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Abstract

This article relates to the topic of the escalator demand response potential. Previous
studies mapped escalators as an unrealized potential for additional demand response. The
decrease of the nominal speed is the proposed method of reducing the power consumption of
an escalator that comes at the cost of passenger travel time and queuing. This work proposes
a solution to a problem of selecting appropriate escalators from a large pool to accommodate
the target of power curtailment at a minimum cost and highlights the escalator features
that constitute the best demand response candidates. The paper compares four methods
which differ in calculation speed and accuracy. The primal solution is the earlier developed
and enhanced simulation-based model. The random forest and the neural network models
provide a solution trained on the output of the simulation-based model aiming to enhance
the calculation speed. Finally, all of the developed solutions are compared to the random
selection of escalators. The comparison of the proposed statistical approaches shows that
the random forest outperforms the neural networks with a maximum error in the prediction
of the overall costs in the range of 10.5% of the simulation-based model solution, while the
neural network solution lies within 10-58%, depending on the targeted value of the power
reduction. Statistical approaches enable performing predictions for different times of the
day and for new escalator populations without the need for time-demanding simulations.
Comparison to the random selection of escalators demonstrates that the proposed models
generally outperform the random selection at least seven-fold.
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1. Introduction

There has to be a balance between the generation and the consumption in the power 
system. The stochastic nature of Renewable Energy Sources (RES) introduces additional 
challenges for maintaining that equilibrium, while also reducing the system inertia [1]. The 
ramping numbers of renewable energy generation increase the volatility in the bandwidth of 
power system frequency.

Besides increasing the energy generation or downregulation by reducing generation, the 
solutions to mitigate power imbalances include decreasing or increasing the power consump-
tion or shifting the use to off-peak times. This method is called Demand Response (DR). 
It is used by electric system planners and operators as a resource option for balancing the 
supply and demand. Usually, DR is directed by financial incentives from the customer per-
spective. The benefits of DR programs is that they can decrease the cost of electricity in 
wholesale markets and lead to lower retail prices [2, 3, 4]. Additionally, these can improve 
the reliability of the power system [3, 5].

While flexible large loads can produce a more meaningful impact on frequency balance, 
small loads can also participate in the DR events with the help of aggregators. The aggre-
gator is a third party company that contracts with the individual industrial, commercial or 
residential consumers and aggregates them together. An aggregator company performs as 
a single DR provider to Transmission System Operator (TSO), Balance Responsible Party 
(BRP) or to Distribution System Operator (DSO). The individual demand sites can use a 
combination of increasing on-site generation and/or process shutdown or reduction to de-
liver the active power demand reduction service. The aggregator receives a percentage of 
the value created by the reduced power consumption during peak demands, by the balanced 
intermittent generation or by providing a balancing service [6].

This article has the primary focus on DR using escalator technology. An escalator is 
the most efficient way to transport large numbers of passengers within a building. There 
were about 137 000 escalators in the EU in 2016 [7] and about 5000 are installed every 
year [8]. Escalators can be fixed-speed or intermittent-operating. Fixed-speed escalators 
are constantly in motion, regardless of the passenger flow. Intermittent-operating escalators 
are equipped with a Variable-Speed Drive (VSD), which enables energy saving during times 
when there is no passenger flow. Majority of the newly installed escalators are equipped with 
the VSD and, since most of the power consumption in the escalator is related to overcoming 
friction [9, 10], decreasing the speed of the escalator can provide power reduction [11, 12].

1.1. Previous research

In previous research, Al-Sharif described the basis of energy consumption modelling 
of fixed-speed escalators and explored its dependency on the mechanical systems of the 
escalators [9]. In [13], Carillo et al. described the benefits of two-speed control in escala-
tors. Intermittent-operating escalators energy consumption was measured and compared to 
fixed-speed escalators by Kuutti et al. [14]. Articles [10, 15, 16] focused on modelling the 
energy consumption of intermittent-operating escalators with various passenger volumes and 
in different traffic patterns and served as a basis for modelling escalator demand response.



Regarding demand response, article [11] describes the potentials of DR for escalator technol-
ogy in frequency containment markets by means of speed reduction. Frequency containment 
markets are the reserve markets that serve as a tool for the transmission system operator to 
obtain additional resources to deal with sudden disturbances or deviations from the balance 
between power generation and power consumption. It demonstrated that mean reduced 
power consumption as the result of DR depends on the passenger arrival rates and, thus, 
the time of the day. Article [12] introduced the costs of escalator DR in terms of increased 
passengers queuing and travel times.

1.2. Aims and problem statement

Earlier research [11, 12] revealed that escalator DR is a viable option for additional power 
procurement together with the already established methods. However, DR with escalators 
provided with speed reduction comes at a cost of slowing the passengers. If the flexibility 
provided by a bundle of escalators is used in addition to some other established methods, it 
is not always necessary that all the available escalator flexibility needs to be utilized at all 
times. Since all the escalator appliances vary by a multitude of parameters, the flexibility 
and the cost per appliance also vary.

This article aims to provide a robust solution to finding the most suitable options among 
the existing escalator DR potential at minimal cost. In this study, we first use the previously 
developed simulation-based model [11] to calculate the flexibility and the cost for each of 
the available escalators. The downside of the method is the slow calculation speed, which 
depends on the number of modelled escalators and the amount of necessary calculations or 
scenarios. Next, we utilized machine learning methods to create statistical models, which 
drastically increases the speed of computation at the cost of increased prediction error. 
Furthermore, the article provides recommendations about escalator parameters that are 
important to prioritize when a larger DR capacity is required, for example when models are 
unattainable.

In this article, we look at a hypothetical situation where a number of intermittent-
operating escalators is available for the DR while the required procurement is a fraction of 
all the available DR potential. We aim at selecting the escalators for the targeted power 
procurement so that we maximize the available power reduction of the escalator, while 
minimizing the increased passenger queuing and travel times. The article compares four 
solutions: the earlier presented simulation-based model [11], two statistical models and 
a random selection of available escalators. The two statistical approaches are the neural 
network and the random forest regression models, which are popular in machine learning. 
The results are later compared by the calculation speed and the induced error. The structure 
of the article is the following. Section 2 describes the overall framework of the solution and 
methodologies applied to it. Section 3 shows the comparison of solutions provided by the 
research, the statistical models and otherwise a random selection of escalators. Sections 4 
discusses the applicability of proposed methods. Section 5 concludes the main results of the 
article.



2. Methodology

As the case study, we set various targets of necessary power procurement for a simulated
group of 4000 escalator units. Since escalators perform differently, we create a pipeline for
reaching the solution through modelling and a selection algorithm. The methodological
process of arriving to the aforementioned solutions is presented in Fig. 1.

Figure 1: Overall algorithm.

The simulation-based model refers to the previously developed algorithm for modelling 
the escalators, the aggregate of escalator power consumption and the recovered power during 
DR events [11]. Subsection 2.1 presents the detailed explanation of the simulation-based 
model. The model was enhanced with the passenger route choice model, presented later 
in Subsection 2.2. The outputs of the model are used in the selection algorithm, described 
in Subsection 2.3. Additionally, in the absence of measurement data, the simulation-based 
model is the data source for the training and test data necessary to create and verify the



statistical models for the predictions of reduced power consumption and increased cost.
Statistical models are presented in Subsection 2.4. The detailed data structure is presented
in Subsection 2.5.1. Once the predictions and the dependent test variables are obtained,
the selection algorithm determines the respective solutions for the data sets. Finally, the
obtained solutions from the simulation-based and the statistical models are compared to the
random selection solution. The comparison of solutions is presented in Section 3.

2.1. Simulation-based model

The simulation-based model is the data source for the aforementioned statistical model.
It is described in detail and is adopted from [11] with added features of loading dependent
variable efficiency of the drive and the probability of passengers taking the stairs. Fig. 2
depicts the structure of the model.

Figure 2: Simulation-based model, adopted from [11].

In this article, the simulation-based model is used to create 12 000 intermittent-operating 
escalators as training and test data and 4000 escalators as a case study to simulate the DR 
event lasting five minutes where the escalators are slowed. The VSD technology allows to 
change the speed of the escalator anywhere from 0 to the maximum allowed. In this article, 
we have selected 50% of the nominal speed during the demand response event, which is also 
a typical value during the slow-speed mode of the escalator [10].



Changing the escalator speed raises safety concerns. The highest source of minor injuries
on escalators are sudden falls. Oftentimes, falling occurs when the escalator rapidly changes
the speed or suddenly stops [17]. Technical standards [18, 19] set limitations in maximum al-
lowed acceleration and deceleration in escalators. In the present article, the authors presume
the change of the escalator speed happens within 1 second, which correlates with maximum
permitted acceleration, up to 0.5 m/s2, and deceleration, up to 1 m/s2, values according to
the EN 115-1 2010 [18] standard.

The modelling approach involves creating each escalator with unique parameters that
affect the power consumption and passenger travel times. The parameters used in the
modelling process are described in Table 1.

Table 1: Modelled escalator parameters, adopted from [11].

Parameter Description

Type Fixed-speed or intermittent-operating escalator

Segment Public transportation or commercial building

Direction Upwards or downwards

Regeneration 10% of modelled downwards escalators have regeneration

Number of passengers Daily number of passengers [11]

Energy class
Normally distributed classification indicator that

describes the impact of both the efficiency of active parts
and the friction of passive escalator components [20]

Staircase 10% of modelled escalators have a nearby staircase

α [◦] Escalator angle 30 or 35 degrees

H [m] Vertical height of the escalator [11]

Dimensions A,B,C,D Dimensional reference values derived from [20]

µSB/PB Friction coefficient of step/pallet

mSB/PB [kg] Mass of step/pallet

vnominal [m/s] Nominal speed

ttravel [s] Calculated travel time at nominal speed

ηnl Escalator efficiency at no load (no passengers)

mchain [kg/m] Mass of chain band per meter

Once the escalators have been created with the daily number of passengers that board
the escalator during the modelled hours, passengers are divided into groups according to the
building segment passenger distribution. Later, the passengers are redistributed along the
timeline with the help of the queuing model to respect the escalator transportation capacity
in 1-sec modelling resolution [11]. Current model iteration includes additional calculation of
route choices for passengers on escalators that also have a staircase, described in Subsection
2.2. One of the outputs of the passenger queuing model from Fig. 2 is the travel time, ttravel
and the increased travel and queuing of passengers, denoted as tq. Escalator travel time at
speed v can be expressed with Eq. 1:

ttravel =
H

v · sinα
(1)



where H, v, α are the height, the speed and the angle of the escalator from Table 1.
Since the passenger capacity rate of an escalator is proportional to its speed, v, the

number of passengers that are in the queue during time t can be expressed with Eq. 2 [11]:

Nq(t, v) =

{
λ(t) +Nq(t− 1, v)− µcap(v), Nq(t, v) > µcap(v)
0, Nq(t− 1, v) ≤ µcap(v) ∨ t = 1

, (2)

where t ∈ [1 : 86400], v ≥ 0, λ(t) is the arriving amount of passengers in time t and µcap(v)
is the escalator passenger capacity per second.

The produced 1-sec resolution passenger traffic profiles serve as the input for the power
consumption model. The power consumption model produces the aggregate power consump-
tion profiles for all the modelled escalators, denoted as P .

The described modelling outputs are produced for two scenarios, one where there is no
DR event taking place and one where there is a DR event of a 5-min length. During the
modelled 5-min DR event, every escalator is slowed to 50% of the nominal speed. The
speed reduction curtails the power consumption, while on the other hand, it increases the
passengers travel and queuing times.

The result of the described model is the difference between the two scenarios, the amount
of recovered power per escalator and the associated cost, or the increased travel and queuing
time, as the consequence of the DR event, denoted as ∆P and ∆tq. The disadvantage of the
described model is the calculation time. It took on average 41 min 17 seconds to calculate a
set of results for one simulated day with a specific parameter combination for 4000 escalators,
which can be referred as an iteration. Numerous iterations of the simulation-based model
with varying time of the DR event produce the training and test data for the developed
statistical model in this article. The data is described in Subsection 2.5.1.

2.2. Route choice model for units with a staircase

For escalators that are modelled with a staircase, the route choice calculation for pas-
sengers was adopted into the existing model. Article [21] investigated the behaviour of the
passengers when they have to choose between using the escalator and the staircase during
traffic peak hours. The route choice measurements were conducted in transportation sec-
tor and yielded the equations of the route choice probability. It is possible to adopt this
approach for modelled escalators in the transportation sector as the measurements in [21]
were conducted on escalators with similar average parameters as were used in this article. It
is assumed that each pedestrian can evaluate the delay caused by the escalator and choose
to remove oneself from the queue with a given probability if walking on the staircase is
faster. Probability of a passenger choosing the stairs for upwards- and downwards-moving
escalators is calculated according to Eq. 3, 4 [21]:

Pstairs up =
1

1 + exp (−5.3441− 0.2073∆tdelay)
, (3)



Pstairs down =
1

1 + exp (−3.1001− 0.1745∆tdelay)
, (4)

where ∆tdelay is the measure of discomfort, which is represented as the difference in time that
the passenger would spend standing in the queue and during his journey on the escalator
and walking on the stairs.

As a result, passengers behave differently depending on the direction they are heading.
They are less sensitive to a relative delay on upwards-running escalators [21].

2.3. Selection algorithm

One of the aims of this article is to produce an algorithm that helps to infer the best fitting
escalators for the DR and pick enough escalators to fulfill the targeted power curtailment
amount. As mentioned in Section 2.1, the outputs of the simulation-based model after
modelling the DR event are the curtailed average power consumption ∆P and the increased
passengers travelling and queuing time ∆tq. Finding the best fitting escalators for DR
requires selecting them from the pool of all escalators according to a convenient metric. It
should aim to maximize the reduced power, while minimizing the cost. For this reason, we
have created a metric for escalators, denoted S = ∆P

∆tq
or score, which shows the increment

in the curtailed power consumption per second of the increased travel and queuing times.
The cost is denoted as C = 1

S
= ∆tq

∆P
.



Figure 3: Selection algorithm.

The input data consists of the reduced power consumption per escalators, ∆P , the
increased travel and queuing times as a result of slowing down the escalator, ∆tq, the score
of the escalator, S = ∆P

∆tq
, and the target value for power curtailment ∆Pt. In this article,

we chose multiple targets of power curtailment starting with 0.25 MW up to 3.75 MW with 
steps of 0.25 MW.

At each step, the algorithm finds the minimum value of C at the n-th row from the input 
data, excludes that row and saves it in the separate array. The process is repeated until the 
sum of reduced power of the selected escalators reaches the targeted value. The output of 
the selection algorithm is the set of escalators with reduced power consumption values and 
the sum of increased passenger travelling and queuing times. Both the simulated data and 
the predicted values will be used in the selection algorithm for comparison in Section 3.

2.4. Statistical models
There are several advantages of statistical models. There is a drastic increase in the 

calculation speed and there is no need to model new appliances with the simulation-based



model. Additionally, statistical models allow to incorporate the measurement data together
with the simulated data to increase the accuracy when more training data is available.

The selection algorithm outputs the most suitable escalators for the proposed DR target.
Therefore, the statistical model should predict the input parameters for the selection algo-
rithm, which are the mean power reduction and increased time for each escalator. In this
article, we create two regression models, where dependent variables are ∆P and ∆tq. We
have selected Random Forest and Artificial Neural Networks as the regression models for
both dependent variables. The performance of both approaches is compared in the results
section.

2.4.1. Random Forest

Random forests have been successfully applied to various problems in, e.g., genetic epi-
demiology and microbiology in general within the last five years. Within a very short
period of time, random forests have become a major data analysis tool that performs well
in comparison with many standard methods [22, 23]. In [24], random forest was used for
real-time price forecasting in electricity markets. Article [25, 26] applied the technique to
model short-term electrical load forecasting. In [27], random forest was used for solar power
forecasting. The technique became popular because it can be applied to a wide range of
prediction problems, even if they are nonlinear and involve complex high-order interaction
effects. Furthermore, adding to their benefit, random forests produce variable importance
measures for each predictor variable [23].

Tree-based methods, in a generalized way, partition the feature space into a set of rect-
angles, and then fit a simple model, for example a constant, in each of them. Random forest
is a modification of bagging where a large number of de-correlated trees is created and then
averaged. Bagging is a technique of reducing the variance of an estimated prediction model
by averaging, in our case, many unbiased trees. Each of them plays the role of a nonlinear
mapping from complex input spaces into continuous output spaces. The non-linearity is
achieved by dividing up the original problem into smaller ones, solvable with simple models.
A split node in the tree maintains a test that is applied to a data sample to send it toward
the left or the right child node. The tests are picked by some criteria to group the training
samples into clusters where a good prediction can be achieved by simple models [28]. If trees
are grown sufficiently deep, the captured interaction structures in the data have relatively
low bias [22].

In regression analysis, random forests are formed by growing decision trees depending on
a random vector Θb, independent and identically distributed (i.i.d.) from the past random
vectors Θ1, ...,Θb−1, such that the tree predictor h(x,Θb) takes on numerical values. The
decision tree will traverse down by splitting at each step into a subset of two until it reaches a
leaf. The subsets are chosen to minimize either the mean squared or the mean absolute errors.
Vector Θb characterizes the b-th random forest tree in terms of split variables, cutpoints at
each node, and terminal-node values. The output predictions ŷ are also numerical and it is
assumed that the training set is independently drawn from the distribution of the random
vector Y,X [29].

Random forest grows trees by recursively selecting m ≤ p input variables at random as



candidates for splitting, where p is the maximum number of input variables. In this article,
the value for m = p for both models. The random forest predictor is formed by taking the
average over B of the trees {h(x,Θb)}b1 [29, 22]:

ŷ =
1

B

B∑
b=1

h(x,Θk) (5)

The mean-squared generalization error of the forest is [29, 22]:

EX,Y (Y − EΘh(X,Θ))2 (6)

2.5. Artificial Neural Networks

Artificial Neural Network (ANN), or Neural Network (NN), is a nonlinear statistical
model, which can be presented as an interconnected group of nodes or neurons. It can be used
in a regression or a classification problem. The approach is relatively easy to implement and
is popular thanks to its ability to handle non-linear relationships [30]. In article [31], neural
networks are used for classification load curves for demand-side management. Article [32]
utilizes neural networks for price and energy demand prediction in incentive-based demand
response. A neural network is schematically depicted in Fig. 4.

Figure 4: Schematic representation of a NN

A NN can consist of a number of layers labeled as: the input layer, the hidden layer(s)
and the output layer. The input layer consists of the features of vector X. The output layer
consists of the predicted variable ŷ. The main element of a NN is the neuron. Each neuron
receives its input values from each of the previous layer neurons with the respected weight
and bias. The neuron calculates the sum of the waited average of the input values and the
bias [33]. For neuron i in layer j, the linear function is calculated according to Eq. 7.

z
(j)
i =

( k∑
d=1

w
(j−1)
i,d xd

)
+ bi (7)



where k is the number of neurons in layer j − 1, w
(j−1)
i,d is the weight received from neuron

d in layer j − 1, bi is the bias term. Then, the neuron applies a nonlinear function to z
(j)
i ,

which is referred to as the activation function, presented in Eq. 8 as follows:

a
(j)
i = ϕ(z

(j)
i ) (8)

The activation function is used to determine if the outside connections should consider the
neuron to be activated or not, which depends if the calculated value is larger than the
activation function threshold [34].

2.5.1. Training, test and case study data

In the article, we use supervised learning to create the statistical models. Data structure
is presented in Eq. 9 and Table 2. 

a11 a12 . . . a1p

a21 a22 . . . a2p
...

...
. . .

...
al1 al2 . . . alp

 (9)

Data sets have a total of p = 14 columns, including both independent and dependent
variables. The statistical model was created and tested with the data set of l = 3 120 000
rows, where the test data is about 33% of the whole data set, randomly selected. It is a
compilation of 12 000 unique escalators where the speed reduction was simulated a total of
20 times for each hour from 8 a.m to 8 p.m.

For comparison of the solutions as depicted in Fig. 1, we use a separate data set with
4000 unique escalators where the speed reduction is simulated once. The case study data
set has l = 4 000 rows. Description of variables columns for all data sets is presented in
Table 2. Independent variables are created during the escalator modelling process from the
parameters of the simulation-based model, described in Table 1. Dependent variables from
the training data set are used in supervised learning during the model training stage to
create regression fits.



Table 2: Columns of variables used in the statistical model.
Variable Variable type

Independent variables

Segment

Categorical dichotomous

Direction
Regeneration

Speed, v [m/s]
Existence of a staircase

Angle, α [◦]

Energy class Categorical ordinal

Daily number of passengers

Continuous
Height, H [m]

Travel time, ttrav [s]
No load power consumption, Pnl [W]

Hour of DR, tDR [h]

Dependent variables

Mean of reduced power consumption, ∆P [W]
Continuous

Increased time, ∆tq [s]

As mentioned in Fig. 1, the case study data set is split into dependent variables y
and independent variables or predictors x. Dependent variables y are fed into the selection
algorithm to obtain the solution from the data. It is regarded as the ideal solution to the
problem with the existing data and other solutions are later compared to it. Test predictors,
created from the data set are used as the input parameters for the statistical model to predict
the values of the dependent variables, denoted as ŷ. Predicted values are also fed into the
selection algorithm to obtain the solution with ŷ. These solutions are compared in Section
3.

3. Results

Article objectives included finding escalator parameters that contribute more to the 
DR potential of an escalator while minimizing the cost. Additionally, the results section 
demonstrates the implications of the created models on the overall cost of DR, when the 
selection algorithm picks the necessary amount of escalators to match the target of power 
procurement.

3.1. Regression model tuning

Hyperparameter tuning is a vital part of designing a regression model. Presently the 
values are initially selected empirically [35, 22, 36], further tested and corrected according 
to the common guidelines for the practitioners, for example such as listed in [37]. Neural 
networks require to identify the number of layers, the number of neurons in each hidden 
layer and the activation functions. The selected hyperparameters are presented in Table 3. 
Table 3.



Table 3: Selected hyperparameter configuration for the neural network model.

Variable Reduced power Increased time
Number of hidden layers 1 1

Number of neurons 40 100
Activation function ReLU ReLU

Both of the NN models have one hidden layer and rectified linear unit (ReLU) activation
functions. The rectified linear unit offers an alternative to the previously most popular
sigmoidal [22] nonlinearity function [34]. The rectified linear function is mathematically
presented the following way:

hi = max(wT
i x, 0) (10)

wT
i is the weight vector of ith hidden unit and x is the input. In many applications,

neural networks with rectified nonlinearities outperform sigmoidal NNs in error metrics and
across depth [34, 38].

For random forests it is necessary to choose the number of trees, the maximum number
of features and the maximum depth of the tree. The selected parameters are presented in
Table 4.

Table 4: Selected hyperparameter configuration for the random forest model.

Variable Reduced power Increased time
Number of trees 400 1600

Max. depth 70 None
Max. features 12 12

The default values of the maximum number of features is often set to p/3 for regression, 
where p is the number of predictor variables [22]. In the proposed models, the selected 
configuration of maximum number of features is set to the value of p. In [39], lower error 
rates were observed for higher values of maximum selected features for both classification 
and regression problems. The study recommends to set the value high if there are few 
relevant variables out of many, so that the algorithm can find those.

3.2. Model fits comparison

To demonstrate the results of the regression models, the correlation between ŷ  and y can 
be presented in a scatter plot. The created fits for the mean reduced power and increased 
times from predictions are presented in Fig. 5 for the 5-min DR event.



Figure 5: Scatter plots of the dependent variables vs their predicted values with a,b- Neural Network and 
c,d- Random Forest, sample size 10 000.

We use the R2 coefficient of determination and the mean-squared errors (MSE) to com-
pare two models, before comparing the solutions in the case study. Table 5 presents the 
comparison statistics for the models. Both fits have a high Pearson’s correlation coeffi-
cient and the fits are considered satisfactory. However, the random forest regression model 
outperforms the neural network in both R2 and MSE.



Table 5: Comparison of statistical models.

Variable Increased time Reduced power
Method R2 MSE R2 MSE

Random Forest 0.99 25051.65 0.92 5629.57
Neural Network 0.98 250535.46 0.90 7081.03

The two approaches are less different in predicting the average of the reduced power,
while prediction of increased passenger time varies significantly. Thus, random forest is
expected to provide more accurate solutions on the case study.

Another approach to compare the results of the two statistical algorithms is to compare
the model results for statistical significance. Study [40] shows that the 5x2cv paired t-test
has the least probability of producing a type I error. The test performs 5 times the 2-fold
cross-validation, where, in each repetition, the available data is randomly split into two
equal-sized sets, S1 and S2. Each of the learning algorithms, A and B, is trained on each of
the sets and is tested on the other, correspondingly. This process yields four error estimates,
p

(1)
A and p

(1)
B , trained on S1 and tested on S2 and p

(2)
A and p

(2)
B , trained on S2 and tested

on S1. Estimated differences, p(1) and p(2), are calculated by subtracting the corresponding
errors. The estimated variance is then calculated the following way:

s2 = (p(1) − p̄)2 + (p(2) − p̄)2 (11)

where p̄ = (p(1) + p(2))/2. If s
(2)
i is the variance computed from the i-th iteration the 5x2cv

t̄-statistic is calculated the following way:

t̄ =
p

(1)
1√

1
5

∑5
i=1 s

2
i

(12)

where under the null hypothesis, t̄ has approximately a t-distribution with 5 degrees of
freedom [40].

The results of the neural network and the random forest regression models were compared
with a sample of 500 000 data points for statistical significance with the 5x2cv paired t-test.
Two hypotheses are created: H0 - the null hypothesis and H1 - the alternative hypothesis.
The null hypothesis states that there are no significant differences in the results of two
predictors. The alternative hypothesis states that there are significant differences in the two
models. The probability is referred to as the p-value. Table 6 shows the calculated t-statistic
and p-values. The threshold for accepting the null hypothesis is 0.05.

Table 6: 5x2cv paired t-test statistic and calculated p-values.

Variable Increased time Reduced power

t -6.501 -5.812
p-value 0.001 0.002

Accepted hypothesis H1 H1



The p-value is smaller than 0.05, thus, we reject the null hypothesis and accept that
there is a significant difference in the two models in each case.

3.3. Random forest feature importance

The random forest allows to extract feature importance values from the created models.
To portray which features contribute the most to the predictions, Fig. 6 depicts feature
importance for both reduced power and increased time statistical models.

Figure 6: Feature importance for reduced power and increased time statistical model.

Feature importance is derived by ranking the features according to how much they improve 
the model fit across all created trees on average. However, in situations where there are 
multiple highly correlated features, some of the randomly selected features will be selected 
first and, therefore become primary and ranked higher, while the highly correlated features, 
will later be ranked lower, as they already give less improvement. Therefore, interpretation 
of feature importance from Random Forests must be done with caution [23]. The most 
important features for predicting the curtailed power and increased time are the no load 
power consumption, staircase, direction, travel time, height and daily number of passengers. 
The no load power consumption is the most important features for predicting the reduced 
power. At the same time, features such as speed, height and angle are low in significance, 
while in reality, the no load power consumption is a function of all of them.

3.4. Escalator parameters that affect DR selection

Creating efficient statistical models often requires eliminating less important features 
from the training data, which reduces the model complexity and increases the computational 
speed. Studying the feature importance helps to understand the modelling process and the 
relations between the dependent and the independent variables.

The most important features that contribute to the selection of escalators by the DR 
score can be studied by looking at the solution provided by the simulation-based model after 
the selection process. The following subsections test categorical and continuous variables 
for their significance.



3.4.1. Categorical variables

Fig. 7 presents the comparison of the ratio of the frequency of categorical independent
variables in sets of top 10% of escalators selected for DR and the total population of 4000
units.

Figure 7: Frequency ratios of categorical variable values in sets of top 10% of escalators selected for DR
compared to the total population.

Fig. 7 shows that, from categorical variables, the top 10% of the best escalators for DR
has a larger ratio of upwards-running escalators, escalators with the speed of 0.5 m/s and
escalators that have a staircase nearby.

We use the Chi-square statistic (χ2) to determine the likelihood of whether there is a
significant difference between the expected distribution and the actual distribution of the
categorical variables in the selected samples of data by chance [41]. One set of data is the
optimized group of the top 10% of the best escalators for DR, while the other is the overall
set of escalators excluding the first set. Samples drawn from the sets should not have large
differences in the expected values of frequencies of categorical variables unless these variables
have strong ties with dependent variables in the process of the selection of these escalators.
Chi-square test aims to find the probability that the distribution of data in the sampled sets
is by chance.

The null hypothesis states that the distribution of data in the two sets is different by
chance. The alternative hypothesis states that the distribution of data is different between
the two sets of data because the tested variables have correlation with the way that the set
was formed. In other words it shows that the tested categorical variables affect the selection
of best fitting escalators for DR by score, which is correlated with dependent variables of
reduced power consumption and increased time.

The calculation of χ2 statistic is performed with Eq. 13 [42]:

χ2 =
∑
i

(Oi − Ei)
2

Ei

(13)

where Oi is the observed value and Ei is the expected value for each category i in categories 
of i = 1, 2, 3...j of cases, which in our case is i = 2, T rue or F alse.



Table 7 contains the calculated χ2 statistic and the probability values (p-value) that the
null hypothesis is true (H0 : Oi = Ei) for categorical variables in the selected samples of two
aforementioned sets.

Table 7: Chi-squared statistic and probability values for categorical variables in sets of the 10% of the best
fitting for DR escalators and the rest from the population, where DF is degrees of freedom [41].

Variable Direction Segment Staircase Regeneration Speed Angle

χ2 29.1399 0.7582 166.074 0.0102 49.3075 5.8643
p-value (DF = 1) 6.723e-8 0.3839 0 0.9196 0 0.0154

Accepted hypothesis H1 H0 H1 H0 H1 H1

Table 7 shows that categorical variables of Direction, Staircase, Speed and Angle have a
low probability of H0 to be true, meaning that these variables are likely to affect the way that
the best fitting escalators for DR are chosen by the score. On the contrary, the relatively
small difference in the segment and the ratio of regenerative escalators in the selected set of
the escalators are by chance with a high probability.

Concluding the categorical variables test and taking into consideration only the modelled
parameters, it follows that it is more common for the best fitting escalators for DR by speed
reduction to be upwards-running with lower speed (0.5 m/s), have a larger angle and a
staircase nearby.

3.4.2. Continuous variables

Table 8 presents the comparison of the mean values, standard deviations and the median
values of the continuous variables in the sets of the top 10% of escalators selected for DR
and the full set.

Table 8: Comparison of continuous variables mean and standard deviation values in the top 10% of the best
escalators for DR and all modelled escalators.

Variable
Mean value Standard deviation Median

top 10% all top 10% all top 10% all

Daily number of passengers 5438.00 7514.00 3705.00 3394.00 3936.00 7096.00
Height [m] 4.15 5.42 1.50 1.79 3.80 5.20

No load power consumption [W] 2166.82 2188.42 484.46 448.68 2048.00 2114.00
Travel time [s] 8.72 11.88 3.58 4.22 8.00 11.00

It is seen that the means of continuous variables except no load power consumption differ 
in the top 10% of selected for DR escalators and all the data. It is necessary to check if the 
continuous variables are significant in the selection of the best escalators for DR. Since the 
variables distributions are non-parametric, we use the Wilcoxon Rank-Sum Test [43].

The Wilcoxon Rank-Sum Test is a non-parametric test which is based on the order in 
which the observations from the two samples differ. With this test, we wish to test the 
hypothesis if the distribution and, thus, the medians of the independent variable in two



populations are the same. In our case, we have seen that the means and median values of
the samples are different.

The null hypothesis states that the distributions of the tested variable in the two samples
is the same, thus their medians are the same. The alternative hypothesis states that the
distributions are different. Rejecting the null hypothesis would mean that the distributions
of the variables are not the same and their medians are shifted. This implies that these
variables are significant in how the sample of objects in the group to which we compare the
original expected values is formed.

The calculation of the W statistic is performed with Eq. 14 [44]:

W =
∑
i

[sgn(x2,i − x1,i)Ri] (14)

where the sgn is a sign function that extracts the sign of a real number, x1,i and x2,i are
variable values in two groups and Ri is the rank.

Table 9 shows the calculated values for the W statistic and p-values.

Table 9: Wilcoxon sum-rank test statistic and calculated p-values.

Variable Daily pass. num. Height [m] Pnl [W] ttrav [s]

W 14.9834 15.2953 1.9467 16.0613
p-value 9.4252e-51 8.2134e-53 0.0515 4.7631e-58

Accepted hypothesis H1 H1 H0 H1

The probabilities that the difference in the distributions and the medians of the tested
continuous variables, except the no load power consumption, happened by chance is low.

Since the p-value of the no load power consumption in the Wilcoxon sum-rank test was
on the border of the acceptance threshold we also test the means of the variables in these two
groups by calculating the probability of sampling the same distribution of a variable. If we
sample, for example, 10 000 times 400 (10%) escalators from the overall set, the distribution
of the mean values of independent variables that we test in these samples will be close to the
normal distribution. We can compare the mean values of the selected top 10% of escalators
for the DR to the the sampled distribution. We calculate the z-score – the amount of
standard deviations (σ) from the mean value (µ) of the distribution of the average values of
sampled independent variable and, thus, the probability (p-value) of sampling the selected
group of escalators. z-score can be calculated with Eq. 15 [45]:

z =
x− µ

(15)
σ

For this test, H0 - the null hypothesis is that the average of the means of the sampled 
dependent continuous variables is equal to the mean of the top 10% of the escalators for 
DR. H1 - the alternative hypothesis states that the means are different.

Table 10 presents the one sided z-scores and p-values for continuous independent variables 
for the top 10% of the best for DR escalators being significant for grouping escalators by 
the score.



Table 10: z-scores and one sided p-values for continuous independent variables for the top 10% of the best
for DR escalators being significant for grouping of escalators by the score.

Variable Daily pass. num. Height [m] Pnl [W] ttrav [s]

z-score -12.9757 -14.8572 -1.0227 -15.9067
p-value 8.4036e-39 3.1252e-50 0.1532 2.8482e-50

Accepted hypothesis H1 H1 H0 H1

Concluding both tests, the null hypothesis was accepted for the no load power con-
sumption while the rest of the tested variables showed to be significant in the selection of
escalators by the DR score presented in this article. Escalators with lower than average
daily number of passengers, height and shorter travel time are ranked higher in suitability
for DR and are preferable to be selected prior to others.

3.5. Comparison of solutions

To illustrate the comparison of the four escalator selection methods presented in Fig. 1,
we compare the increased queuing and travel times for various targets of power curtailment,
which was selected in range from 0.25 MW to 3.75 MW with steps of 0.25 MW.

The obtained results from the simulation-based model using the case study data include
∆P and ∆tq. Additionally, we have calculated the score, S = ∆P

∆tq
, as one of the input

variables for the selection algorithm mentioned in Fig. 1 and 3. For each target of power 
curtailment, the selection algorithm picks the best fitting escalators according to the score 
until it fulfills the power consumption curtailment target. In this way, since there is no 
measurement data of DR events from the field, the results produced by the simulation-based 
model are considered to be ’ideal’ and other solutions are compared to it. The downside 
of obtaining the results with the simulation-based model is the speed of the calculation. 
The modelling of one DR event for 4000 escalators takes on average 41 minute 17 seconds. 
The proposed solution by means of the statistical model trained on the modelling data 
yields the solution approximately in 0.034 seconds. In comparison to the modelled solutions, 
randomized selection is the fastest way to choose escalators, however, randomization induces 
substantial errors. Fig. 8 depicts the comparison of increased travel and queuing times 
depending on the target of power curtailment for the test sample of 4000 escalators with the 
compared solutions and the error of the statistical models compared to the simulation-based 
approach.



Figure 8: Comparison of methods and statistical model error in increased travel and waiting time compared
to the simulation-based model solution.

The random selection line in Fig. 8 is the mean of a 100 random selections for each
power procurement target with confidence interval of 95%. Solution yielded by statistical
models greatly outperforms the random selection of escalators. Random forest approach
outperforms the neural networks on the case study. Fig. 8 shows that depending on the
target of power reduction, the neural network error from the simulation-based solution lies
within 58 to 10.5%, while the random forest solution yields an error in the range of 10.5 to
0.2%.

It follows that creating a statistical model for escalator DR poses large benefits to pos-
sible future scheduling of DR events. Using the statistical model, it is simple to obtain
fast predictions about escalator DR performance for new and existing appliances without
the need for long simulations. Additionally, statistical models can be improved with more
obtained data from real measurements.

4. Discussions

This article presented a framework and for determining the best fitting escalators for 
possible DR. The proposed solutions are flexible in regard to the available data and perceived 
targets. Of course, the simulation-based model is seen as more accurate than the statistical 
methods, because the latter was trained to replicate the simulation output. To truly compare 
the accuracy of the two methods would only make sense if real-world data were available. 
The largest obstacle for creating more accurate models is the data. There is little to no 
data about passenger patterns, escalator segmentation and vertical rise distribution. The 
proposed methods can be drastically improved with field measured data. The proposed 
methods were used as a showcase of a probabilistic framework for the calculation of the 
potential escalator DR. Probably, performance of the statistical approaches is a subject to 
change if real measurement data is available, which has to be further tested.

Regarding the recommended escalator parameters that yield the highest escalator score 
for DR and considering the costs, the ideal situation for reducing the power consumption on



the escalator is when it moves with nominal speed but has the least number of passengers
on board. In cases of maximum number of daily passengers at the times of the DR, there is
a high probability to inflict large costs with decreasing the speed of the escalators. There-
fore, the daily passenger number should ideally reflect a more significant knowledge about
the density of the incoming passenger flow. This knowledge would increase the prediction
accuracy and help to reduce the costs of such DR method.

Compared to the previous research, the simulation-based model was updated with the
calculation of the probability of passengers taking a staircase if the escalator had a staircase
nearby, when queuing occurred. Furthermore, the efficiency of the drive was made variable
due to changes in momentary loading, as depicted in [11].

5. Conclusions

This article presented the framework and the model for determining the best fitting
escalators out of a large stock to accommodate the power curtailment target. The earlier
developed and enhanced simulation-based model together with the selection algorithm is
capable of finding the solution with minimal cost. The method was compared to the in-
troduced statistical models based on the random forest and the neural network regression
models which produce results faster but with induced errors that are larger for smaller tar-
gets of power procurement. The error ranges from 10.5 to 0.2% for random forest and 58 to
10.5% for neural network approach compared to the simulation-based model value. Thus,
with the current data and simulation, the random forest is a more accurate and preferable
approach for rapid prediction of DR potential and induced cost. In the case of random
selection, the cost in terms of increased travel and queuing times is times larger than with
the proposed methods. An alternative to modelling of DR is to use the following recommen-
dations derived from the models. While taking into consideration the modelled escalator
parameters, the best candidates among the modelled escalators for DR by speed reduction
are upwards-running escalators with slower speed (0.5 m/s), with the larger angle and that
have a staircase nearby. They also have lower than average daily passenger numbers, height
and travel time while having an average no load power consumption.
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