital energies. For PBE and PBEO calculations, the Tier2 basis
set of FHI-aims typically provides converged results for both the atomization energy as well as for molecular
orbital energies’”>. The Tier2 basis set has also been used in other large molecular datasets®’2, We here illustrate
the convergence for four selected cases featured in Fig. 5(a) for PBEO vacuum calculations at tight settings. As
expected, HOMO energies at the Tier2 level are well-converged, here estimated within 0.01 eV around reference
values obtained with the largest standard basis set included in FHI-aims (Tier4), see Fig. 5(b). The lower lying
orbital energies exhibit a similar convergence behavior (not shown).

A further quality assessment of predicted HOMO-energies comes from the comparison of Tier2 and QZVP
basis set results, as contained in the 5 k subset, see Fig. 5(c). We find only a small RMSE of 0.009 eV between the
Tier2 and the much larger QZVP basis sets. Figure 5 also shows the convergence of the atomization energy of
the four molecules in panel d). Again, at the Tier2 level, convergence to better than 0.1 eV with respect to Tier4 is
observed. This is consistent with results found in a previous benchmark study’.

Validation of G,W, quasiparticle energies. Figure 6(a) shows the convergence of the G,W,@PBE0
quasi-particle energies with respect to basis set size and their extrapolation to the CBS limit for the four mol-
ecules displayed in Fig. 5(a). In all four cases, the GyW,, energies are not converged even with the largest basis
set and CBS extrapolation is required. The slow convergence is typical for the whole 5 k set, as demonstrated in
Fig. 6(b), which reports the deviation of the HOMO G, W, energies computed at the TZVP and QZVP level from
the CBS limit for all molecules of the 5 k subset. The distributions displayed in Fig. 6(b) are centered around
—0.38eV (TZVP) and —0.17 eV (QZVP) with a standard deviation of 0.02eV (TZVP) and 0.01 eV (QZVP) from
the median values. Similar results are obtained by including all occupied states above —30eV in the analysis. In
this case, the median value amounts to —0.35eV for TZVP and —0.15eV for QZVP. Respective distributions for
the deviations of all occupied states from the CBS limit can be found in the Supporting Information.

The quasiparticle energies at the QZVP level are typically lower in energy than the TZVP values, i.e., the
straight line determined from the linear extrapolation to the CBS limit has a positive slope, see Fig. 6(a). This
empirical observation was already made in the GW100 benchmark study*’ for the HOMO level and we also
observed it here in our GW5000 study for the valence states. There is no proof that for a given basis set the
slope has to be positive. In fact, for ~4% of the energies level above —30eV we find negative slopes, as shown in
Fig. 6(c). This percentage increases considerably in the semi-core energy region between —50 and —30eV. Such
an increase is indicative of either 1) a failure of the analytic continuation used to continue the G, W, self-energy
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from imaginary- to the real-frequency axis or 2) the insufficiency of the def2-TZVP basis set to converge the
deeper occupied states at the DFT level. Based on our analysis in Fig. 6(c), we therefore include only states with
energies larger than —30eV in the 5 k set. Figure 6(d) confirms that the spectral weight averaged over the whole
5 k subset is located mostly between —30 to —5eV and thus, not much spectral information is lost by setting the
cutoff threshold to —30eV.

G, W, calculations were initially run for 5,500 structures randomly drawn from the 31 k set. From these 5,500
molecules, we filtered out molecules for which the analytic continuation of the G, W), self-energy is inaccurate or
breaks down completely. In FHI-aims the quasiparticle equation is solved iteratively to determine the quasipar-
ticle energies. For some molecules, the pole structure of the self-energy gives rise to multiple solutions and the
iterative solution does not converge. We excluded all molecules from the dataset for which at least one TZVP or
QZVP level did not converge. Moreover, large differences between the TZVP and QZVP quasiparticle energies
are an indication of further problems in the G, W calculation, since the median difference between TZVP and
QZVP is only 0.21 eV (see Fig. 6(b)). We thus excluded molecules for which at least one level exceeded QZVP/
TZVP difference of 0.8 eV. This leaves 5,239 molecules in the 5 k set.

Code availability

All electronic structure data contained in this work was generated with the FHI-aims code**~*°. The code is
available for a license fee from https://aimsclub.thi-berlin.mpg.de/aims_obtaining_simple.php. Parsing of outputs
and data collection were performed with custom-made Python scripts, which will be available upon request.
Finally, the published archive contains a tutorial detailing how to access the dataset.
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