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A Learning-based Credible Participant Recruitment
Strategy for Mobile Crowd Sensing

Hui Gao, Yu Xiao, Member, IEEE, Han Yan, Ye Tian, Member, IEEE, Danshi Wang,
and Wendong Wang, Member, IEEE

Abstract—Mobile Crowd Sensing (MCS) acts as a key com-
ponent of Internet of Things (IoTs), which has attracted much
attention. In an MCS system, participants play an important
role, since all the data is collected and provided by them. It
is challenging but essential to recruit credible participants and
motive them to contribute high quality data. In this paper,
we propose a learning-based credible participant recruitment
strategy (LC-PRS), which aims to maximize the platform and
participants’ profits at the same time via MCS participation.
Specifically, the LC-PRS consists of two mechanisms, that a
learning-based reward allocation mechanism (L-RAM) first cal-
culates the maximum offered reward for different locations based
on the number of participants in each location. Under a budget
constraint, the proposed L-RAM prefers to collect sensing data
from locations which relatively few data has so far been collected.
Furthermore, for each location, we develop a credible participant
recruitment mechanism (C-PRM), which employs semi-Markov
model and game theory to predict quality of data provided
by each participant and to recruit participants based on the
predictions and the maximum offered reward calculated by L-
RAM. We formally show LC-PRS has the desirable proper-
ties of computational efficiency, selection efficiency, individual
rationality and truthfulness. We evaluate the proposed scheme
via simulation using three real datasets. Extensive simulation
results well justify the effectiveness of the proposed approach in
comparison with other two methods.

Index Terms—Participant recruitment, deep reinforcement
learning, mobile crowd sensing.

I. INTRODUCTION

Recent advances in mobile computing technologies and
Internet of Things (IoTs) technologies enable us to place more
built-in sensors and wireless communication modules into a
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smart device or IoT device [1], [2]. With a rich set of em-
bedded sensors and effective computational capabilities, smart
mobile devices (e.g., smartphones, wearable devices, UAVs)
are able to collect and share various types of data in urban
environments [3], [4]. This paradigm is called “Mobile Crowd
Sensing (MCS)” [5]–[7]. In a mobile crowd sensing campaign,
people or entities who need sensing data are called “task
publishers”. When they request to collect some data, there are
often accompanied by requirements for data collection such
as the desired type, quantity and quality of data, we refer to
them as “sensing tasks”, or simply “tasks”. Mobile users who
claim their requested rewards to participate in collecting data,
and operate sensors of mobile devices physically or subcon-
sciously, are called “participants”. Normally, there is also a
central “platform” to recruit participants, process sensing data
reported by them and send results back to task publishers.

Mobile crowd sensing has promising applications in many
domains, e.g., indoor maps reconstruction, where participants
collect sensing data (such as photos or videos) to reconstruct
3D maps [8]. However, a common challenge for most mobile
crowd sensing applications is to identify participants who can
contribute sensing data that meets the requirement of the task,
then to motive them to collect and contribute high quality
data [9]. Unfortunately, as participants are self-interested that
report less valuable sensing data to minimize their efforts, or
have no idea how to collect valuable sensing data, it is difficult
for the platform to guarantee to receive valuable service.
Therefore, how to design a participant recruitment strategy
is one of the most important topics for discussion [10]–[12].

It is worth noting that, for some crowd sensing applications,
e.g., indoor map construction, the task coverage is a critical
requirement. As low quality data is not equal to useless
data, sometimes high quality photos for example are useless,
if the photos do not contribute more mapping information.
Furthermore, because of its own characteristics, the application
prefers to construct the whole indoor map frame at first, then
refining details of every place. That means how to collect data
from the most number of locations is a significant step. One
method to motive participants is that the platform first predicts
participants’ trajectory, then recruits them based on their
mobility pattern [13]–[15]. Another method is to incentivize
participants to contribute sensing data from their locations,
employing their satisfied rewards [16]–[18]. Therefore, how
to encourage participants to contribute sensing data from their
locations with the limited budget is an important issue, which
will be dealt with in this paper.

Generally speaking, the main challenges of participant re-
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cruitment are summarized as follows: firstly, rewards are usual-
ly paid by task publishers who only have limited budget. That
means the platform needs to recruit participants and collect
required amount of sensing data under budget constraint [19].
On the other hand, a participant only conducts sensing tasks
when he/she is satisfied with the offered reward. Therefore,
how to find a balance that satisfies both the platform and
participants is an inevitable challenge [20], [21]. Secondly,
sensing data is collected by participants who may not receive
professional training on how to collect high quality sensing
data. Even worse, there may be some dishonest participants
who only want to gain rewards but do not contribute sensing
data. Then how to recruit participants in order to collect high
quality sensing data is another challenge [22]–[24].

To overcome the challenges mentioned above, in this paper,
we propose a learning-based credible participant recruitment
strategy (LC-PRS), which consists of two steps, i.e., a re-
ward allocation step and credible participant recruiting step.
Compared with the previous incentive mechanisms which did
not consider task coverage requirement, high quality data
collection or credible participant recruitment, or represent
incentive mechanism, e.g., encouraging participants to collect
sensing data from locations where are rarely sensed. [14],
[25]–[32]. The proposed method aims at finding a balance
between the limited budget and the coverage requirement
of a task. As the budget is limited, the platform prefers to
recruit participants located in the “important” grids where
sensing data is rarely collected, in order to meet the coverage
requirement of a task. More explanations for the important
grid will be given in Section IV. We propose a threshold
named maximum offered reward in the reward allocation step,
only participants whose requested rewards are less than the
maximum offered reward could have a chance to be recruited.
Furthermore, the maximum offered reward is dynamically
changed, based on the desired amount of sensing data and
the number of participants.

For the credible participant recruiting step, with the purpose
of collecting high quality sensing data, the semi-Markov
model is first employed to predict quality of data provided
by each participant. Then in order to help the platform make
participant recruitment decision with the consideration of the
maximum offered rewards calculated by the first step and
the prediction results, we employ a game theory to analyse
strategies of participants and the platform, respectively. Based
on the analysed strategies, we finally find out ones which
satisfy the Nash equilibrium.

The main contribution of this paper is summarized:

• We first model the profits of the platform and participants,
and formulate the process of participant recruitment as
a joint optimization problem, with the objectives of
maximizing both the platform and participants’ profits
together. The problem proves to be a NP-hard problem.

• To deal with the optimization problem, a learning-based
credible participant recruitment strategy is proposed,
which consists of a learning-based reward allocation
mechanism and a credible participant recruitment mech-
anism.

• We formally show that the proposed participant recruit-
ment strategy has the desirable properties of truthfulness,
individual rationality, budgetary feasibility and computa-
tional efficiency.

• We perform extensive simulations on three sets of real
datasets. The results show that our approach outperforms
previous works in terms of profits and the amount of high
quality sensing data.

The rest of this paper is organized as follows. We discuss
related research efforts in Section II. The system model is
described in Section III. We introduce the learning-based
credible participant recruitment strategy in Section IV. We
present the simulation results in Section V. The practical issue
is discussed in Section VI. Finally, we conclude the paper in
Section VII.

II. RELATED WORK

There has been much research on mobile crowd sens-
ing [33]–[35], among which participant recruitment is an
important issue [36]–[39]. As we mentioned in Section I, a
participant recruitment issue is normally related with reward
allocation and participant selection problems.

A. Incentive Mechanisms

Wang et al. proposed an online incentive mechanism that
stimulated participants for a task based on the relative popu-
larity among tasks by considering inequality of time-sensitive
and location-dependent tasks, and allocated budgets to these
tasks based on their required finish time and sensing locations
[25].

Peng et al. incorporated the consideration of data quality
into the design of incentive mechanism. The mechanism esti-
mated the quality of sensing data, and offered each participant
a reward based on his/her contribution. Authors extended the
Expectation Maximization method which combines maximum
likelihood estimation and Bayesian inference to estimate the
quality of sensing data [26].

Gong et al. proposed their incentive mechanism for mobile
crowd sensing systems, which incentivize strategic participants
to truthfully report their private quality and data to the re-
quester, and make truthful effort as desired by the requester
[27].

Gao et al. focused on the incentive mechanism design for a
vehicle based crowd sensing system, which contained a non-
trivial set cover problem. Authors proposed a reverse auction
based incentive to solve the problem [28].

Tao et al. employed a Stackelberg based game method
to design their incentive mechanism. For every contributed
sensing data, the platform calculated data utility, which took
sensing time, distance and orientation into consideration. Then
the platform gave participants rewards based on the data utility
[29].

For a location-constrained MCS, Restuccia et al. proposed
that the capability of participants to execute sensing tasks
depended on their mobility pattern, which was often uncertain.
They designed an incentive mechanism that employed reverse
auction to recruit participants with uncertain mobility [40].
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Xu et al. presented a vehicular location-constrained crowd
sensing system. The system incentivized the participants to
match the sensing distribution of the sampled data to the de-
sired target distribution with a limited budget. They formulated
the incentivizing problem as a knapsack problem and proposed
an algorithm named iLOCuS to solve the problem [41].

Yan et al. designed a peer-based data exchanging model, in
which relay nodes moved to certain locations to connect data
providers and consumers for facilitating data delivery. Task
publishers were willing to pay for the data and these rewards
were given to both relays and participants. They designed
an autonomous compensation game for relay nodes to make
decisions of where to go individually [42].

Fan et al. proposed a joint trajectory scheduling and in-
centive mechanism for spatio-temporal UVCS systems. They
designed an online incentive mechanism that decided whether
to recruit a participant when he/she asked to contribute sensing
data [43].

B. Recruitment Strategy
Usually, the final goal for designing incentive mechanisms

is recruiting participants and then receiving their contributed
sensing data. Therefore, it is essential to survey some state of
art participant recruitment relative research.

Normally vehicle trajectories are predictable, which provide
not only the current locations of the vehicles, but also their
future mobility trajectories. Therefore, Wang et al. proposed
vehicle recruitment algorithms, which considered the mobility
of vehicles. Authors aimed to minimize the overall recruitment
cost and employed a greedy algorithm to solve it [14].

Yi et al. modeled the participant recruitment problem as a
unconstrained maximization problem without explicitly cost
constraint, and a trade-off parameter introduced to control the
recruited participant cost [30].

Chen et al. proposed that there were two kinds of redun-
dancy in participant recruitment mechanisms. One was brought
by the incomplete coverage assessment, while the other one
was brought by the traditional participant selection process.
In order to solve the issues, authors proposed a participant
recruitment mechanism that selected a segment trajectory of
participant, rather than selected the whole one [31].

Zhao et al. proposed a reputation based participant recruit-
ment mechanism. The platform employed reputation value to
calculate “quality risk” and then participants’ rewards. The
quality risk value indicated the probability that participants
contributed high quality sensing data. And the platform re-
cruited participants based on the rewards [32].

Pouryazdan et al. studied two reputation calculation meth-
ods for recruiting participants, named 1) vote-based reputation
calculation method which calculated reputation by means of a
voting procedure, 2) anchor-assisted decentralized reputation
calculation method which deployed some anchor nodes who
were definitely trustworthy. Then authors introduced a metric
named collaborative reputation scores, which were calculated
by a weighted function of the vote-based and anchor assisted
decentralized reputation components [44].

Jin et al. proposed a payment mechanism that aimed at
selecting participant who could contribute reliable data. For

TABLE I
LIST OF IMPORTANT NOTATIONS

Notation Explantation

B, L, S, I, η Budget, set of grids, set of stages, set of
participants, the number of required pieces of
sensing data

cri , cb, cfl (s), cl(s) Requested reward of participant i, basic re-
ward, the maximum offered reward and float-
ing reward in grid l at stage s

Ph
i (s), P t

i (s) Probability of high quality sensing data con-
tributed by participant i, probability of re-
cruiting i in at stage s

Uplatform, Ui Profits of the platform and a participant i
θi, gi Cost of participant i, profit gained from a

piece of high quality sensing data
V Set of floating reward candidates
F , rsl , cl(s) state transition, reward function and policy

function
ns, as, rs state, action, reward of stage s
λl(s) Shapley value of grid l at stage s
h, u Sensing data quality
Wi(·) the semi-Markov kernel
zi(s), xi(s) The variant to denote whether i is recruited

and whether he/she contributes high quality
sensing data

data truth discovery, the participants whose data are closer to
the aggregated results would be assigned higher weights, and
the data from a participant with a higher weight would be
counted more in the aggregation [45].

Zhou et al. considered the fixed-wing UAV-aided location-
constrained MCS system and investigated the corresponding
joint route planning and task assignment problem from an
energy efficiency perspective [46].

Sun et al. aimed to select participants and allocate sensing
tasks to them so that the sensing costs undertaken by all par-
ticipants were as balancing as possible, while the requirement
of the task publisher for data reliability could be satisfied [47].

Wang et al. proposed an algorithm that selected participants
to perform location-dependent tasks that spent as little time as
possible for the participants. They designed an task allocation
scheme and designated a specified path for each participant,
considering both time-sensitivity, heterogeneity of the sensing
tasks and people-variability of participants [48].

Liu et al. aimed at selecting participants who located in
grids where were the more useful on data inference. They
proposed a three-step strategy to recruit participants, that
first selected some candidate participant sets, then estimated
which grids were more useful on data inference according
to the selected candidates, which finally recruited the proper
participant set [49].

Compared with literature reviewed above, we propose a
participant recruitment method which deals with sensing data
quantity and quality issues. In order to collect enough sensing
data, the method employs the reinforcement learning method
to set the maximum offered reward dynamically based on the
history collection performance. Any participant whose request-
ed reward is lower than that of the maximum offered reward
has a chance to be recruited. However, some authors employed
the revise auction to design the incentive mechanisms, they did
not consider malicious participants who could bid the lowest
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prices but did not permit to contribute high quality sensing
data. Furthermore, compared with the former literature that
focuses on collecting sensing data without considering data
quality or coverage, the proposed method priors to recruit
participants from the important grids which are rarely sensed,
with the purpose of collecting data in the whole sensing region
comprehensively. We carefully design a credible participant re-
cruitment method which first predicts quality of data provided
by each participant, then the method recruits participants based
on the predictions and the maximum offered reward.

III. SYSTEM MODEL

We consider a MCS system that consists of a single platform
residing in the cloud and some participants locating in different
grids. Every participant could be stimulated to a crowd sensing
task via reward by the platform. The frequently used notations
are summarized in Table I.

A. Profit Formulation

For the platform, when a task is received, together with
the requirement of quantity and quality of data and budget,
such as to collect photographs to reconstruct a 3D map under
a limited budget B. The platform first divides the entire
sensing region into a set of subregions or grids, which is
denoted by L , {1, 2, . . . , L}. And the platform needs to
collect no more than η pieces of sensing data from each
grid l ∈ L. With the purpose of deciding the maximum
offered reward of each grid easily and dynamically according
to the number of located participants, the platform then divides
the entire sensing campaign into a set of stages, which is
denoted by S , {1, 2, . . . , S}. Besides, multi-stage process
offers participants who are not selected at one stage more
opportunities to be selected at the next stage.

For any participant who prepares to perform the task in one
stage, he/she will claim his/her location and requested reward
at the very beginning of the stage. The platform will select
several participants according to their requested rewards and
locations, and the task requirement. There are a number of
participants located in sensing region and denoted by the set
I , {1, 2, . . . , I}. Each participant i ∈ I has a requested
reward which is denoted by cri . The probability of contributing
high quality sensing data by each participant at stage s ∈
S is denoted by Phi (s), which is stored by the platform. In
order to collect high quality sensing data, on the other hand,
the platform also calculates a value denoted by P ti (s), which
indicates the probability of recruiting the participant i ∈ I

at stage s ∈ S. The value of P ti (s) will be calculated later
in Section IV-B. The participant’s cost that performs a task
and contributes high quality sensing data is denoted by θi,
where i ∈ I. For the sake of simplicity, we assume there is
no cost if a participant contributes low quality sensing data.
The profit that the platform gains from every sensing data
is denoted by gi. The profits of the platform is defined as
Uplatform =

∑I
i=1

∑S
s=1(gi − cri )xi(s), where xi(s) = 1 if

a participant i ∈ I contributes high quality sensing data at
stage s, otherwise xi(s) = 0. And the profits of a participant
i ∈ I can be defined as Ui = cri − θi.

B. Problem Formulation

The social welfare can be defined as Uplatform +∑I
i=1

∑S
s=1 Ui =

∑I
i=1

∑S
s=1(gi − θi)xi(s). Based on that,

the target of this paper is
can be formulated as:

maximize:
I∑
i=1

S∑
s=1

(gi − θi)xi(s)

subject to:
I∑
i=1

S∑
s=1

cri zi(s) ≤ B

I∑
i=1

S∑
s=1

xi(s) ≤ Lη,

(1)

where zi(s) = 1 represents that the platform recruits a
participant i at stage s, otherwise zi(s) = 0.

Theorem 1. The proposed maximum target is an NP-hard
problem.

Proof. We consider a special case of (1) with that: the recruit-
ed participants always contribute high quality sensing data, for
any participant i ∈ I, there is gi − θi = cri . Furthermore, the
budget will be exhausted before the required amount of high
quality sensing data is met. Then (1) could be rewritten as:

maximize:
I∑
i=1

(gi − θi)zi(s)

subject to:
I∑
i=1

cri zi(s) ≤ B.

(2)

(2) is equivalent to the subset-sum problem, which is a well
known example of NP-hard problem. In order to prove that,
we turn (2) into a set of problems. Considering any family
D of n sets, each set contains three cardinalities. We shall
construct g1 − θ1, g2 − θ2, . . . , gn − θn and B such that there
is a subset of the (gk − θk) who can sum to B if and only
if there exists a subfamily of D covering exactly the universe
S = {α1, α2, . . . , α3m}, where m is an integer and m > 0.

All sets in D can be represented as bit-vectors of length
3m, e.g., {α1, α5, α6} and {α2, α4, α6} can be represented as
100011 and 010101, respectively. Based on this, we represent
(2) in (n + 1)-ary form, which is shown as gk − θk =∑
αi∈Sk

(n+ 1)i−1, and B =
∑3m−1
j=0 (n+ 1)j , where Sk ⊆ S

and B corresponds to the sequence 11 . . . 1 (with length 3m).
We next prove that D has a subset with sum B, if and
only if there exists a subfamily of D that exactly covers
{α1, α2, . . . , α3m}.

The sufficiency is proved as follows. Suppose that there
exists a set of S = {1, 2, . . . ,m} that satisfies

∑
j∈S(gi −

θi) = B. In order to conduct this summation in (n + 1)-
ary arithmetic, we notice that only the digits 0 and 1 appear
in the summands, and the number of summands is less than
n + 1, which means there is no “carry” happening in this
addition. Consequently, if the function

∑
j∈S(gi− θi) = B is

established, which means that there is only one number 1 ex-
actly existing in each of the 3m positions, or, equivalently, the
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Fig. 1. Framework of proposed approaches.

subfamily G − Θ = {Sj : j ∈ S} covers {α1, α2, . . . , α3m}
exactly.

The necessity is proved as follows. Since G − Θ covers
{α1, α2, . . . , α3m} exactly,

∑
j∈S(gi − θi) = B, which com-

pletes the proof of necessity.

IV. LEARNING-BASED CREDIBLE PARTICIPANT
RECRUITMENT STRATEGY

In this section, we first introduce our reward allocation
method, then the quality prediction and participant recruitment
method is proposed. Finally, we prove that our algorithm meets
four desired properties, i.e., selection efficiency, individually
rationality, computationally efficiency, and truthfulness. Fig. 1
illustrates the framework of our proposed approaches. Firstly,
the reward allocation method takes the budget, sensing re-
quirement and the number of grids as input, and produces the
maximum offered reward and grid collected order as output.
Then the participant recruitment method takes the budget and
the number of sensing stages, together with the output of the
former method as input, and produce the recruited participants
as output.

A. Learning-based Reward Allocation Method

For the platform, the purpose of recruiting participant is
buying their sensing data. And during this transaction, the
price acts as a signal to reflect sensing data supply and
demand, which depends on the demand of the platform and
supply of participants. This is defined as “law of supply
and demand” in market economy theories. In brief, if all
other factors remain equal, the more quantity demand of the
platform, the higher price of each piece of sensing data. On
the other hand, the more quantity supply of participants, the
lower price of each piece. Therefore, besides cost of collecting

data, the price of every piece of sensing data also follows the
law of supply and demand.

The purpose of proposing maximum offered reward is help-
ing the platform decide the maximum reward offered to the
participants, which follows the law of supply and demand. The
maximum offered reward of every stage is denoted by cfl (s),
which is composed by two parts, namely: basic offered reward
cb and floating reward cl(s). The former one is fixed which
indicates the ideal reward if the platform wants to collect
the requested amount of sensing data under budget constraint.
However, in reality, lower reward offered by the platform in
some grids can attract participants to contribute sensing data, if
there are more participants located, or the amount of collected
sensing data nearly meets the task requirement. On the other
side, the maximum offered reward should be higher in order
to collect sensing data when the opposite condition happens.
This is the reason why the floating reward exists.

Then how to decide how much floating reward offered
for one piece of sensing data in every grid at each stage
has become the main challenge. Here we introduce a deep
reinforcement learning method to calculate the floating reward.
Coarsely speaking, the proposed method involves a decision
agent that repeatedly observes the current states of the par-
ticipant recruitment, then takes an action among the available
actions allowed in that state. After, the agent will transfer to
a new state and obtain a reward.

1) State Space: N , {ns = (N1, N2)} denotes the state
that indicates whether the platform recruits participants or not.

2) Action Space: A , {as|a ∈V} denotes the action set.
3) Probability Distribution and State Transition: F :

N × A × N → [0, 1] denotes the probability distribution
P{ns+1|ns, {as}s∈S} of a state transition, in which the
current state is ns and when action as is chosen, the state
is transitioned to a new state ns+1.

4) Reward Function: N ×A → R expresses the expected
immediate reward received after the state is transitioned from
ns to ns+1, due to taking the action as, s ∈ S, which is
defined as: rs = ea

s

/
∑K
k=1 e

vk . Here we employ the softmax
value to calculate the reward.

5) Problem Formulation: When state transition F and
reward function rsl , l ∈ L, s ∈ S is predetermined, for each
stage s, our problem can be formulated as:

Ql(n
s) = max

asl

[
rsl (n

s, asl )

+ γ

∫
ns∈N

F (ns, asl ,n
s+1)Ql(n

s+1)
]
,

(3)

and the optimal strategies of the floating reward is given by

cl(s) = arg max
asl

[
rsl (n

s, asl )

+ γ

∫
ns∈N

F (ns, asl ,n
s+1)Ql(n

s+1)
]
,

(4)

Based on (4), the floating reward can be decided in grid
l at stage s. It is worth noting that one special phenomenon
may happen, that the sum of maximum offered reward of all
grids may exceed the budget. Furthermore, as we mentioned
in Section I, for some crowd sensing applications, e.g., indoor
map construction, which prefers to construct the whole indoor
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Grid 4

Grid 1 Grid 2

Grid 3

Fig. 2. Example of the proposed participant recruitment strategy.

map frame at first, then refining details of every place. For
this reason, some grids where less amount of sensing data is
rarely collected are more important. Therefore, a method is
needed to help the platform recruit participants preferentially
from these grids under the limited budget. Here the Shapley
method is employed to identify which grids are important,
which is shown as:
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∑
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is the marginal value, which is shown
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(6)
where ηl(s), l ∈L, s ∈ S is the number of pieces of sensing
data that have not been collected yet, and ‖ · ‖F is the
Frobenius norm, which is mathematically used to measure the
spatial length of a matrix, to quantify the difference between
the required and attained values.

Let us make a simple example to explain the meaning of
important grid, which employs the Shapley value method to
measure. As shown in Fig. 2, suppose the whole sensing region
is divided into four grids, i.e., Grid 1, Grid 2, Grid 3 and
Grid 4, each of which needs 10 pieces of sensing data. We
assume that the campaign has completed 12 stages, the amount
of data that has not been collected yet for the next stage is
η1(13) = 5, η2(13) = 3, η3(13) = 7, η4(13) = 2, respectively.
Apparently, Grid 3 is the most important one among all of
grids as there is not any piece of sensing data collected. The
Shapley value is correspondingly the highest among the four
grids, which is 0.55, calculated by (6). Grid 1 is the second
important one, and the Shapley value is 0.47, the rest of
Grid 2 and 4 are 0.27 and 0.15, respectively. The Shapley
value indicates sensing data collection order which follows
the principle of some crowd sensing applications.

Follow the example, we describe the whole process of the
reward allocation method. Suppose the platform pays 100 units

Algorithm 1 Learning-based Reward Allocation Mechanism
(L-RAM)

Input: Budget B, sensing requirement η, grid L

Output: Maximum offered reward of every location cfl (s) at stage s
1: cb = B/(L ∗ η);
2: for l = 1, . . . , L do
3: Calculate the floating reward candidate by (4);
4: cl(s) = argmaxvk

fl(k);
5: cfl (s) = cb + cl(s);
6: end for
7: Calcualte Shapley value λl(s) by (5);
8: Rank locations using λl(s) in descending order;

budget to collect total 40 pieces of sensing data from the
four grids, then the basic offered reward is 2.5 units, i.e.,
cb = 2.5. Each of stage is assumed to last 10 minutes, i.e.,
T = 10. At the beginning of Stage 13, the platform first has
to decide the maximum offered reward. As the set of variables
that a floating reward could be V = {−1.5,−1, 0, 1, 1.5, 2},
according to the proposed method, the floating rewards of
every location are supposed to be c1(13) = 1, c2(13) =
2, c3(13) = 1.5, c4(13) = 0, then the maximum offered reward
of each location is cf1 (13) = 3.5, cf2 (13) = 4.5, cf3 (13) = 4,
cf4 (13) = 2.5. As the rest of budget may be not enough for
paying for collecting the rest amount of sensing data at the
next Stage 13, the platform employs Shapley method to decide
collection order. Based on the Shapley values calculated above,
the order that platform recruits participants is Grid 3, 1, 2, 4.
The results of the maximum offered reward of each grid and
collection order will be employed to the credible participant
recruitment method.

The learning-based reward allocation mechanism is present-
ed in Algorithm 1; the procedure of which is that, firstly
the mechanism calculates the basic reward (Line 1). As the
task needs to collect L ∗ η pieces of sensing data (L grids
need to be sensed and η pieces of data are requested to be
contributed at each grid) under budget B, the basic reward
means the required amount of sensing data is met meanwhile
the budget is exhausted. Then the mechanism calculates the
floating reward for each grid at one stage, and the maximum
offered reward (Line 2 - Line 6). Finally, the Shapley method
is used to rank all of locations in descending order (Line 7 -
Line 8).

B. Credible Participant Recruitment Method
As we mentioned in Section I, the recruited participants may

not receive professional training on how to collect sensing
data in a desired manner. Therefore, the platform needs a
participant recruitment strategy to recruit credible participants,
with the purpose of avoiding to receive unsatisfying service.
The unsatisfying service is defined as not only receiving low
quality sensing data, but also including a dishonest situation
that a recruited participant does not contribute sensing data
after he/she gains reward. Actually, the dishonest situation is a
special case that a recruited participant contributes low quality
sensing data, which is also useless for the platform. Therefore,
in this paper, we employ low quality sensing data to represent
these two types of unsatisfying service.

We denote the quality of data by qi,n, which is contributed
by a participant i in the nth time. And the quality of data
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contributed by a participant is modeled as a semi-Markov with
discrete time, which means that the probability of a participant
i contributing high quality data at the nth time depends on that
of the (n − 1)th time. Therefore, process qi,n is a standard
discrete time Markov chain.

We define the semi-Markov kernel part in (7), where
Wuh
i (s) represents the probability that a participant i con-

tributes high quality sensing data at a stage s while he/she
contributed low quality sensing data last time. And T is the
time period of every stage s ∈ S, ti(s) is the lasting time
that a participant contributes sensing data. Here we assume
that a participant may not contribute sensing data at the very
beginning of every stage, but he/she contributes sensing data
before the end of stage.

Wuh
i (s) = P (qi,n = h, ti(s) ≤ T |qi,n−1 = u). (7)

Next we define the probability that a participant i will con-
tribute high quality sensing data at the nth time when he/she
contributes unusable data at the (n − 1)th time, before time
unit T as Zuhi (T ), which is shown as:

Zuhi (T ) = P (ti(s) ≤ T |qi,n = h, qi,n−1 = u)

=
T∑
x=1

P (ti(s) = x|qi,n = h, qi,n−1 = u).
(8)

The probability that a participant i contributes high quality
sensing data at the nth time, given he/she contributes unusable
quality data at the (n−1)th time is shown as Puhi = P (qi,n =
h|qi,n−1 = u) = numuh

i /numu
i , where numuh

i is the number
of times data quality contributed from unusable to high quality,
while numu

i is the number of times unusable data contributed.
We rewrite (7) based on (8), which is shown as:

Wuh
i (s) = P (qi,n = h, ti(s) ≤ T |qi,n−1 = u)

= Zuhi (T )Puhi .
(9)

Based on (9), the probability that a participant i con-
tributes high quality sensing data at a stage s is calculated
by Phi (s) =

(
Wuh
i (s) + Whh

i (s)
)
/
(
Wuh
i (s) + Wuu

i (s) +
Whu
i (s) +Whh

i (s)
)
.

We next describe the platform and selected participants’
strategies which follow the dynamic two-round game theory,
and discuss the conditions following Nash equilibrium. We
first describe the strategies of a selected participant in the
second round, who can employ a strategy to contribute high
quality sensing data, or low quality sensing data. The expec-
tation returns that he/she gains are denoted by Phi (s)(ci− θi)
when he/she wants to contribute high quality sensing da-
ta, or (1 − Phi (s))ci when he/she wants to contribute low
quality sensing data, respectively. If the selected participant
is required to contribute high quality sensing data, which
has to satisfy Phi (s)(ci − θi) ≥ (1 − Phi (s))ci. Here we
assume a participant is rational, that if the returns when
he/she contribute high or low quality sensing data are equal,
he/she will choose to contribute high quality sensing data in
order to keep performing crowd sensing campaign and gaining
rewards. On the other hand, the expected returns are denoted
by P ti (s)(gi−ci) when the platform recruits the participant, or
(1− P ti (s))τi when the platform recruits another participant.

Algorithm 2 Credible Participant Recruitment Mechanism
(C-PRM)

Input: Budget B, uncollected data ηl(s), sensing stage S

Output: Recruited participants Is

1: for s=1,. . . ,S do
2: Calucation of the maximum offered reward in Algorithm 1;
3: for Recruit participants from grids in the new order do
4: if cri ≤ c

f
l (s)&&cri ≤ B&&ηl(s) > 0&&Ph

i (s) ≥ 0.5 then
5: Calculate P t

i (s) by (12);
6: num = 1 with probability P t

i (s);
7: if num == 1 && data is contributed then
8: i→ Is;
9: ηl(s) = ηl(s)− 1;

10: B = B − cri ;
11: end if
12: end if
13: end for
14: end for

Let τi = βci, β ≥ 0 is the least return the platform wants
to gain. If the participant wants to be recruited, it has to
satisfy P ti (s)(gi − ci) ≥ (1 − P ti (s))τi. The two inequalities
we discussed above satisfy the Nash equilibrium, which we
have that:

θi ≤
ci
(
2Phi (s)− 1

)
Phi (s)

gi ≥
τi
(
1− P ti (s)

)
+ ciP

t
i (s)

P ti (s)
.

(10)

Based on (10), we know that the lower boundary of (1) is:

I∑
i=1

S∑
s=1

(
τi
(
1− P ti (s)

)
+ ciP

t
i (s)

P ti (s)
−
ci
(
2Phi (s)− 1

)
Phi (s)

)xi(s).

(11)
For every selected participant at a stage, we employ partial
derivative function of (11) to calculate the maximum the
minimum profit. And we employ the expected value to express
xi(s), that xi(s) = Phi (s)(1− Phi (s)). Then we have that:

P ti (s) =
τi
(
2Phi (s)− 1

)
τi
(
2Phi (s)− 1

)
+ 2ci

(
1− Phi (s)

) . (12)

From (10) we know that Phi (S) ∈ [0.5, 1], and τi = βci, then
we have τi

(
2Phi (s)−1

)
+2ci

(
1−Phi (s)

)
> 0 and P ti (s) ≥ 0.

The basic work flow of LC-PRS is that, the reward alloca-
tion method provides the maximum offered rewards of each
grid at the next stage to the credible participant recruitment
method. After recruiting credible participants and collecting
sensing data, the last method returns the data collection
result and remaining budget to the former one. For recruiting
participants, if the requested reward of a participant does not
exceed the amount of maximum offered reward, he/she has
probability to be recruited, which depends on the value of
probability P ti (s). The platform keeps recruiting participants
till the amount of required sensing data is met or the budget
is exhausted.

The detailed algorithm of participant recruitment mechanis-
m is presented in Algorithm 2, correspondingly we describe
the main processes as follows.

Step 1 of C-PRM: In the beginning of each stage, the
platform first calculates the maximum offered reward and
allocation order employing Algorithm 1 (see Line 2).
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Step 2 of C-PRM: The platform recruits participants based
on the new reward allocation order. For participants whose
probability value Phi (s) ≥ 0.5, if his/her requested reward
does not exceed the maximum offered reward and rest budget,
and there is still several amount of sensing data needed to be
collected, then the participant has a chance to be recruited (see
Line 4). The platform selects the participant with probability
P ti (s), if he/she is recruited, the platform first collects the
contributed sensing data and then pais the reward to him/her
(see Line 5-11).

Step 3 of C-PRM: The crowd sensing campaign is ended
when one of the three conditions is met: 1) the last sensing
stage is finished, 2) the required amount of sensing data is
met, 3) the budget is exhausted.

C. Desired Properties

In this paper, we aim to ensure that our worker selection
policy has the following advantageous properties.

Proposition 1. (Computational efficiency): The proposed
mechanism is computationally efficient that it can be executed
within polynomial time.

Proof. We focus on the computational complexity at each
stage. Since the mechanism first employs Algorithm 1 to
calculate the maximum offered reward of every grid, which
takes O(L) time in Line 2 − 6 and O(2L) time to calculate
Shapley value in Line 7. Therefore, the mechanism takes
O(2L) time in Line 2 of Algorithm 2. Then the mechanism
recruits participants from every grid which takes O(LI) in the
worst condition in Line 3 − 13 of Algorithm 2. Therefore,
the computational complexity at each stage is bounded by
O(2L).

Proposition 2. (Selection efficiency): The proposed mechanis-
m is selection efficient that its regret is bounded.

Proof. The regret is defined as the difference of service
quality:

regret(s) =
I∑
i=1

( (gi − θi)z∗i (s)

cri
− (gi − θi)zi(s)

cri

)
, (13)

where z∗i (s) and zi(s) is the optimal and realistic selection of
the platform, respectively. Let ∆i = z∗i (s)− zi(s). And φi(s)
denotes the number of times that a participant i ∈ I has been
chosen before a stage s. (g − θ)/c is a constant which can
be calculated by approximate methods. Then according to the
study of Wu et al. [50], the expected total regret in the whole
number of stages S is given by

E
[ S∑
s=1

regret(s)
]
≤ SI(g − θ)

c
E
[ S∑
s=1

I∑
i=1

(
z∗i (s)− zi(s)

)]
=
SI(g − θ)

c

SI∑
i=2

∆iE[
S∑
s=1

φi(s)]

≤ O
([ SI∑

i=2

1

∆2
i

]2
logS

)
.

(14)

From (14), we can conclude that when the number of stages S
increases, cumulative regret’s growth rate becomes lower and
lower (because the derivative of log y is 1

y ), which reflects the
learning procedure of Thompson sampling.

Proposition 3. (Individual Rationality): The proposed mech-
anism is individually rational.

Proof. As a selected participant i ∈ I can gain his/her
requested reward cri , which proofs the proposed mechanism
is individually rational.

Proposition 4. The proposed mechanism is truthful.

Proof. Depending on the relationship of supply and demand,
which is discussed in Section IV. The platform decides the
upper bound of price which considers the desired amount of
sensing data. If the requested reward cri of a participant i ∈ I

is higher than that of maximum offered reward cfl (s), he/she
will not be recruited. If the participant does not contribute
sensing data after being recruited, he/she will not gain reward
as the platform only pays recruited participants when their
sensing data are contributed.

V. PERFORMANCE EVALUATION

With the purpose of evaluating the performance of the
proposed method, we employ three sets of datasets to do two
sets of separate simulation experiments. In this section, we
first introduce simulation setup, then present and analyze the
simulation results.

A. Setup

The first dataset includes taxi mobility traces collected in
Rome, Italy. In the dataset, GPS coordinates of approximately
320 taxis are recorded over 30 consecutive days [51]. We
employ the dataset as the participants’ trajectories in a mobile
crowd sensing campaign. Each trajectory is marked by a
sequence of time-stamped GPS points that contain taxi driver
ID, time stamp (date and time), and taxi drivers’ position
(latitude and longitude).

The second dataset is map offset correction data1. Map
offset is a value that indicates the value gap between GPS
coordinates in real world (i.e., accurate values) and those
in a digital map. We use the data as “data quality" in our
experiment, which is employed to evaluate quality prediction
mechanism that is mentioned in Section IV-B.

For the first two sets of datasets, we adopt the following
procedures to set up our simulation platform:
• As all traces are recorded in different parts of Rome.

We find a region about 800× 500m2 which is shown as
Fig. 3(a). We use this region as the simulation area for
the considered data collection campaign, and Fig. 3(b)
shows the GPS points inside the region.

• All traces in the considered region are recorded from
347 potential (candidate) participants, i.e., I = 347.
Since these traces are recorded at different days, in our
simulation we overlay them into one day.

1(Baidu, Google) map latitude and longitude GPS offset correction. Avail-
able: https://www.programering.com/a/MTO1IzNwATg.html
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Fig. 3. Datasets employed in the simulation experiments, where (a) shows
the sensing region. (b) shows the GPS points inside the region. (c) The library
floor plan of Aalto University. (d) The sensing data collection result.

• The whole sensing region is divided into several grids,
which is varied by 2, 5, 10, 15 and 20, respectively.
The stages are varied from 40 to 60 from the beginning
to deadline, with the increment of 5. And the number
of piece of requested sensing data of every grid are
270. Budget is varied from 3000 to 4000 units with the
increment of 200 units. The floating reward candidates
are V = [−5, 5], respectively. For the cold start, we set
that the value of probability that the platform recruits
a participant and a participant contributes high quality
sensing data to 0.5, respectively. The requested rewards
of participants are set as the uniformly distributed random
numbers varied from 10 to 30 units.

• We employ the map offset values to indicate a participan-
t’s sensing data quality, which is denoted by qi,n,∀i ∈ I.
The map offset of use are nonlinear, in the range of
[300, 500] miles. We collect those in the same latitude
into a set.

The third dataset is photos collected in a library of Aalto
University, Finland (Fig. 3(c) and (d)). The size of the library
area is around 350m2. The photos are snapped by iPhone
7, Galaxy S7, and Nexus 5, respectively. In the dataset,
the number of pieces of sensing data contributed by each
participant at one time, together with the collection location
are recorded. For quantifying the quality of data collected
by each participant, as we mentioned in Section I, that low
quality data is not equal to useless data, high quality photos
for example are useless, if the photos do not contribute more
mapping information. Therefore, we employ the ratio value of
how many piece of sensing data are actually used and the total
number of collected by him/her, which is in the range of [0, 1].
We extend the source dataset to 339 pieces of data. We first
find out the minimum and maximum ratio values from the
source data, then generate each of extended data randomly
between them. We list the difference procedures compared
with the first two sets of datasets:

• All traces in the considered region are recorded from 339
potential (candidate) participants, i.e., I = 339. Since the
library is a small sensing regain, the whole sensing region
is divided into 10 grids, i.e., L = 10.

To evaluate the performance of our proposed strategy (re-
ferred as “LC-PRS”), three other approaches are implemented
and compared.

• We employ the upper confidence bound (UCB) method to
replace the deep reinforcement learning method, which is
a classical reinforcement learning method [50]. The UCB
method is formulated as: fl

(
k
)

= Xl(s) + γAl(s), k ∈
[1,K], where Xl(s) is the average profit that indicates
participants has been selected when one floating reward
has been chosen. Al(s) is an upper confidence bias added
to the sample mean. Here we refer the UCB method as
“UCB”.

• We employ a greedy method to be the second compared
approach. In our evaluation study, we sort participants by
Phi (s) in an diminishing order, and select the participants
until the budget is exhausted or the required number of
piece of sensing data is met (referred as “Greedy”).

• The third compared approach select participants random-
ly at every stage, until the required number of piece of
sensing data is met or the budget is exhausted (referred
as “Random”) [49].

• We employ the method as proposed in [50] to be the forth
compared approach, which selects participants based on
their service quality effectively in a reinforcement learn-
ing manner (referred as “MTSWS”). Here we employ
the probability of contributing high quality sensing data
Phi (s) to be the value of service quality.

• For the final compared approach (referred as “Optimal”),
we assume that all of selected participants contribute high
quality sensing data, and employ exhaustive method to
satisfy (1).

We evaluate the proposed LC-PRS strategy through numer-
ical results in section V-B. We mainly compare the value of
social welfare subject to the budget and the number of required
data constraint, which is formulated as (1). Furthermore, as the
platform needs to collect the high quality sensing data, we also
compare the amount of collected high quality sensing data.
Besides focusing on the impact of budget, we also consider
the number of grids, participants and stages as parameters,
all of which could affect the value of social welfare and the
amount of collected high quality sensing data.

B. Simulation Results

We present the simulation results in Fig. 4 and 5. Here
we set the requested reward of a participant randomly in the
range of [10, 30] units. The basic reward cb = B/(L ∗ η),
where L∗η is the number of pieces of requested sensing data.
The maximum offered reward is composed of the basic reward
and floating reward. The floating reward is a dynamic value,
which is in the range of [−4, 4] units. We normalize the map
offset value in the range of [0, 1], where 1 means the sensing
data is utterly high quality and 0 is on the contrary. We set
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Fig. 4. Simulation results based on the first two datasets. (a-h) show the normalized social welfare and total number of piece of high quality sensing data,
under various budget, number of grids, number of participants and number of stages, respectively. (i) shows the growth rates of regret.

the threshold value of high quality sensing data as 0.7. The
cost of a participant i is set as 0.8 ∗ cri .

Fig. 4(a) and (b) show the normalized social welfare, and
total number of pieces of high quality sensing data under the
setting of 3000, 3200,. . ., 4000 units. The whole region is
divided into 15 grids, and the sensing stage is set to 45. Except
the Optimal approach, LC-PRS always gains more amount of
social welfare and high quality sensing data, compared with
other methods. For example, the LC-PRS gains 14%, 16% and
25% more amount of social welfare than that of MTSWS,
UCB and Random, when budget is 3600, 4000 and 3800,
respectively. Compared with the Optimal that always gains
the most amount of social welfare and high quality sensing
data, the proposed approach only gains 33% and 20% less
amount of social welfare compared with that of Optimal, when
budget is 3000 and 4000, respectively. And LC-PRS collects
74 and 15 less amount of sensing data in the worst and best
condition, when budget is 3200 and 4000, respectively. We
observe that the value gap between the proposed method and
Optimal narrows down, with the budget increasing.

Fig. 4(c) and (d) show the normalized social welfare, and
total number of piece of high quality sensing data under the
setting of 2, 5, 10, 15, 20 grids, where the budget is set to 4000
units, and the sensing stage S = 60. From the figures we can
find that the proposed approach performs better than that of
other four methods. For example, the proposed approach gains
15%, 16% and 28% more amount of social welfare than that
of UCB, Greedy and Random, when the number of girds are
10, 20 and 15, respectively. And compared with the Optimal,
the LC-PRS only gains 24% less amount of social welfare than
that of Optimal in the worst condition, when the number of
stages are 2. However, the LC-PRS gains 242 pieces of high
quality sensing data when stages are 20 (Fig. 4(b)), and the
optimal gains 248 pieces in the same stage, only two more
than that of LC-PRS.

Fig. 4(e) and (f) show the results under different number of
participants, where the whole region is divided into 15 grids
and the sensing stage is set to 40. From Fig. 4(e) and (f),
we observe that the proposed approach gains the most amount
of social welfare and sensing data, compared with UCB and
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Fig. 5. Simulation results based on the last dataset. (a-f) show the normalized social welfare and total number of piece of high quality sensing data, under
various budget, number of stages and number of grids, respectively.

Random, when the number of available participants are set to
40%, . . ., 100%. Especially, when there are 40% number of
available participants, the proposed method gains as the same
amount of high quality sensing data as that of the Optimal.

Fig. 4(g) and (h) show the results under different number
of stages, where budget is set to 3800 units, the whole region
is divided into 15 stages and the sensing stage is set to 40.
In addition, Fig. 4(i) shows the growth rates of regret become
flat eventually, which verifies that the proposed approach is
bounded.

From Fig. 5(a) and (b) we observe that the LC-PRS always
gains more amount of social welfare and high quality sensing
data than that of UCB and Random, under the setting of
grids L = 10 and sensing stage S = 50. Compared with
the Optimal, LC-PRS gains 28% and 42% less amount of
social welfare under the best and worst results. However, the
proposed method could gains only 8 pieces of high quality
data less than that of Optimal, when budget is 3600 units. The
proposed method also gains 27% and 36% more amount of
social welfare than that of Greedy and UCB, when the budget
is 4000 and 3600 units, respectively. Fig. 5(c) and (d) show
the results of different number of stages under budget is 3800
units and grids is 10. While Fig. 5(e) and (f) is the results
of different number of participant candidates when budget is
4000 units and sensing campaign is divided into 45 stages. We
observe that though the Greedy, Random and MTSWS gains
more amount of social welfare and high quality sensing data,
the proposed method performs better than that of other four
methods, in the most of time.

VI. DISCUSSIONS

A. Practical Issue Related to Participant’s Sensing Cost

In this paper, we assume there is no cost if a participant
contributes low quality sensing data. Take the iPhone 11 Pro
Max for example, which battery power is 3, 969 mAh2. It takes
only 0.007 RMB to fully recharge a iPhone. As a task of
MCS usually employs some sensors of a smartphone, the cost
of which is even lower than that of recharging a smartphone.
Compared with the requested reward of a participant, the cost
of contributing low quality sensing data could be ignoring.
However, if a participant wants to contribute high quality sens-
ing data, he/she may perform several times before contributing
the most satisfactory data, which normally will spends much
more battery power and time than that of participant who
usually contribute low quality data. Therefore, we take the
cost of contributing high quality sensing data into account.

B. Practical Issue Related to Participant’s Sensing Time

As we assume that a participant may not contribute sensing
data at the very beginning of every stage, but he/she con-
tributes sensing data before the end of stage. The assumption
is based on the scenario that the platform first broadcasts a
task at the beginning of every stage. Participants who have an
interest in the task claim to participate at this stage. Finally the
platform selects several participants and prepares for the next
stage. The participants who could not perform the task during
a stage time will not participate. However, if a participant
perform a task but does not contribute sensing data, he/she

2https://9to5mac.com/2019/09/17/iphone-11-and-iphone-11-pro-battery-
size/
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will be seen as contributing low quality sensing data at this
stage. And this maybe affect the chance of selecting him/her
for next time.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a learning-based credible par-
ticipant recruitment strategy for mobile crowd sensing. We
designed a participant recruitment algorithm, which consisted
of two steps. For the first step, the platform calculated the max-
imum offered reward for every grid and participant recruitment
order, based on the number of participants located in each
grid and the rest required amount of sensing data. With the
purpose of changing the maximum offered reward dynamically
according with the varied number of participants, we divided
the whole sensing campaign into several stages. After that,
a semi-Markov model was employed to predict quality of
data provided by each participant. Finally, we employed a
two-round game theory to help the platform recruit credible
participants. The result shown that the proposed algorithm
gained most amount of social welfare and high quality sensing
data, compared with other two methods.

As for the future, we plan to design a new participant
recruitment strategy considering participants’ mobility pattern.
For the reward allocation step, there are two schemes to
calculate the reward, one is that the platform first forecasts
participants’ trajectory and then decides the maximum offered
rewards based on the predicted number of participants of
every grids. Another scheme is the participant first claims
his/her starting point and destination to the platform. Then the
platform plans the route with considering the rarely sensed grid
he/she could pass by. It is a challenge that the platform should
offer a satisfied reward to the participant, with the purpose of
compensating him/her for taking a long way around.
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