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Abstract
The quantum speed limit (QSL) sets a bound on theminimum time required for a quantum system to
evolve between two states. For open quantum systems this quantity depends on the dynamicalmap
describing the time evolution in presence of the environment, on the evolution time τ, and on the
initial state of the system.We consider a general single qubit open dynamics and show that there is no
simple relationship betweenmemory effects and the tightness of theQSL bound.We prove that only
for specific classes of dynamical evolutions and initial states, there exists a link between non-
Markovianity and theQSL.Our results shed light on the connection between information back-flow
between system and environment and the speed of quantum evolution.

1. Introduction

The idea of the possible existence of a fundamental limit, dictated by the principles of quantummechanics, for
the speed of evolution of quantum states wasfirstly discussed in [1]. In that paper,Mandelstam andTamm
derived a quantum speed limit (QSL) from theHeisenberg energy-time uncertainty relation. Specifically, they
showed that the evolution time is bounded by the variance of energy as t D h E4MT .More recently,Margolus
and Levitin studied theQSL in connection to themaximal rate of computation possible for a computer [2]. In
this case, theQSLwas calculated as theminimum time for a quantum system to evolve from a pure initial state to
some orthogonal pure state, using a one dimensional harmonic oscillator as an example. The authors showed
that theminimum time is related to the total energy of the system as t  h E4ML . These two bounds are
unordered, and therefore in the literature theQSL is defined as themaximumbetween these two quantities.

The results of [1, 2]were extended to include cases where the evolved state is not orthogonal to the initial
state in [3].Moreover, in addition to the previous definitions valid for closed quantum systems, several authors
proposed different generalizations to open quantum systems applicable for bothMarkovian and non-
Markovian dynamics [4–9]. Nowadays, QSLs are investigated in connection to a number of topics, from
quantummetrology to quantum computation, fromquantum control to quantum thermodynamics, as
reviewed, e.g. in [10]. Contrarily towhat was initially believed, speed limits are not an exclusive property of
quantum systems, namely they do not arise uniquely because of quantum features. Indeed, they can be derived
also for classical systems, without assuming any quantumproperties, such as commutation relations, as shown
recently in [11, 12].

In this paperwe focus on the geometric formulation of theQSL given in [4].We are specifically interested in
clarifying the connection between theQSL bound and the presence or absence ofmemory effects, described in
terms of information backflow [13]. Following [4], this aspect has been further investigated, elaborating on the
claim that theQSL is smaller when the dynamics is non-Markovian, potentially speeding up the evolution
[14, 15]. These authors showed analytically that, for a specificmodel of open quantum systemdynamics, the
ratio between theQSL and the actual evolution time, τQSL/τ, is 1when the system isMarkovian, and is smaller
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than 1when it is non-Markovian. Their result suggests that in theMarkovian case the dynamics saturates the
bound, giving themost efficient evolution, whereas in the non-Markovian case the actual limit can still be lower
than the evolution time. The explicitly derived dependency betweenQSL and non-Markovianity has proven
useful in several applications [10, 15–28].

Ourmain goal is to tackle the question of the connection between non-Markovianity and theQSL not
starting from a specificmodel but in full generality, looking in detail at the role played by the dynamicalmap, the
evolution time τ, and the initial state, in the achievement of theQSL bound.We show that, for themost general
cases, there is no simple connection between theMarkovian to non-Markovian crossover and theQSL.Under
certainmore restrictive assumptions, however, we can characterize families of one-qubit dynamicalmaps for
which theQSL speed-up coincides with the onset of non-Markovianity, as indicated by the Breuer–Laine–Piilo
(BLP)non-Markovianitymeasure [13]. For these families we derive analytical formulas for theQSL as a function
of the BLPmeasure. Our results also show that, for a given open quantum systemmodel, both the evolution time
τ and the initial state play a key role and cannot be overlookedwhenmaking claims on theQSL. As an example,
we generalize results in [4] to a broader set of pure initial states, and show that theQSL bound is saturated only
for very few initial states even in the fullyMarkovian case.

The paper is structured as follows. In section 2we briefly present the formalismof open quantum systems
and recall the commonmathematical definitions ofQSL. In section 3we present the Jaynes–Cummings (JC)
model used in [4] and discuss briefly their results concerning non-Markovianity and quantum speed-up. In
section 4we study how the actual evolution time affects theQSL for the same JC system. In section 5, we calculate
the general conditions for theQSL optimal dynamics, and study the connection between BLPnon-Markovianity
andQSL. In section 6we study the initial state dependence of theQSL for theMarkovian dynamics arising from
Pauli and phase-covariantmaster equations. In section 7we study the effects ofMarkovian to non-Markovian
transition toQSL using a specific phase-covariant system as an example. In section 8we summarize the results
and discuss their implications.

2.QSL, non-Markovianity, and open quantum systems

Anopen quantum system is a system (S) interactingwith another system, the environment (E). Commonly the
dynamics ofE is not interesting, and one concentrates only on how S changes in time. In our case the systemof
interest is a single qubit. According to the theory of open quantum systems, the reduced dynamics of the qubit is
given by ( ) ( ( )) [ ( ) ( ) ( ) ( )]†r r r r= F = Ät U t U t0 tr 0 0S t S E SE S E SE , where ρS(t) is the reduced state of the system,Φt

the dynamicalmap, ρS(0)⊗ρE(0) the initial combined system-environment state,USE(t) the unitary time
evolution of the combined system, and trE[·] the partial trace over the environment.

We call amap k-positive, if the compositemap F Ä t k, where k is the identitymap of a k-dimensional
ancillaryHilbert space, is positive for all t 0. If amap is 1-positive, that is k=1, we call it a positive (P)map. If
themap is k-positive for all k 0, thenwe call themap completely positive (CP). Furthermore, amap is called
CP-divisible (P-divisible), if, for any two time instants s and t, with  s t 0, themap can bewritten as

◦ ( )F = FV , 1s s t t,

where the propagator Vs t, is CP (positive).
The explicitmodels of dynamics in this paper are generated by a time-localmaster equation:

( )
( ( )) [ ( ) ( )] ( ) ( ) { ( )} ( )† †⎜ ⎟⎛

⎝
⎞
⎠å

r
r r g r r= = + -


t

t
L t t H t t A t A A A t

d

d

i
,

1

2
, , 2S

t S S
i

i i s i i i S

whereH is the systemHamiltonian, γi(t) the time-dependent decay rates, andAi the Lindblad operators. The
solution for themaster equation gives the time evolution of the state in the formof a dynamicalmap,
Φt(ρ(0))=ρ(t). TheGKSL theorem implies, that for non-negative decay rates, that is ( )g t 0i , the resulting
map is always completely positive and trace preserving (CPTP) [29–31]. CPTP is an important property, since it
guarantees the physicality of the dynamicalmap.

The example dynamics considered in this paper arise from two very general families ofmaster equations,
namely the phase-covariantmaster equation [32–36]:
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and the Paulimaster equation [37, 38]:

( )( ) ( )år g s r s r= -
=

L t , 4t t
i

i i t i t
1

3

whereσ1,σ2 andσ3 are the Pauli x, y, and zmatrices respectively and ( )s s s=  i1

2 1 2 .

To study the effects of non-Markovianity, we employ thewell-knownBLPmeasure [13], defined as

( ) ( ) ( )
( ) ( ) ò s rF = Ft

r r s>
 tmax , d , 5t

0 , 0 0
1,2

1 2

with ( ) ( ( ( )) ( ( )))s r r rF = F FD, 0 , 0t t t t1,2
d

d 1 2 , where ( ( ) ( )) ∣ ( ) ( )∣r r r r= -D t t t t, tr1 2
1

2 1 2 is the trace distance
between ρ1(t) and ρ2(t) and themaximum is taken over all possible initial states, and the integral is calculated
over tä (0, τ). In this case, for > 0, the non-Markovianity is related to the amount of information flowing
black to the system, quantified by the increase in distinguishability between the states. In terms of the dynamical
map, this implies violation of P-divisibility [13].

The generalizedQSL is defined as [4]

( ( )) ( )
⎧⎨⎩

⎫⎬⎭t r r=
L L Lt t t

tmax
1

,
1

,
1

sin , , 6QSL op tr hs
2

0

with ( )r rt ,0 the Bures angle between the pure initial state ρ0 and the evolved state ρτ, defined as

( ) ≔ [ ( ) ] ( )r r r rt t F, arccos , , 70 0

where ( ) ( [ ])r r r r r=t tF , tr0 0 0
2 is thefidelity between the two states, which for pure initial state

∣ ∣r y y= ñá0 0 0 simplifies to

( ) ( ∣ ∣ ) ( )r r y r y= á ñt t , arccos . 80 0 0

Wehave denoted

∣∣ ( )∣∣ ( )òt
rL =t

t
L t

1
d , 9xx

t t xx
0

where xx is either op, tr orHS for operator, trace, andHilbert–Schmidt norm respectively. It can easily be shown,
using the definitions

∣∣ ∣∣ { } ∣∣ ∣∣ ∣∣ ∣∣ ( )å år r r= = =L s L s L smax , , , 10t t
i

i t t
i

i t t
i

iop tr HS
2

where si are the singular values of Ltρt, that the operator norm alwaysmaximizes equation (6), and thus theQSL
can bewritten as

( ( ))
( )t

r r
=

L
t

t

sin ,
. 11QSL

2
0

op

3.Damped JCmodel

For the sake of concreteness we begin our investigationwith a simple paradigmatic open quantum system
model, extensively studied in the literature, which is a special case of the phase-covariantmaster equation given
in (3). This allows us to recall the results previously obtained in [4].Wewill then proceed to generalize these
results along different lines, using thismodel for benchmarking.

Themodel considered is the resonant damped JCmodel, which can be obtained through an exact
microscopic derivation from a totalHamiltonian describing a two-level system interactingwith an infinite
bosonic environment, e.g. the quantizedfield inside a leaky cavity. The dynamics of the two-level system is given
by themaster equation [39]

( ) ( ) { } ( )⎜ ⎟⎛
⎝

⎞
⎠r g s r s s s r= -- + + -L t

1

2
, , 12t t t t

JC

with

( ) ( )
( ) ( )

( )g
g l

l
=

+
t

t

d t t

2 sinh d 2

cosh d 2 sinh d 2
, 130

where l g l= -d 22
0 ,λ is the spectral width of the reservoir (hereafter assumed to be Lorentzian), and γ0 is

the coupling strength between the qubit and the cavity field. The solution to this system can be given in the

3
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following form

( )
∣ ∣

∣ ∣
( )

⎛
⎝
⎜⎜
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⎟⎟r r

r r

r r
F = =
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b b
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, 14t t

t t

t t

JC
0

11
2
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01 11
2*

where ρ11 corresponds to the excited state, and

( ) ( ) ( )⎜ ⎟⎛
⎝

⎞
⎠

l
= +l-b t

d
te cosh d 2 sinh d 2 . 15t

t 2

In [14] itwas numerically shown that for themapof equation (14) the eigenstates ∣ ∣ñá0 0 and ∣ ∣ñá1 1 ofσ3, are the
optimal pair of states for theBLPmeasure. The trace distance for this pair is ( (∣ ∣) (∣ ∣)) ∣ ∣F ñá F ñá =D b0 0 , 1 1t t t

2,
and so theBLPmeasure takes the form

( ) ∣ ∣ ( )
∣ ∣òF = ¶t

¶ >
 b td . 16

b
t t

JC

0

2

t t
2

Following the calculations of [14], we can isolate the positive part of the integral bywriting the integrand as
∣ ∣ (∣ ∣ ∣ ∣ ∣ ∣ )¶ = ¶ + ¶b b bt t t t t

2 1

2
2 2 . Now the BLPmeasure can bewritten as an integral of the interval [0, τ] as

( ) ∣ ∣ ∣ ∣ (∣ ∣ ) ( )òF = ¶ + -t

t
 b t b

1

2
d

1

2
1 . 17t t t

JC

0

2 2

Choosing the initial state as ∣ ∣ñá1 1 , the operator norm for the JCmodel becomes

∣∣ ∣∣ ∣ ∣ ∣ ∣ ( )r = ¶L b . 18t t t top
2

Using equations (17) and (18), and the identity ( ( ( ))) ( )= -f t f tsin arccos 12 2, we canwrite theQSL time as:

( )
( )
∣ ∣

t
t

=
+F

-
t

t

 1
. 19

b

QSL
2

1

JC

2

This equation suggests that the saturation of theQSL bound is strictly a feature ofMarkovian dynamics,
since any dynamics with ( )F >t 0JC results in lower than optimalQSL.However, as wewill show in the
following, this consideration is valid only for dynamics described by equation (14) and it cannot be used to
describeQSL for other initial states. Inwhat follows, wewill generalize equation (19),firstly derived in [14], to a
larger class of qubit dynamics and show that it does not hold in general.We also consider theQSL optimality of
pure initial states which do notmaximize the BLPmeasure.

4. Evolution time dependence of t tQSL

In this short sectionwe show the dependence of the τQSL on the choice of the evolution time.More specifically
wewill see that τQSL is notmonotonically dependent on τ in the non-Markovian region.

Infigure 1we show the bound τQSL/τ in equation (19) as a function of the coupling constant γ0, for different
choices of τ. It is immediate to see that theQSL depends noticeably on the chosen evolution time on short
intervals and that theQSL as a function of τ is notmonotonic. The plateau of τQSL/τ=1 in the non-Markovian

Figure 1.The ratio τQSL/τ as a function of the coupling constant γ0, for different choices of τ. The black vertical line is the critical
value g0

crit of γ0.We see, that the choice of τ affects theQSL in a non-monotonic way.

4
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regime of g g>0 0
crit space is explained by the dynamics and the direct dependence of the BLP-measure and the

τQSL/τ in equation (19): if the time interval is chosen so short that the dynamics exhibit no recoherence, the
BLP-measure is zero, and thus τQSL/τ=1.

5. Connection betweenBLPnon-Markovianity andQSL

As seen in section 3, there exists a connection between the values of the BLPnon-Markovianity andQSL for the
JCmodel: τQSL/τ is a simple function of the BLPmeasure and τQSL/τ=1 if and only if the dynamics is BLP
Markovian. To generalize this result to other dynamicalmaps, wefirst solve the general requirements for an
optimalQSL evolution.

We can analytically solve the optimal initial states, leading to τQSL/τ=1. Trivially, for a pure initial state
∣ ∣r y y= ñá0 0 0 , we have ∣ ∣y r yá ñ = 10 0 0 , and thus ∣ ∣y r y- á ñ =t=1 00 0 0 . TheQSL is reached for all [ )t t¢ Î 0,

if and only if

∣ ∣

∣∣ ( )∣∣
[ ) ( )

ò

t
t

y r y

r
t t

¢
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- á ñ
= " ¢ Ît

t
¢

¢
L t
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d
1 0, 20

t t
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0
op
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¢
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d
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L t1 d 0, 23t t0 0

0
op

Since these equations form an equivalent chain, it suffices to studywhen the simpler condition (22) is satisfied.
By calculating the singular values and using the non-negativity of the operator norm,we see that for a qubit

system, equation (22) is equivalent to

⟨ ∣ ˙ ∣ ⟩ ( )y r y =t
^

¢ 0 240 0

⟨ ∣ ˙ ∣ ⟩ ( )y r y t ¢  0, 250 0

for all τ′ä [0, τ), where y^
0 denotes the state orthogonal toψ0.

To further study the qubit case, wewrite the general Bloch vector dynamics r(t) as

( ) ( ) ( ) ( ) ( )= +t A t tr r s0 26

with

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( )
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⎟⎟=A t

a t a t a t
a t a t a t
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21 22 23

31 32
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0
0

0

initial state , 28

( )
( )
( )
( )

( ) ( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=t

s t
s t

h t

s translation . 29
1

2

Wefix the basis, so that {∣ ∣ }y yñ ñ- +,0 0 , corresponding to r(0)=(0, 0,±1)T, is the optimal pair of initial states for
the BLP-measure. The results of [40] guarantee that the optimal pair of initial qubit statesmaximizing the BLP
measure can always be chosen as an orthogonal pair of pure states. Based on equations (24) and (25), we can
study the relationship betweenBLP-measure and τQSL/τmore generally. In the following, we divide the set of all
one-qubit dynamicalmaps into subsets illustrated infigure 2 and analyze the connection between BLPnon-
Markovianity and tightness of theQSL bound.

5.1. Coherence-increasing and coherence non-increasingmaps
If the coherences between ∣y ñ+0 and ∣y ñ-0 increase for tä[0, τ), as infigure 2A, equation (24) is violated. If the
violation occurs at t=0, we have τQSL/τ<1 for all times t  0. Furthermore, positivity of the dynamicalmap
requires that the BLPnon-Markovian behavior does not begin at τ=0, so τQSL/τ<1 already in theMarkovian
region, and thus τQSL/τ does not critically depend on the BLP-measure. The same reasoning holds for all cases
where the coherences increase at any time before the first non-Markovian effects take place.

5
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For the initial state given by the Bloch vector ( ) ( )= r 0 0, 0, 1 T , the dynamicalmap does not increase
the coherences between ∣y ñ+0 and ∣y ñ-0 , and equation (24) is satisfied if and only if x(t)=y(t)=0 and
z(t)=g(t) z(0)+h(t). This class of dynamics corresponds tofigure 2B. For suchdynamics, τQSL/τ canbewritten as

( ) ( )
∣ ( ( ) ( ))∣ ( )

( )
⎛
⎝⎜

⎞
⎠⎟



ò

t
t

t t
r y
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
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+t

t

t
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-
g h

g t h t t F

1

d 1 ,
1 , 30

t

QSL

0

d

d 0

1

where ( ) ∣ ∣r y y r y= á ñt t
  F , 0 0 0 is thefidelity between the initial state and the evolved state at time τ and

[ ( ) ( )]
[ ( ) ( )]

( )
ò= t

t

 >

Î
 g t h t td

g t h t

t

t0

0, d

d
t

d
d

is the sumof temporal revivals of ( )r yF ,t 0 .We see directly from

Figure 2. Summary ofQSL as a function of BLP non-Markovianity and fidelity for all CPTP one-qubit dynamicalmaps. Each set of
dynamicalmapsA–D is characterized by the underlined condition(s) in bold text. Each condition has to be satisfied for all times
tä[0, τ), unless stated otherwise (A andC). InB the upper and lower signs in±and  correspond to the choices of initial states
z(0)=+1 and z(0)=−1, respectively. The subset inherits the condition(s) of its superset. The inclusion hierarchy of the sets is
B=C ⊍ D, (iii)Ì(i)ÌC, (iv)Ì(ii)ÌC. For brevity, we have omitted the explicit time dependence of ( )t=g g , g=g(t), h=
h(τ), h=h(t). [ ( ) ( )]

[ ( ) ( )]

( )
ò= t

t

 >

Î
 g t h t td

g t h t

t

t0

0, d

d
t

d
d

is the sumof temporal revivals offidelity between the initial and evolved states

ψ0 and ρτ, and ( )= Ft t  is the BLP non-Markovianity of the dynamicalmap. InA, theQSL bound is not always reachedwith the
optimal initial states of the BLPmeasure even though the dynamics would beMarkovian , so the BLPmeasure is not critical for
tightness of the bound. ForB, τQSL/τ can be expressed in terms of thefidelity between the initial stateψ0 and the evolved state ρτ and
its total temporal revivals t . After thefirst revival offidelity, τQSL/τ becomes amonotonically decreasing function of F(ρτ,ψ0). InC
(i) and (ii), we see how τQSL/τ depends explicitly on the non-Markovianity: BLPMarkovianity implies tightness ofQSL bound and if

( )t g 0, we get ( )t t =  F =t1 0QSL . For their subsetsC(iii) and (iv), the result of ( )t g 0 still holds, but surprisingly when
g(τ)<0 the condition is expanded into ( ) ∣ ( )∣t t t=  F =t g1QSL . Thus, tightness of theQSL bound does not guarantee BLP
Markovianity in cases where the behavior of both g(t) and h(t) ismonotonic ∀tä[0, τ). As special cases,C(i) andC(ii) contain the JC
model and thewhole set of commutative phase-covariant dynamics, respectively.D is the set of all CPTPunital one-qubit-maps
satisfying the condition ofB. As in the case ofC(iii) and (iv)we see that ( )t t =  F =t1 0QSL when ( )t g 0 and

( ) ∣ ( )∣t t t=  F =t g1QSL if g(τ)<0.

6

New J. Phys. 21 (2019) 123041 J Teittinen et al



equation (30) that t t =  =t1 0QSL , so oscillations of the fidelity are necessary to decrease τQSL/τ and
after thefirst oscillation τQSL/τ is always smaller than 1.When >t 0, τQSL/τ is amonotonically decreasing
function of ( )r yt

F , 0 :When thefidelity between the initial and evolved states increases, τQSL/τ decreases and
vice versa. Also, τQSL/τ=0 if and only if there has been increase of the fidelity and ρτ=ψ0. Aswewill see in the
following, τQSL/τ=1 is not equivalent to ( )F =t 0, due to h(t) dependence of t , and in some cases,

( )F >t 0 does not lead to τQSL/τ<1.
In the following subsections, wewill study some relevant subclasses of the coherence non-increasingmaps

and derive the explicit dependency between τQSL/τ and the BLPmeasure.

5.2. Pairwise oscillating translation and deformation
Let us concentrate here onfigures 2C(i) (and (ii)), where the translation always increases (or decreases) exactly
when the deformation increases and vice versa. First, assuming ( ) ( ) [ )t " Î g t h t t0 0 0,

t t

d

d

d

d
and

choosing z(0)=+1 infigure 2C(i), equation (30) becomes

( )
( ) ( )

∣ ( )∣ ∣ ( )∣

( ) ( )
( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

òt
t t t

t

t t
=

F
- -

+
- +

- -
t

t -


g h

g h t t

g h

2

1

1 d

1
. 31tQSL 0

d

d

1

Here

( ) ∣ ( )∣ ( )
∣ ( ) ∣òF =t

>


t
g t t

d

d
d , 32

g t 0
t

d
d

meaning that the BLPmeasure is independent of the translation h(t), unlike theQSL.When ( )F =t 0, we

have ( ) g t 0, ( ) h t 0, and ( ) ( )t" Îh t t0 0,
t

d

d
. In the case of equation (31) thismeans τQSL/τ=1, even

if ( ) ¹h t 0. Thus in this situation τQSL/τ<1 only if the non-Markovian effects have kicked in. If in addition
( )t g 0, we note that ( )t t =  F =t1 0QSL .

In the special case figure 2C(iii), when ( ) ( ) [ )t" Î g t h t t0, 0 0,
t t

d

d

d

d
, the BLP dependency can be

broken into two cases based on the sign of g(τ): if ( )t g 0, theQSL can bewritten as

( )
( ) ( )

( )
⎛
⎝⎜

⎞
⎠⎟

t
t t t

=
F

- -
+t

-


g h

2

1
1 , 33QSL

1

and thus ( )t t =  F =t1 0QSL . Let us now consider the situationwhere g(t) is a continuous function
which decreasesmonotonically until ¢t , so that ( )¢ =g t 0. Now ( )F =¢ 0t as ∣ ( )∣g t is alsomonotonic in the
interval [ ]¢t0, . As ( )g t continues to decreasemonotonically until τ, theQSL becomes

( )
( ) ( )

( ) ( )
( ) ( )

( )
⎛
⎝⎜

⎞
⎠⎟

t
t t t

t t
t t

=
F

- -
+

+ -
- -

t
-


g h

g h

g h

2

1

1

1
, 34QSL

1

since g(τ)<0, andwe see that ( ) ∣ ( )∣t t t=  F =t g1QSL . Thus, in this case we have optimal evolution
even if the dynamics is non-Markovian.

Similarly, assuming ( ) ( ) g t h t0 0
t t

d

d

d

d
,∀tä [0, τ) and choosing z(0)=−1 in figure 2C(ii),

equation (30) yields to

( )
( ) ( )

∣ ( )∣ ∣ ( )∣

( ) ( )
( )

⎛

⎝
⎜⎜

⎞

⎠
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t
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g h t t

g h

2
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1 d

1
, 35tQSL 0

d

d

1

andwe obtain the same dependency between tightness of theQSL bound and non-Markovianity (see figures 2C
(ii) and (iv)).

5.3. Unitalmaps
The considerationsmade above hold for generic translations, including the non-unital cases ( ) ¹h t 0. Now,we
restrict to the unitalmaps infigure 2D, characterized by ( ) = " h t t0 0, for which equation (30) becomes

( )
( )

∣ ( )∣
( )

( )
⎛
⎝⎜

⎞
⎠⎟

t
t t

t
t

=
F

-
+
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
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g
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2

1

1

1
. 36QSL

1

Wenote that equation (36) can bewritten as

( )
( )

( )
⎛
⎝⎜

⎞
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t
t t

=
F

-
+t

-


g

2

1
1 , 37QSL

1
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if and only if ( )t g 0. Thismeans exactly the same dependence on the BLP-measure as in the case of
equation (19) if ( )t g 0. If instead g(τ)<0, we canwrite theQSL as

( )
( )

( )
( )

( )
⎛
⎝⎜

⎞
⎠⎟

t
t t

t
t

=
F

-
+

+
-

t
-


g

g

g

2

1

1

1
, 38QSL

1

which leads to ( ) ∣ ( )∣t t t=  F =t g1QSL , implying optimal evolution for non-Markovian dynamics. This
means that if ( )F = 0t still when g(t) becomes negative, τQSL/τ begins to decrease exactly when the non-
Markovian behavior ends, which is the opposite of what happens in the JCmodel.

In the above considerations, we assumed that y+
0 and y-

0 are the optimal initial statesmaximizing the BLP
measure. But even if the initial states were not the optimal pair, all the above analysis would still hold. The only
exceptionwould be that ( )Ft would just quantify information backflow in terms of increased
distinguishability of these sub-optimal states, thus losing the exact interpretation of BLPmeasure of non-
Markovianity.Wewill conclude this sectionwith an example class of dynamics belonging tofigure 2C(ii).

5.4. Example: phase-covariant commutative dynamics
As an example, we use the phase-covariant systemof equation (3)which does not increase coherences between
∣ ñ0 and ∣ ñ1 [35]. For the commutative class of phase-covariant dynamics4, that is when γ1(t)=γ(t) and
γ2(t)=κγ(t), with k 0 1, the functions g(t) and h(t) have the form

( ) ( ) ( ) ( )( ) ( )k
k

= =
-
+

--G -Gg t h te ,
1

1
1 e , 39t t

where ( ) ( )ò gG = ¢ ¢k+t t td
t1

2 0
. Since ( ) ( ) g t h t0 0

t t

d

d

d

d
, we canwrite equation (35) for this system as

( )
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∣ ( )∣
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PC
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1

1
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2

1

1

with

( ) ( ) ( )
( )

( )ò
k
gF = -

+
t

g <

-G t t
1

2
e d . 41

t

tPC

0

If ( ) [ )g t" Ît t0, 0, , then ( )F =t 0PC andτQSL/τ=1.Wealsonotice, that in this case, ∣ ( )∣ g t
t

d

d

∣ ( )∣ " h t t 0
t

d

d
, and thus ( ( ) ( ))+g t h t

t

d

d
is dominatedby ( )g t

t

d

d
. Since thederivatives of g(t) and

h(t) change sign at the same time, the signof ( ( ) ( ))+g t h t
t

d

d
is always the signof ( )g t

t

d

d
. As a consequence,

( )t t =  F =t1 0QSL for both choices of initial state y+
0 and y-

0 .

6. Initial state dependence ofQSL forMarkovianmaster equations

To continue the generalization of our results, we now take a complementary perspective: instead of looking at
the connection between the values of the BLPnon-Markovianitymeasure and theQSL, we focus on the families
of initial states leading to saturation of theQSL time in theMarkovian case. The results ofDeffner and Lutz
suggest thatMarkovian dynamics results always in optimal time, that is τQSL/τ=1, for the JC system. For some
pure initial states this is true, but not for all, when looking atmore generalMarkovianmaster equations.

6.1. Phase-covariant
Herewe study the dynamics described by themaster equation of equation (3), with γ1(t)=γ1, γ2(t)=γ2, and
γ3(t)=γ3, " t , where γ1, γ2, γ3�0.Wenotice that the phase difference between ∣ ñ0 and ∣ ñ1 does not have any
significant role, in the phase covariantmaster equation, with respect to theQSL. Thuswe parametrize the initial
state as ∣ ∣r y y= ñá0 0 0 , where ∣ ∣ ∣y ñ = ñ + - ña a1 1 00 . Now,we characterize the set of initial states leading
to τQSL/τ=1 for all t  0 by using (22), which becomes:

( ) [ (( ) ) ( ) ( )] ( )( ) ( )g g g g g- - - + - - + + =g g g g g g- + + +a a a a a
1

16
1 e 4e 1 1 2 e 4 0. 42t t t2

1 2
4

1 2 31 2 3 3 1 2

We see, that nowwe have t t t= " 1 0QSL if and only if a=0 or a=1.We emphasize, that these are not
stationary states, but initial states that always evolve with the optimalQSL time. If we restrict to the unital case
γ1=γ2 withω=0, also the initial state a=1/2 leads to t t t= " 1 0QSL .We note that

[ ]t t = " Îa1, 0, 1QSL if and only if γ1=γ2=2γ3. In this case, the dynamicalmap is of the depolarizing

4
To be precise, the commutative class contains also the cases where ( ) ( )g kg=t t1 and γ2(t)=γ(t), which belong toC(i) infigure 2. If we

chooseκ=1, that is when γ1(t)=γ2(t), the dynamics is unital and belongs toD infigure 2.
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form

( ( )) ( ) ( )r r= - + p t p t1
1

2
, 43t 0

where p(t)ä [0, 1], with p(0)=0.
Figure 3 shows the initial state and τ dependence of the phase-covariantmaster equation for γ1=1, γ2=2,

γ3=3. Again, we see, that the optimal points are found at a=0 and a=1, that is diagonal pure states w.r.t.
the {∣ ∣ }ñ ñ0 , 1 basis, while all other states fail to reach the limit.

6.2. Pauli channel
Now,we consider the systemdescribed by themaster equation of equation (4), with γ1(t)=γ1, γ2(t)=γ2, and
γ3(t)=γ3,∀t, where g g g , , 01 2 3 . The unital case of the phase-covariantmaster equation, that is when
γ1=γ2, coincides with the Pauli channel, with the same decay rates.However, the general Pauli channel covers
a larger set of dynamics than the unital phase-covariant, such as bit-flip and bit-phase-flip channels.

As for the phase-covariantmodel, we can analytically derive the optimal states using equation (22). The
resulting condition is:

( ) ( ) [ ( ) ( )] ( )( ) g g g g- - + - + =g g g g g- + +a a a1 2 1 e e e 0. 44t t t2 2
1 2 2 3

21 2 3 3 1

We see, that theQSL is reached∀t�0, with a=0, a=1, and a=1/2. Similarly to the case of phase-covariant
master equation, by choosing γ1=γ3, [ ]t t = " Îa1, 0, 1QSL . By extending the initial states to cover all
pure states, ∣ ∣ ∣y ñ = ñ + - ñqa a0 e 1 00

i , we get τQSL/τ=1 for all θä [0, 2π] and aä [0, 1], when γ1=
γ2=γ3. Figure 4 shows the initial state dependence ofQSL for Pauli channel with γ1=1, γ2=2, γ3=3.

6.3. Eternal non-Markovianity
The eternal non-Markovianitymodel is interesting in this context since it is always CP andnon-CP-divisible
(γ3(t)<0∀t>0), but at the same time BLP–Markovian. The eternally non-Markovianmaster equation has
the form [41]:

( ) ( ) ( ) ( ) ( )r s r s r s r s r s r s r= - + - - -L
t1

2

1

2

tanh

2
. 45t t t t t1 1 2 2 3 3

The condition for reaching theQSL in this case is given by

( ) ( ) ( )- - =-a a a1 2 1 e 0, 46t2 4

for which the solutions are a=0, a=1, and a=1/2. Since the eternally non-Markovianmodel is a special
case of the phase-covariant commutativemaster equation, withκ=1 and translation h(t)=0, we can compare
the results of this analysis with the ones derived in section 5.We see, that the analytical results in section 5 are in
full agreement with this approach. Figure 5 shows the initial state dependence ofQSL for the eternal non-
Markovianitymodel.

Figure 3. τQSL/τ for the phase covariant channel with γ1=1, γ2=2, γ3=3, andω=0 as a function of the evolution time τä [0, 1]
and the initial state parameter aä [0, 1]. Optimal initial states at a=0 and a=1. The localmaximumnear a=1/2 is affected by the
balance between γ1 and γ2, in this case, γ2>γ1 placing themaximumcloser to a=1. If γ1=γ2, this coincides with the Pauli channel
and the optimal states are found at a=0, a=1, and a=1/2. Generally the value of τQSL/τ is not constantw.r.t. τ in regions where
τQSL/τ<1. The red highlights represent the points where τQSL/τ=1.
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7. The effect ofMarkovian-to-non-Markovian transition inQSL time

Wenow study theMarkovian to non-Markovian transition using the results reported in [35].We choose γ1(t),
γ2(t), and γ3(t) and pinpoint the times at which a transition happens in the { ( ) ( )}g g¢t t,3 -space, where

( ) ( ) ( )g g g¢ º +t t t1 2 , without calculating explicitly any non-Markovianitymeasures. Thus, we avoid the initial
state optimization required for the BLP-measure.

As an example, wewill use the phase-covariantmaster equation, with the following decay rates:

( ) ( ) ( ( )) ( ) ( ) ( ) ( )g g g w= = + = =- -t t t t t te 1 sin , 2e cos , 0. 47t t
1 2

4
3

4

Since themaster equation is in the Lindblad form and γ3(t) can have negative values, we know that this dynamics
is not CP-divisible, but is still CPTP according to the results of [32]. The condition for optimal evolution from
equation (22) for this system is

( ) [( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ] ( )- - - - - - - =
e t

a f t a ae k t a f t a ae k t
2

1 2 2 1 1 2 1 0, 481 2 2 2 2 4 2

where e1(t), f (t), and k(t) are non-zero time dependent, but not a dependent functions. Equation (48) has
solutions at a=0 and a=1. For the case a=1/2, the condition becomes

( ) [ ( ) ( ) ∣ ( ) ( )∣] ( )+ + - + + =
e t

t t t t
4

1 4 cos sin 1 4 cos sin 0, 492

Figure 4. τQSL/τ for the Pauli channel with γ1=1, γ2=2, and γ3=3 as a function of the evolution time τä [0, 1] and the initial
state parameter aä [0, 1]. Optimal choices at a=0, a=1, and a=1/2.Generally the value of τQSL/τ is not constant w.r.t.τ in
regions where τQSL/τ<1. The red highlights represent the points where τQSL/τ=1.

Figure 5. τQSL/τ for the eternalN–Mchannel as a functionof the evolution timeτä [0, 1] and the initial state parameter aä [0, 1].Optimal
states at a=1,a=0, and a=1/2.Despite being fully non-CP-divisible, the systemhas states forwhich t t t= " 1, 0QSL . The red
highlights represent thepointswhere τQSL/τ=1.
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where e2(t) is a non-zero time-dependent, but not a dependent function.Wenotice, that the condition is
satisfied, when ( ) ( )+ + t t1 4 cos sin 0, but broken elsewhere. Thus, violation of ( ) ( )+ + t t1 4 cos sin 0
implies τQSL/τ<1. According to [35], this dynamicalmap is BLP non-Markovian if and only if
γ1(t)+γ2(t)+4γ3(t)<0which in this case is equivalent to ( ) ( )+ + <t t1 4 cos sin 0. So, we see that for
a=1/2BLP non-Markovianity begins exactly at the same time as τQSL/τ starts to decrease.

Infigure 6we see the initial state and evolution time dependence of t tQSL .We see that the initial statewith
a=1/2 is an optimal state up to ( )t = 2 arctan 5 3 .We note, that while the system is BLPnon-Markovian, the
optimal states a=0 and a=1 remain optimal.

Figure 7 shows how the change of τ affects τQSL/τ for a=1/2.We see that τQSL/τ=1 until
( )t = 2 arctan 5 3 .We also notice, that at τ=3π/2, that is when γ1(t), γ2(t) γ3(t)�0 again, τQSL/τ starts to

increase. This is in accordancewith equation (30): when γ3(t) is positive, ρτ becomes less similar withψ0 as τ
increases. Thus, F(ρτ,ψ0)decreases and as a consequence τQSL/τ increases.

Figure 8 shows the case offigure 7 in { }g g¢, 3 -space, wherewe have defined ( ) ( ) ( )g g g¢ = +t t t1 2 . The red
lines offigure 7 are represented by the red dots in figure 8. The colored lines represent the border between
Markovian and non-Markovian dynamics, as defined by different indicators of non-Markovianity, for the
phase-covariant qubitmaster equation. The colored region is where the dynamics is non-Markovianw.r.t.the
corresponding indicator. The union of blue and green regions is related to the BLP non-Markovianity, as well as
non-Markovianity defined using entropy production, eigenvalues and singular values of themap and purity.
The orange region is related to the Bloch volume indicator and does not concern our analysis of the BLP

Figure 6.The initial state and τ dependence of τQSL/τ for the time-dependent system in equation (47). The optimal states are found at
a=0 and a=1. Up to the pointwhere ( )t = 2 arctan 5 3 , the choice a=1/2 results in τQSL/τ=1, but drops down after it, see
figure 7 for a detailed cross-section at a=1/2. The red highlights represent the points where the ratio is 1.

Figure 7.The plot of τQSL/τ as a function of τ, with a=1/2. The red vertical lines represent the red points infigure 8 between τ=0
and τ=6.We see that τQSL/τ=1 until τ=2 arctan (5/3), when the dynamics becomes BLPnon-Markovian (see figure 8).When
the decay rates become positive again, that is at τ=3π/2, we see, that theQSL starts increasing again.
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measure. Formore details see [35]. By comparing figures 7 and 8, we notice that the points where the τQSL/τ
changes dramatically infigure 7 coincides with the transition betweenMarkovian and non-Markovian dynamics
infigure 8.

8. Conclusions

In this paper, we have studied the connection between theQSL, the evolution time, non-Markovianity, and the
initial state for a qubit systemundergoing generic and several large subclasses of dynamics.We have derived
general conditions for the optimalQSL bound, that is when t t = 1QSL , for a general qubit system, and studied
somemore special cases. Using these conditions, we studied the link betweenBLP non-Markovianity andQSL.
We found, that in some cases, it is possible to generalize the results of [14] by showing that theQSL depends
directly on the BLPmeasure. In general the connection becomesmore complicated:We characterized classes of
dynamics where the BLPMarkovianity does not imply τQSL/τ=1, and even cases where theQSL bound is tight
for non-Markovian dynamics.

Despite concentrating on the BLP non-Markovianity, our analysis has implications to other definitions too:
Our results show that in some cases the tightness of theQSL bound is not achieved even for BLPMarkovian
dynamics (figure 2A), while in other cases BLP non-Markovianity is required for reaching theQSL bound
(figures 2C(iii),C(iv), andD). As a consequence, there cannot exist a general connection betweenQSL and any
definition of non-Markovianity which is in hierarchical relationwith the BLPnon-Markovianity either, as that
would require such definition to be simultaneously both stronger andweaker than the BLPmeasure. (For a
review of hierarchies between different definitions of non-Markovianity, see [42].)

Wehave also shown that theQSL bound in an open qubit system is not tight for all pure initial states, even in
purelyMarkovian systems.We analytically solved the optimal initial states leading to t t t= " 1 0QSL in
dynamical semigroups rising fromphase-covariant andPaulimaster equations.We also studied the initial state
dependence for example dynamics violating CP-divisibility. For all of the dynamicalmaps considered, the
bound can be reached for a very few initial pure states, except for depolarizing dynamics.

Finally, we have analyzed the behavior of theQSL across theMarkovian to non-Markovian crossover, and
found out that the tightness of the bound is clearly connected to the crossover in the example considered. In the
non-Markovian region of the { }g g¢, 3 -space, theQSL starts to decrease. Conversely, when the dynamics
becomesMarkovian again, theQSL starts to increase but does not return to the optimal value τQSL/τ=1. These
results are in full accordance with our results concerning the connection between BLPnon-Markovianity and
QSL bound.

Figure 8.Plot of the evolution of ( ) ( ) ( )g g g¢ º +t t t1 2 and γ3(t) in the { }g g¢, 3 -space from τ=0 to τ=6. The timeswhen the
dynamics crosses a border are ( ) »2 arctan 5 3 2.061, ( ) »2 arctan 3 2.498, and 3π/2≈4.712. The lines represent the transition
betweenMarkovian and non-Markovian dynamics w.r.t.different definitions of non-Markovianity. The lines representing the non-
Markovianity conditions are: ( ) ( )g g¢ - =t t4 03 (blue), ( ) ( )g g¢ - =t t2 03 (orange), and ( )g ¢ =t 0 (green). The figure shows, that
themeasures of non-Markovianity connected to the blue line are critical for τQSL/τ in thismodel, but the ones described by the orange
line are not. The non-Markovianity indicators connected to the borders are listed on the right side of thefigure. Color indicates the
non-Markovian region attached to that indicator.Multiple colors indicate that the non-Markovian region is represented by the union
of these colors. Formore details see [35].
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