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One of the main features of Weyl semimetals is the existence of Fermi arc surface states at their surface,
which cannot be realized in pure two-dimensional systems in the absence of many-body interactions. Due to
the gapless bulk of the semimetal, it is, however, challenging to observe clear signatures from the Fermi arc
surface states. Here, we propose to detect such novel surface states via perfect negative refraction that occurs
between two adjacent open surfaces with properly orientated Fermi arcs. Specifically, this phenomenon visibly
manifests in nonlocal transport measurement, where the negative refraction generates a return peak in the real-
space conductance. This provides a unique signature of the Fermi arc surface states. We discuss the appearance of
this peak in both inversion- and time-reversal-symmetric Weyl semimetals, where the latter exhibits conductance
oscillations due to multiple negative refraction scattering events.

DOI: 10.1103/PhysRevB.101.125407

I. INTRODUCTION

In recent years, the classification of topological phases of
matter has been extended from topological insulators [1,2] to
topological semimetals [3,4]. The latter involves gapless band
structures with nontrivial topological properties. Depending
on whether the gap closing occurs at isolated points in the
Brillouin zone or along closed loops, they are mainly divided
into Weyl/Dirac semimetals [5—-10] and nodal-line semimet-
als [11]. The unique topological properties of these gapless
band structures have been extensively explored using a wide
variety of platforms, including solid-state materials [5—10,12—
25], and also using photonic [26,27], phononic [28,29], and
electric-circuit [30-32] metamaterials.

In Weyl semimetals, the gap closes at so-called Weyl points
that are topologically robust against local perturbations in re-
ciprocal space [33], which is beneficial for their experimental
detection [12-23]. The band topology of Weyl semimetals is
encoded in the monopole charge or Chern number of the Berry
curvature field carried by each Weyl point. According to the
topological bulk-boundary correspondence of Weyl semimet-
als, disconnected Fermi arcs appear in the surface Brillouin
zone and span between the Weyl points [5,34]. Such exotic
Fermi arcs serve as the fingerprint of Weyl semimetals, and
their experimental identification has attracted great research
interest [12-22].

Recent progress has been made on the observation of Fermi
arc states in Weyl and Dirac semimetals by using angle-
resolved photoemission spectroscopy [12-22] and quantum
transport measurement [35,36]. In these experiments, both
bulk and surface states appear in the measured observables,
making it difficult to explicitly identify the Fermi arcs. Several
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phenomenon dominated by Fermi arc surfaces states have
been predicted [37-39] but have yet to be observed. Therefore,
there is a need to explore novel and unique transport properties
that can facilitate the identification of Fermi arcs. Moreover,
such particular transport signatures open an avenue for their
control and manipulation for potential applications [40].

Fermi arcs indicate strong anisotropy that breaks rotational
symmetry, in contrast to closed Fermi surfaces in normal
metals. As a result, part of the scattering channels at the Fermi
energy level is absent, serving as a source for unique transport
properties, including negative refraction between different
surfaces [41]. In reality, the electronic transport signatures
will depend on the material details and their specific termi-
nation, both of which affect the Fermi arcs’ orientation, dis-
persion, and length [12-17,42-44]. Notably, however, state-
of-the-art fabrication techniques allow for controlled surface
shaping on the level of a single layer [16,18,45,46], making
it possible to explore the broad breadth of surface transport
phenomena.

In Ref. [40], it was shown that perfect negative refraction
occurs between two adjacent open surfaces when the respec-
tive Fermi arcs are properly orientated. In this work, we show
that this scenario manifests for both P- and 7 -symmetric
Weyl semimetals, which generates distinct spatial trajecto-
ries for electron propagation. In particular, we propose to
detect the negative refraction via nonlocal scanning tunneling
spectroscopy. The negative refraction manifests as a clear
spatially resolved peak in the nonlocal conductance. Adverse
effects, such as surface disorder and dispersive corrections
to the Fermi arcs, do not qualitatively change this transport
peak. Our results offer a decisive signature for the detection
of the Fermi arcs and present Weyl semimetal surface trans-
port as a platform to observe electronic negative refraction
[47-50]. Experimental realization of our proposal is within
reach as the surface Fermi arc orientation can be readily

©2020 American Physical Society
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controlled by the proper choice of the material termination
[16,18,45,46].

This paper is organized as follows: in Sec. II, we show
that arbitrary orientations of Fermi arcs can be described by
a rotation transformation of an effective Hamiltonian. Based
on the resulting effective surface Hamiltonian and using a
tunneling approach, we calculate the nonlocal conductance
between two local terminals in both inversion- () and time-
reversal- (7)) symmetric Weyl semimetals in Secs. III and
IV, respectively. This serves as a direct signature of negative
refraction. Finally, we discuss the experimental realization of
our proposal and draw conclusions in Sec. V.

II. ORIENTED FERMI ARCS

In Weyl semimetals, Fermi arcs appear in the surface
Brillouin zone, connecting the projection of two bulk Weyl
points with opposite monopole charges. Within the surface
Brillouin zone, the orientation of the Fermi arcs depends
on the alignment of the bulk Weyl points relative to the
termination direction of the sample. Therefore, by proper
cutting of the sample, different orientations of the Fermi arcs
can be obtained. To describe this orientation dependence, it
is convenient to rotate the effective bulk Hamiltonian of the
Weyl semimetal relative to fixed termination directions [51].

More concretely, we first consider the following minimal
model of a P-symmetric Weyl semimetal:

H (k) = hv(ko, + kyoy) + M (k§ — k*)o, 1)

where v, ko, and M > 0 are parameters, k = (k, ky, k;) is the
wave vector, and o, , . are Pauli matrices acting on the two-
band pseudospin space. By diagonalizing the Hamiltonian,
one can find two Weyl points located at ko = (0, 0, ko).
We calculate the topologically protected surface states at an
open surface in the —y direction (surface I in Fig. 1). They are
confined by k? + k? < k3 and are described by the effective
Hamiltonian (see Appendix A)

HY (k,, k,) = hvk,. 2)
(@) (b)
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i () '
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FIG. 1. Negative refraction between Fermi arcs at different sur-
faces of Weyl semimetals. (a) Sketch of a Weyl semimetal with
oriented Fermi arcs (red and blue curves). (b) The red and blue
surfaces form a junction that can be represented as a 2D scattering
problem. The Fermi velocities (purple arrows) have opposite compo-
nents parallel to the scattering line. (c) Perfect negative refraction of
a surface wave packet due to the tilting of the Fermi arcs.

Similarly, the surface states on the open surface in the x
direction (surface II in Fig. 1) are described by

H)(ky, k) = hvk,. 3

On both surfaces, the states are parallel to the z direction.
Therefore, Fermi arc states at a chemical potential within the
bulk gap (henceforth taken at E = 0) are also parallel to the z
direction. Correspondingly, due to the chirality of the surface
states, electrons are fully transmitted without backscattering
at a junction between surfaces I and II [see Fig. 1(b)].

Next, we perform a rotational transformation to the effec-
tive bulk Hamiltonian (1). In this way, we retain the same open
boundary conditions and describe generally orientated Fermi
arcs. A rotation about the axis k, = k,, k; = 0 by an angle ¢
is defined by H'(k) = H(U~'k) with the rotation operator

29 2 ¢ __sing
COS 3 sin ) 2
_ 29 29 sin ¢
U(p) = |sin"5 cos” 3 7 |- @
sin @ __sing
22 2 oS¢

As a result, the bulk Weyl points are located at Uky =
+ko(—32, $2 cos @), and the states on surface I can be

V2 V2
described by the effective Hamiltonian
Hi(k,, k;) = hv'(cos 0k, + sin 6k,), 5)

where v is the renormalized velocity and 6 =

tan~!(tan ¢/~/2). The Fermi arc defined by H; = 0 is
cos Ok, +sinbk, =0 (6)

and stretches between :tko(—smz") , cos ¢). Note that our ap-

proach of rotating the effective bulk model and calculating
the resulting surface dispersion is verified using microscopic
lattice model simulations (see Appendix B). Similarly, on
surface II

Hy(ky, k;) = hv'(cos Ok, — sin 6k;), @)

and the Fermi arc is defined by
cos 0k, — sin 0k, =0 ®)
and stretches between :I:ko(si%” ,cos ). Note that the two

Fermi arcs have different orientations (see Fig. 1). For a finite
0, electrons incident on surface I can transfer only through the
interface due to the lack of backscattering channels. At the
same time, because the Fermi arcs on the two surfaces tilt in
opposite directions, the velocity in the z direction is inverted,
leading to negative refraction, as shown in Figs. 1(b) and 1(c).

In the following, we introduce a general dispersion term to
the surface Hamiltonian

HI/(kxv kz) = HI + &y,

/ )
H[](k_\" kz) - HII — &y,

with a parabolic dispersion &, =d [ké(l — sin? ©/2) —
k}, —k2]. By tuning the dispersion strength d, the Fermi
arcs become curved [see Figs. 1 and 2(b)]. Such curving
captures the situation in real materials [12-23]. Moreover,
the velocities of the surface states are also modified. In our
following calculation, we assume that the dispersion does not
invert the velocity in the x (y) direction on surface I (II).
Note that the description of generally orientated Fermi arcs
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FIG. 2. Nonlocal conductance between surfaces of Weyl
semimetals. (a) Sketch of the two-terminal setup for nonlocal con-
ductance measurement. (b) Fermi arcs with different curvature con-
trolled by d [see Eq. (9)], labeled by the legend in (c). (c) Nonlocal
conductance o (¢ = 0) for Fermi arcs with different curvature [see
Eq. (11)], with parameters 6 = 7, ko = 0.1 nm~', v’ = 10° m/s, and
x; = 100 nm. The peak structure indicates the existence of negative
refraction. The peak width w is comparable to 7 /kg.

by rotation of the effective model works for both P- and
T -symmetric Weyl semimetals. This approach is verified by
numerical simulations of corresponding lattice models (see
Appendix B).

III. NEGATIVE REFRACTION IN P-SYMMETRIC
WEYL SEMIMETALS

Next, we investigate nonlocal electron transport through
the surface states [see the corresponding two-terminal setup in
Fig. 2(a)]. For convenience, we unfold the two open surfaces
to the x-z plane with the boundary located at x = 0 [Fig. 1(c)],
which can be achieved by the replacement Hy(k, — ki, k) in
Eq. (9). An electron wave packet is injected from the local
lead atr; = (—x;, 0) on surface I, then transmitted to surface 11
via negative refraction, and finally reaches the tip of the scan-
ning tunneling microscope (STM) at ry = (xf, 0). The wave
packet propagates along a spatially localized trajectory [see
Fig. 1(c)]. This behavior can be revealed by the appearance of
a peak structure in the spatially resolved nonlocal conductance
as a function of xy [calculated below; see Fig. 2(c)]. Crucially,
this signature is unique to the negative refraction through
the Fermi arc surface states. For normal-metal states, the
conductance decays with xy, as the wave packet expands in
the z direction.

In the following, we calculate the nonlocal conductance
using the surface Hamiltonian (9) and the Green’s function
method. The Fermi energy is set to zero for simplicity, so that

bulk electrons do not contribute to the conductivity. The finite
density of the bulk states can solely lead to leakage of elec-
trons, which will not change our main results. The coupling
between the terminals and the surface states is described by a
tunneling Hamiltonian as

Hr = Y T}, ¥(r,)+He., (10)

p.a=i,f

where T, is the tunneling strength between the system and the
o terminal, d, , is the Fermi operator in the o terminal with
momentum p, and W(r) is the field operator of the surface
states at position r, with r, corresponding to each terminal
location.

The nonlocal conductance (including spin degeneracy) be-
tween the local electrode and the STM tip is given by [52]

262 R A
o(e) = TTr[FiG r/G"1. an

The full retarded (R) and advanced (A) Green’s function
GR®4 and the linewidth functions T',, are (see Appendix C for
details)

GXArpr)y = A +R) A rd+R)™Y, (12)

To(ri, 12, €) = 27 po ()| Ty |*8(r1 — 1y)8(ra — 1), (13)

where the function R, (¢) = 720(€)ps ()| Ty |, With po(e) =
ko/(2m*hv) being the density of states (DOS) of Fermi arc
surface states per unit area and p,(¢) being the DOS of the
terminal « at energy e. The bare Green’s function is [see
Eq. (C2)]

L) = [ rp)) = —2mipo(e) folrr. 1),  (14)

ko cos ¢
folrpr) = / dk

Z
—kocos 2ko cos ¢

with

ei(kxzxf_kxxi) .
eikGr—2) (15)

Here, k, and k,, are solved by H[(k: k;)=¢ and
Hjj(ky, k;) = ¢, respectively. The interval of integration cov-
ers the Fermi arc region, and the k, dependence of the velocity
in the x direction is ignored.

Performing integration in Eq. (11) yields

o(e) = oo felrs, r)?, (16)

3262 R,‘ Rf
h (14+R)*(1+Rp)*

oo(e) = a7
where oy takes the maximum value 2¢/h when R; = R =
1. The dependence of o(g) on x; comes from the factor
| fe(ry, r))|?, which has a peak due to negative refraction [see
Fig. 2(c)]. In particular, when ¢ = 0, ky» (e, k;) = —k, (¢, k;),
one can see from Eq. (15) that the peak of the function
| fe(ry, r;)|? is centered around x r = x; on the x axis. The peak
structure in the nonlocal conductance stems from the wave
packet trajectory of negative refraction in Fig. 1(c). The width
of the peak w, corresponding to the scale of the wave packet,
is comparable to 7 /kg, which can be seen from Eq. (15).
Specifically, in the case of straight Fermi arcs and ¢ = 0,
we will have ky, = —k, = k,. Performing the integration in
Eq. (15) yields f,—o(rs, r;) = sin[ko(x; + x7) cos @]/ [ko(x; +
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FIG. 3. Negative refraction between multiple Fermi arcs at dif-
ferent surfaces of Weyl semimetals. (a) Effective surface model for
a T-symmetric Weyl semimetal. There are two branches of Fermi
arcs with opposite chirality (labeled + and —). (b) Fabry-Pérot
interference led by backscattering at the terminals (blue and gold
disks).

xy) cos ¢]; thus, the peak width for | f.—o(rs, r;)|* is compara-
ble to 7 /ky. For curved Fermi arcs with dispersion (d # 0),
the wave packet spreads during its propagation, so that the
peak of conductance is broadened as well [see Fig. 2(c)].
Therefore, the peak width w provides useful information
about the length of the Fermi arcs. The existence of the peak
structure is also confirmed numerically in Fig. 7(a).

IV. NEGATIVE REFRACTION IN 7-SYMMETRIC
WEYL SEMIMETALS

In reality, there are only a few material candidates for
Weyl semimetals with only two Weyl points [42-44]. Hence,
we investigate negative refraction between the surface states
of T-symmetric Weyl semimetals, which are more abundant
[12-16]. Specifically, we study a semimetal with four Weyl
points. Our results can be readily extended to the situation
with more Weyl points.

Consider a 7-symmetric Weyl semimetal with two pairs
of Weyl points. Correspondingly, there are two Fermi arc
segments on each open surface, which are the time-reversal
counterparts to each other [see Fig. 3(a)]. The existence of two
branches of surface states with opposite chiralities enables
backscattering between them. For simplicity, we restrict our
discussion to the case in which two Fermi arcs on the same
surface do not overlap when projecting to the k, axis. This
means that no backscattering occurs for conserved k;, so that
perfect negative refraction occurs at the interface between sur-
faces I and II [41]. However, backscattering takes place at the
local terminals, leading to Fabry-Pérot interference [Fig. 3(b)]
and additional oscillation of the nonlocal conductance on top
of the peak structure in real space.

More concretely, the two adjacent open surfaces I and
II contain two Fermi arcs each, as shown in Fig. 3(a). We
describe branch + by

H (ke — ky,, by — k)
HIII(kX + kxo’ kZ - kzo)

x <0,

H (ky, k) = { (18)

x>0,
which is similar to Eq. (9) except for a shift of the Fermi arcs
in the surface Brillouin zone. The time-reversal counterpart,
branch —, is described by H_(k,, k;) = H(—k,, —k_).

Like for the P-symmetric case, we first solve the Green’s
function for the surface states, yielding

Karor) =8 ry) = —mip)e)flrr,r),  (19)

with
ei(kﬁzxf—kk’x,-)

ik, (zf—zi) 20

e

ey = [ .
where p;(¢) is the density of surface states per unit area
and k" and k5 are the k, components of the terminations
of the Fermi arcs in branch +. k, and k|, are solved by
H{(k, — ky,, k; — k;)) = e and Hf (K}, + ky,, k; — k,) = €, re-
spectively. We describe the coupling to the terminals by the
same tunneling Hamiltonian (10), which leads to the same
self-energy in Eq. (C3). The full Green’s function, however,

(@) & /00 (®) 5/00
200 04 200
€150 El 150
'
00 B 025100 //,
5 &
50 50
0 0 0
20 -10 0 10 20 -20 -10 0 10 20
¢ [meV] ¢ [meV]
©
0.5 \ . .
— d=0
04°L |[-—= d=0.7¢V- nm’
—-= d=1.4eV  nm’
03} d=2.1eV- nm’
S
~

(d)

FIG. 4. Nonlocal conductance &(¢) in a T-symmetric Weyl
semimetal [see Eq. (18)] with (a) straight (d = 0) and (b) curved
Fermi arcs (d = 0.7eV nm?). The dependence of the conductance
on (c) x; for fixed e =0 and (d) & with x; = x; for Fermi arcs
with different curvatures [labeled by the legend in (c)]. Parameters
are R; = R; = 1, ko = 0.2nm™", and k,, = k,, = ko/~/2, and other
parameters are the same as those in Fig. 2.
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takes a different form due to the backscattering at the termi-
nals,

)
(14+R)(1 +Ryp) — RiRs f12(rs, 1)
The resulting nonlocal conductance calculated by Eq. (11) is

2
., (22)

GRrpor) = @)

sy = 20 felryp,ri)
4 11 —=RiRy f2(ry, r)/I(1 + R)(1+ Ry)]
which differs from the P-symmetric Weyl semimetal [see
Eq. (16)] mainly by the additional term in the denominator
due to the multiple scattering in Fig. 3(b). In the weak tun-
neling limit R; y < 1, the effect due to multiple scattering is
negligible, and the conductance 6 (¢) ~ %l filry, r;)|>. More
generally, the conductance as a function of energy and x; is
plotted in Figs. 4(a) and 4(b). The nonlocal conductance dis-
plays additional Fabry-Pérot oscillations induced by multiple
scattering on top of the peak structure in real space, resulting
in the appearance of side peaks for large dispersion d [see
Fig. 4(c)], which is verified by numerical simulations using
a lattice model in Fig. 7(b). The width of the main peak W
is comparable to 7 /(k” — k) for the same reason as in the
‘P-symmetric case. The Fabry-Pérot interference also results
in oscillation of conductance with energy when d is small
[Figs. 4(a) and 4(d)], which is due to the dependence of
the Fermi momenta on energy. Specifically, assume that, for
branch +, the Fermi velocity along the x direction v, 1 (see
Fig. 3) is independent of k,. This implies that when the energy
increases by Ae, the momenta k, and k,, will increase by
Ag /vy 4. Therefore, the function f;(rs, r;) [see Eq. (20)] gains
an additional phase factor of Ae(xy — x;)/vy 4. Due to the
factor f;(ry, r;)? in the denominator of Eq. (22), the oscillation
period with ¢, denoted by €2 in Fig. 4(d), is comparable to
Uy 4 /(xy — x;). Note that, in the case of large d, the center
of the resonant peak in real space moves with ¢ [Fig. 4(b)], and
oscillation with ¢ cannot be seen due to the rapid decrease of
the conductance at ¢ # 0 [Fig. 4(d)].

V. DISCUSSION AND CONCLUSION

So far, we have analyzed negative refraction based on the
minimal model of P- and 7 -symmetric Weyl semimetals.
Several important issues related to the experimental imple-
mentation of our proposal are discussed in the following.

(1) Our scheme applies also to polyhedral nanowires with
N surfaces. When the Weyl nodes are aligned in a direction
deviating from the central axis, the Fermi arcs on the surfaces
become tilted, and many refraction processes take place at the
boundary of the facets, as shown in Fig. 5. While many of
the refraction processes are normal refraction, one of them
is negative refraction, which leads to a spatially localized
trajectory similar to Fig. 1(c). The scheme should also hold
at N — oo, when the polyhedron becomes a cylinder.

(i1) For Weyl semimetals with more Weyl points and Fermi
arcs than those obtained within the minimal model, as in
most materials [12-23], our main results still hold as long as
the overlap between the projections of different incident and
reflection channels with conserved momentum k; is negligibly
small. In this case, due to the different orientations of Fermi
arcs and the corresponding trajectories of negative refraction,

(a) (b)
i A
1<.y STM
X

FIG. 5. (a) Sketch of the setup of nonlocal conductance mea-
surement in the case of a polyhedral nanowire. (b) Tilted Fermi arcs
(black lines) result in a spatially localized trajectory (purple arrows)
where negative refraction takes place on one of the interfaces. Such a
localized trajectory leads to a peak structure in nonlocal conductance
similar to Figs. 2 and 4.

a multiple-peak structure in the nonlocal conductance may
appear in the same transport scheme in Fig. 2(a). The negative
refraction will get suppressed if the overlap between the
projections of the incident and reflection Fermi arcs is large
due to the enhanced backscattering.

(iii)) We considered Fermi arcs with a regular shape, such
that electrons propagate on the surfaces towards certain direc-
tions, which is the main difference between Fermi arc states
and normal-metal states. For Weyl semimetals with long and
winding Fermi arcs, surface transport will occur in different
directions similar to normal metals, and negative refraction
cannot be observed.

(iv) In real materials, the Fermi energy usually deviates
from the Weyl points, resulting in a finite density of bulk
states. Our result is not sensitive to such a deviation because
the nonlocal transport occurs on the surface of the sample.
The bulk states only lead to certain leakage of the injected
electrons, and these leaked electrons do not follow the trajec-
tory of negative refraction. As a result, their propagation does
not have a peak structure in real space, and they contribute
only a small background to the conductance peak in the
nonlocal transport. Such a small background will not change
the qualitative results.

(v) By using Egs. (2) and (3) as effective descriptions of
the Fermi arc surface states we ignore the penetration of the
surface states into the bulk. This is because in most intervals
between the Weyl nodes the surface states are well localized
on the surface. Only in the vicinity of Weyl points will the
surface states possess a long penetration into the bulk. These
states are not much different from the bulk states and will not
kill the signature of negative refraction, as discussed in point
(iv). Another effect of such penetration is that it effectively
reduces the available transport channels on the surface or,
equivalently, the length of the Fermi arcs, which also does not
change the main results.

(vi) Finally, surface imperfections such as dangling bonds
may exist, which can be treated as disorder. In P-symmetric
Weyl semimetals, such surface disorder should have little
effect on the negative refraction, and the conductance peak
remains stable. This is because the surface states are unidi-
rectional and are thus immune to backscattering. However,
in 7 -symmetric Weyl semimetals surface disorder will lead
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to backscattering between the time-reversal counterpart of
the Fermi arcs with opposite chirality, which reduces the
negative refraction efficiency as well as the peak structure of
the nonlocal conductance.

In summary, we have shown that perfect negative re-
fraction, which can be realized on two adjacent surfaces of
Weyl semimetals with properly oriented Fermi arcs, leads
to distinct spatial trajectories for electron propagation. The
space-resolved peak structure of the nonlocal conductance
which indicates the trajectory of negative refraction can serve
as unique evidence of the Fermi arc states. Recent progress
on Weyl semimetals with a single pair of Weyl nodes in
MnBi,Tey4 [42] and EuCd,As, [43,44] paves the way for the
realization of our proposal. Furthermore, the manipulation of
the negative refraction process offers potential applications
of a Weyl semimetal nanowire as a field-effect transistor
[40]. Our work opens a platform to study negative refraction
in electronics [47-50]. Compared with the existing physical
systems, the negative refraction in Fermi arc states exhibits an
unambiguous signature for its detection.
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APPENDIX A: DERIVATION OF FERMI ARC STATES

We derive the Fermi arc surface state at an open surface
in the —y direction [Eq. (2)] in the Weyl semimetal [Eq. (1)].
The surface state at the open surface in the x direction can be
obtained similarly. To calculate the surface state we make the
substitution k, — —id, to the Hamiltonian Eq. (1) since the
existence of the open surface breaks translational symmetry
in the y direction. Thus, the surface state i (k,, y, k.) satisfies
the following equation:

[H(k)m _iayvkz)_E]w(kxayv kZ) =Ov (Al)
with boundary conditions
Yke,y =0,k;) = Y(ky,y = +00,k;) =0. (A2)
Expanding ¥ (ky, y, k;) = Y, a, ¥, on the basis
ikex+ik,z iy (G
Vilke v, k) = ehtiag (), (A3)

where a and b are the pseudospin components of ¥ (k,, y, k,),
and substituting into Eq. (A1), we have a; # 0 only for

[H ke, =0, k) = E1() = 0. (Ad)
Equation (A4) implies that
H? = i*0*(kj =A%) + M*(A* —F)? = E*,  (A5)

where F = kI + k? — kg, yielding two possible solutions of
22
N R*v? £ \AM2F, + v

MV =F ,
2M?2

(A6)

with F, = E2 + i*v?(F — k?). Among all possible linear
combinations of v, with A satisfying Eq. (A6), the only one
that satisfies the boundary conditions (A2) is

Uk y k) = ebtkiqe — (), (A7)
with 1, < A < 0. To get the dispersion of the eigenstate (A7),
note that

a hv(k, — A1) hv(ky — Xp)
_Z_ = . (A8
b MM -F)—E M(};-F)—E
The self-consistent solution to Eqs. (A6) and (AS) is
E = sgn(M)hvky,, (A9)

with sgn being the sign function.

APPENDIX B: NUMERICAL CALCULATION
OF FERMI ARCS

In this Appendix, we verify numerically that for the P- and
T- symmetric Weyl semimetals [see Eq. (1)], rotation of the
effective bulk model leads to the oriented Fermi arcs on open
surfaces.

For the P-symmetric Weyl semimetal we adopt the effec-
tive model H'(k) in the main text. For the 7-symmetric Weyl
semimetal, we start with a minimal model

Hyg(k) = M (ki — k})oy + hvkyoy + M (k§ — k) — k2)o,
(B1)

which has two Fermi arcs on each open surface. Then, we
perform the rotational transformation to the effective Hamil-
tonian to obtain generally orientated Fermi arcs as Hyg (k) =
HTR(U_lk), with

cos ¢ 1 __sing
V2 NG V2

J = cos¢ L sing

Vor=\-"5 5 & | (B2)
sin ¢ 0 cos¢

The reason we apply U (¢) instead of U (¢) [see Eq. (4)] in the
T-symmetric case is because of different original positions
of the Weyl points in the Brillouin zone compared to the P-
symmetric case.

In the long-wavelength limit, the matching lattice model
used in the numerical simulation can be constructed from
the effective Hamiltonian through the substitution k;—y , . —
a~'sink;a, kl.2 — 2a%(1 — cos k;a), where a is the lattice
constant. The Fermi arcs of the P-symmetric Weyl semimetal
with ¢ = cos™! \/% (such that & = 7) and 7 -symmetric Weyl

s

semimetal with ¢ = 7

are shown in Fig. 6.

APPENDIX C: GREEN’S FUNCTION CALCULATION

For a fixed energy E, the normalized eigenstate of the
surface Hamiltonian is

ik,z

Vi b, 2) = ——[0(—x)e™ + f(x)el], (C1)

VS

where the momentum k; is conserved during the transmission
and k, and k,; are solved by H (ky, k;) = E and H|(ky2, k;) =

125407-6
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E

1
B
B

0
ky

FIG. 6. Fermi arcs on surfaces (a) I and (b) II of H'(k) and those
on surfaces (c) L and (d) IT of Hy (k), with parameters ko = 0.1 nm~!,
M = —1.25eVnm?, and ¢ = cos™! % in H' (k) and ko = 0.2nm™!,
ki = v2ko, M = 1.25eVnm?, and ¢ = T in Hi (k).

E, respectively. The function 6(%x) is the Heaviside step
function defining the two sides of the junction, and S is the
combined area of surfaces I and II. Without coupling to the
terminals, the bare Green’s functions can be constructed as

Y o)Wy g (i)
A ) — T V) T e e N
A r) = EE Ek _E10 (€2)

thus describing electron propagation from r; to ry. Since the
surface states are unidirectional, we have gff (ri,rp) =0. By
writing the sums as integrals we obtain Eq. (14) in the main
text.

The coupling to the « terminal introduces finite self-energy
to the Green’s function of the surface state as

SR(r1,r2, &) = —im po ()| T |78(r1 — 14)8(r2 — 1), (C3)

The full Green’s function can be calculated by Dyson’s equa-
tion, which yields Eq. (12) in the main text. The linewidth
function is defined by I'y,(r; —ry) = 2iE§(r1 —ry), corre-
sponding to Eq. (13) in the main text.

APPENDIX D: NUMERICAL SIMULATIONS OF
THE NONLOCAL TRANSPORT EXPERIMENT

We compare our semiclassical analytical calculation ap-
proach with numerical simulations of the nonlocal transport
experiment for both P- and 7 -symmetric Weyl semimetals
H'(k) and Hpy (k) using the numerical package KWANT [53].
To be realistic, we adopt on-site potential Uy (Uy) on the first

T T

U=0 A,
U=125mev| ,/ 7
U=25meV | / A
U=37.5meV| * N
A’ ‘.A T
2y
a /-/. .\. A
i F o%%e ) i
7 " ’/'.4.:.\ n N
i d 8* 2 m A
S /’ ‘\ m a
Nl Yenn
...a"!ﬂ’f L . ls’i’%jAA aa
50 100 150 200
xf [nm]
(b)
aa
— -e-  U=0 i
6107 e U=12.5meV P 1
> -&-  U=25meV ; ]
g -+ U=37.5meV ‘»
.
- 4x107Y J
=
N\
2. 2x107"°
<t
~
\ A
b (rlonccanaanid afid .
0 50

FIG. 7. Numerical simulations of nonlocal conductance for
(a) P-symmetric Weyl semimetal H'(k) with different dispersions
Uy = —Up = U and (b) T-symmetric Weyl semimetal Hyy (k) with
different dispersions U; = Uy = —U. The setup is the same as the
one shown in Fig. 2(a), with the scattering region being a Weyl
nanowire with a cross section of 40 x 40 sites with lattice constant
a = 5 nm. The conductance is normalized by 7*, with T being the
tunneling between the leads and the nanowire [see Eq. (10)]. In
realistic cases, T is determined by the hopping between the leads and
the system as well as the DOS of the system. Parameters are v = 10°
m/s, x; = 100 nm, and ¢ = 0, and all other parameters are the same
as in Fig. 6.

layer of the lattice on surface I (I) to introduce dispersion
effects, which results in curved Fermi arcs. The nonlocal
conductance under different choices of the on-site potentials
Uy q is shown in Fig. 7. In both cases, the conductance peak
value increases with the on-site potential, which is due to the
increase of the surface DOS. In addition, in the 7 -symmetric
case, the position of the peak varies for different on-site
potentials, which is due to the shift of the phase term in
fi(rg, ;) for dispersive Fermi arcs. In both cases, the peak
structure persists for dispersive Fermi arcs, in agreement with
the analytical results in Figs. 2 and 4.

APPENDIX E: INTRODUCTION OF SURFACE
DISPERSION FROM ON-SITE POTENTIAL

We show explicitly that the on-site potentials Uy (Uy)
we adopt on the surface of the Weyl semimetal in
Appendix D result in the dispersion terms in Eq. (9). Note
that the surface states on surface I possess a k-dependent
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wave function . (y) that has some spatial profile along
the y direction. Under surface potential U;(y), the potential
that the states feel can be evaluated by the overlap integral
Uitk) = [ U)Wk, .« (0)I*dy, which is k dependent and
thus serves as an effective dispersion ¢y(k,, k;) = Ur(ky, k;).
In our model, the surface states’ wave functions satisfy
[V k. )| = |¥—r,,—r, ()] so that the effective dispersion is an

even function of k, and k; and takes the form g,(k,, k;) =
& — d(k)% + kf) to second order in k, and k,. In addition,
the dispersion term should vanish at Weyl points where the
surface states spread in the whole bulk, which leads to ¢y =
d(1 — sin® ¢ /2)k2. Therefore, the surface potential U; leads to
the dispersion ¢, in Eq. (9). Similarly, the surface potential Uy
leads to the dispersion ¢, in Eq. (9)
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