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ARTICLE

Tactile sensory coding and learning with bio-
inspired optoelectronic spiking afferent nerves
Hongwei Tan 1✉, Quanzheng Tao 2, Ishan Pande 1, Sayani Majumdar1,3, Fu Liu 4, Yifan Zhou1,

Per O.Å. Persson2, Johanna Rosen2 & Sebastiaan van Dijken 1✉

The integration and cooperation of mechanoreceptors, neurons and synapses in somato-

sensory systems enable humans to efficiently sense and process tactile information. Inspired

by biological somatosensory systems, we report an optoelectronic spiking afferent nerve with

neural coding, perceptual learning and memorizing capabilities to mimic tactile sensing and

processing. Our system senses pressure by MXene-based sensors, converts pressure

information to light pulses by coupling light-emitting diodes to analog-to-digital circuits, then

integrates light pulses using a synaptic photomemristor. With neural coding, our spiking

nerve is capable of not only detecting simultaneous pressure inputs, but also recognizing

Morse code, braille, and object movement. Furthermore, with dimensionality-reduced feature

extraction and learning, our system can recognize and memorize handwritten alphabets and

words, providing a promising approach towards e-skin, neurorobotics and human-machine

interaction technologies.
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In biological somatosensory systems, sensing, transmitting, and
processing of information rely on distributed and parallel
networks of receptors, neurons, and synapses, which are

compact and efficient for solving complex and unstructured real-
world problems1–3. External stimuli with environment informa-
tion are encoded to action potentials (spikes) that are transferred
by neurons and synapses, and synergistically combined to process
the detected information with neural coding and learning1–3.
Inspired by somatosensory systems, neuromorphic devices have
been developed to mimic biological spike-based sensing and
processing with the aim to enhance their performance and to
achieve smart functions, such as image recognition4,5, visual
information processing6,7, speech recognition8,9, smart sensing
and sensorimotorics10–13, and neuromorphic computing14–16,
etc, which are power consuming if realized in conventional
computing architectures.

Emulation of tactile sensing and processing as humans do is
important for future intelligent robotics and human–machine
interactions17. Recently, bio-realistic spiking afferent nerves based
on flexible organic electronics have been described wherein
resistive pressure sensors, ring oscillators, and a synaptic tran-
sistor are combined to detect, convert, and integrate pressure
information18. However, the non-plastic architecture limits the
emulation and implementation of learning and memorizing
capabilities that enable humans to learn from and adapt to their
environment via touch. Bio-realistic mimicking of coding, pro-
cessing, learning, and memorizing of tactile information via
artificial spiking afferent nerves at the hardware level would
greatly advance bio-inspired sensory systems through complex
neural coding principles, but this has not been demonstrated yet.

Here, we report an optoelectronic spiking afferent nerve with
sensing, neural coding, perceptual learning, and memorizing
capabilities. Emulating the biological SA-I afferent nerve (Fig. 1a),
our artificial system detects pressure information by multiple
flexible MXene-based receptors, converts and codes detected

information to optical spikes by coupling light-emitting diodes
(LEDs) to ring oscillators and edge detectors (functioning as
special analog-to-digital converter, ADC)10, and then integrates
the coded optical spikes using optoelectronic synapses (OE
synapse), which are synaptic photomemristors based on ITO/
ZnO/NSTO (Fig. 1b). In our system, we use optical commu-
nications between distributed receptors and synaptic photo-
memristors because of the advantages of non-contact integration.
This allows one photomemristor to process multiple sensory
inputs via optical spikes, providing a simple emulation of the
integration of multiple action potentials from various axon
terminals of pre-neurons to dendrites of post-neurons via
synapses. With the implementation of rate coding and temporal
coding, which are two of the major biological neural coding
principles, the optoelectronic spiking nerve is capable of not only
detecting, combining and distinguishing simultaneous pressure
inputs, but also recognizing Morse code, braille characters, and
object movement. Moreover, with the realization of feature
extraction (coding) and learning in a dimensionality-reduced
architecture, our system is able to recognize and memorize
handwritten alphabets and words.

Results
Bio-inspired optoelectronic spiking afferent nerve. MXene, a
two-dimensional metal carbide/nitride19,20, is a promising can-
didate for flexible electronics. The lamellar structure of MXene
shows distance between atomic layers and conductivity changes
in response to external pressure and has been exploited for
flexible pressure sensors21–24. In our system, we used Ti3C2Tx

MXene with high-crystalline quality (Supplementary Fig. 1) to
fabricate flexible pressure sensors (Supplementary Fig. 2) with a
wide-range pressure response up to 200 kPa (Fig. 2a, b and
Supplementary Figs. 3 and 4), which fully covers the working
range of biological receptors. We designed a LED-coupled ring
oscillator and edge detector, working as an optical ADC (for
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Fig. 1 Schematic diagram of the biological and artificial afferent nerve systems. a In the biological afferent nerve, external pressures applied to the skin
change the potentials of receptors that are embedded in the skin. The cell body of the sensory neuron integrates the potentials and initiates action
potentials (spikes) with coded pressure information. The axon transmits the action potentials to the axon terminals, which form synapses with
interneurons, where they induce post-synaptic currents (PSCs). The central nervous system (CNS) processes the pressure information by integrating the
action potentials from multiple synapses. b In the artificial afferent nerve, external pressures applied to the e-skin change the resistance of MXene in the
flexible pressure sensor. The ADC-LED circuit, consisting of a ring oscillator, an edge detector and an LED, receives the voltage signal from the MXene
sensor and initiates optical spikes with coded pressure information. The optical spikes are transmitted to a synaptic photomemristor (OE synapse), which
integrates and processes the spikes into a PSC to decode and memorize the pressure information.
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details on the electronic circuit see Supplementary Fig. 5), to
convert pressure-dependent voltage signals to optical spikes
(Fig. 2c). Bio-inspired spike coding is more robust than voltage
amplitude coding because of voltage degradation and parasitic
resistance issues in the latter coding scheme18,25. Moreover, the
use of spike coding allows multiple coding principles, including
rate coding, temporal coding, or a combination of both. Because
of this, spike coding is capable of carrying larger volumes of data
and distinguishing multiple inputs with a single detector. To
emulate the input–output of biological sensory neurons, the fre-
quency range of optical output spikes was designed to be 0–100

Hz under a 0–100 kPa pressure input18,26, while keeping the
amplitude and duration of the optical spikes constant (Fig. 2c). In
biological systems, action potentials carrying encoded informa-
tion are conveyed to the central nervous system via synapses1. For
our spiking afferent nerves, we designed a high-performance
optoelectronic artificial synapse (Supplementary Table 1) using a
synaptic photomemristor, which can not only generate a voltage
spike, but also modify its weight (Fig. 2d and Supplementary
Fig. 6) in response to optical spikes, thus allowing in-memory
computation of sensory data. Moreover, it shows high sensitivity
(Supplementary Fig. 7) and high working speed of up to 250 kHz
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Fig. 2 Characterization of the optoelectronic spiking afferent nerve. a I–V curves of the MXene-based pressure sensor with applied pressures from 0 to
200 kPa. b Resistance and resistance change ratio in response to an increasing pressure. c Output frequency and amplitude of the pressure-dependent
ADC for an increasing pressure up to 100 kPa. The insert shows the analog-to-digital conversion of electrical signals in the ADC. d I–t curve of the synaptic
photomemristor with optical pulses as stimuli, showing current spikes and persistent photoconductivity (PPC) in response to the optical pulses. e Optical
paired pulse facilitation (PPF) or neural facilitation behavior with respect to current spiking induced by optical spiking. f Spike-rate-dependent plasticity
(SRDP) behavior with respect to PPC induced by optical spiking. g Input–output of the system showing the correlation among pressures, ADC outputs, and
post-synaptic currents (PSCs). With increasing pressure, both the frequency of the PSC (h) and the weight change Δw (i) increase. The error bars indicate
variations during repeated measurements.
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(Supplementary Fig. 8) that fully covers the working range of
biological synapses. Owing to the persistent photoconductivity
effect at the ZnO/NSTO interface (Fig. 2d), the optoelectronic
synapse is capable of detecting and integrating the optical spikes
into post-synaptic currents (PSCs) at the optical spike frequency
(Fig. 2e and Supplementary Fig. 8). In addition, when stimulated
by repeated optical spikes, the PSCs increase gradually and show
neural facilitation behavior (Fig. 2e), which is essential for the
transfer and processing of neural information27,28. Importantly,
the synaptic weight changes at run-time by the input pressure
because of a photomemristive effect. The weight change depends
on the pressure amplitude, as illustrated by the spike-rate-
dependent plasticity measured in response to 100 light pulses at
different frequency (Fig. 2f). The input–output response of the
full artificial spiking afferent nerve is shown in Fig. 2g. The
relationships between the input pressure and the output fre-
quency and weight change after applying a pressure for 1 s
(Fig. 2h, i) demonstrate pressure-dependent spiking rate and
weight modifications. For instance, an increase of input pressure
to 100 kPa enhances the frequency of the PSCs to 86 Hz and
produces a weight change of ~50%. The application of a short
negative voltage pulse across the synaptic photomemristor
quickly resets the PSC to its initial state (Supplementary Fig. 6),
allowing the continuous execution of different tasks.

Utilizing the artificial spiking afferent nerve, we demonstrate a
Morse code reader with temporal coding in Supplementary Figs. 9–
11. In the temporal coding scheme, information is not only encoded
in the timing and duration of spiking, but also in the timing and
duration of non-spiking (quiescent)29,30. In our system, short and
long spiking times (tss and tsl) in the PSC signal (Supplementary
Figs. 9 and 10), resulting from short and long touching, correspond
to dots and dashes in Morse code. The short and long non-spiking
(quiescent) times (tqs and tql) indicate the spaces in and between
Morse code letters, respectively. Values of the boundaries between
time constants tss, tsl, tqs, and tql can be trained and learned by
statistically analyzing the PSC outputs induced by pressure inputs
with Morse code information (Supplementary Fig. 9). As a
demonstration, the name of our university ‘AALTO’ is recognized
correctly (Supplementary Fig. 10). The flow chart of the Morse code
recognition process and decoding program are shown in Supple-
mentary Fig. 11 and Supplementary Note 1.

Besides temporal coding, Morse code could also be read using
spike counting. This principle is widely used in biology and
implemented easily. When Morse code characters are read, the
optoelectronic memristor of the spiking afferent nerve produces a
PSC signal comprising several groups of spikes (Supplementary
Fig. 9). The total number of spikes is characteristic for each letter
of the alphabet and thus could be used to read Morse code. For
letters producing a similar amount of spikes, the recognition
accuracy is improved by counting the spikes for certain groups
(see insert of Supplementary Fig. 12 for ‘R’, ‘U’, and ‘D’).

As illustrated by the data in Fig. 2 and Supplementary Figs. 9–
11, our optoelectronic spiking afferent nerve can utilize rate and
temporal coding schemes. Rate coding returns the pressure
amplitude during tactile sensing, which works well for a constant
input. However, if the pressure fluctuates, any information
contained in those fluctuations would show up as noise and, thus,
be lost. Applications requiring information about the time
evolution of pressure signals could successfully exploit a
combination of rate and temporal coding, as demonstrated in
Supplementary Fig. 13.

Multiple integration and motion detection. Leveraging the
merits of non-contacting in optical communication and bio-
inspired spike coding, a single synaptic photomemristor can

combine and integrate multiple optical spike trains from different
sensors and ADCs without complex electrical connections, pro-
viding a straightforward way of emulating the integration of action
potentials from various axon terminals of pre-neurons to den-
drites of post-neurons via synapses (Fig. 3a). As demonstrated by
the data in Fig. 3b, the simultaneous application of 35 kPa (first
panel) and 90 kPa (second panel) pressures to two sensors pro-
duces a PSC signal (third panel) that is comparable to the PSC
sum of the individual measurements (fourth panel). After Fourier
transformation, the frequency spectrum of the two-input spiking
afferent nerve comprises two peaks corresponding to the 35 kPa
and 90 kPa pressures (Fig. 3c). The ability to recognize simulta-
neous pressure inputs mimics the capability of SA-I afferent
nerves in biological systems to distinguish different pressures and
integrate action potentials with coded pressure information from
multiple pre-neurons18. Using the functionality of handling
multiple inputs, we demonstrate a braille reader in Supplementary
Fig. 14. In the braille reader, a single synaptic photomemristor
integrates the pressure-dependent optical spikes from two sensors
when moving the sensors from top to bottom over a braille
character. This produces a PSC, whose spiking rate and timing
contain the braille information. With the braille dictionary of the
alphabet and trained F0, which separates the frequencies induced
by touching the left and right convex patterns of a braille char-
acter, our system is capable of reading and recognizing braille, for
example, the word ‘HELLO’, as shown in Supplementary Fig. 14.

Besides the detection and integration of multiple pressure
information, our system is also capable of emulating the skin in
registering the motion of objects by combining rate and temporal
coding. We illustrate this function using a 2 × 2 sensor array
wherein each of the sensing elements connects to an ADC-LED
and a synaptic photomemristor (Fig. 3d). Whereas rate coding
provides information about the pressure amplitude, the timing of
spiking in the PSC signal of different optoelectronic synapses
(Fig. 3e, f) indicates the direction of touching motion; left (sensor
1a) to right (sensor 2a). In addition, the spiking delay (latency to
first spike) contains information about the touching speed. Using
the physical distance between sensors 1a and 2a (d2a−1a) and the
latency time (t2a−t1a) between stimulus onset (t1a) and first action
potential (t2a) in the PSC signal shown in Fig. 3e, the touching
speed v1 can be calculated as v1= d2a−1a/(t2a−t1a). Similarly,
other directions of touching motion can be detected too, as the
results of Fig. 3g–j show. The detected touching speeds are
summarized in Fig. 3k. We also fabricated a 4 × 4 sensor array
(Fig. 3l and Supplementary Fig. 15) to advance the detection of
touching motion in a larger area. From the PSC signals shown in
Fig. 3m, the touching pressure (spiking frequency) and touching
sequence are derived deterministically (Fig. 3n).

Handwritten information processing. When dealing with a large
set of sensory data, feature extraction is widely used in machine
learning to reduce the raw data to be informative and non-
redundant, facilitating subsequent learning31. To simplify the
processing of information in our system, we implemented feature
extraction and feature learning in an architecture of multiple
optoelectronic spiking afferent nerves (Supplementary Fig. 16)
with reduced dimensionality32. In the design, every five sensors in
a row of a 5 × 5 sensor array connect to an ADC-LED and a
synaptic photomemristor, and we use this architecture to recog-
nize handwriting through training (Fig. 4a). Spiking of a synaptic
photomemristor indicates a touch in one of the five pressure
sensors of a row. Instead of processing the 25 dimensional data
stream from the 5 × 5 sensor array, we extract the spiking pro-
portions of the five synaptic photomemristors as a five-
dimensional (5D) feature for subsequent recognition and
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learning processes (Fig. 4b). The spiking proportions (P) are
defined as P= tspiking/twriting, where tspiking and twriting are the total
spiking duration of a photomemristor and the time it takes to
handwrite the letter (Fig. 4c). As an example, Fig. 4c shows the
PSCs of the five photomemristors corresponding to the input of a
handwritten ‘A’. The five values of P, which are obtained directly
after pressure input, form a 5D vector ~P (Fig. 4d). The insert of

Fig. 4d shows PA
�!

(the subscript indicates the letter) in a radar
chart representation. In our architecture with reduced dimen-
sionality, each written letter of the alphabet produces a different

vector Pl
!

(l = A, B, C,…, Z) (Supplementary Fig. 17). The 26

vectors form a complete alphabet dictionary of feature codes
(Fig. 4e), which can be used for supervised and feature learning of
handwritten inputs.

To demonstrate that the persistent photoconductivity of the
five photomemristors in our 5D spiking afferent nerve facilitates
learning, we used 10 sets of 26 vectors for training and another
10 sets for testing. During each training cycle, the vectors of the
alphabet dictionary are updated by averaging the existing spiking

proportions Pl
!

(l = A, B, C,…, Z) and the new input Px
!

as (Pl
!

+ Px
!
)/2. The recognition process (Supplementary Note 2)

evaluates the vector of a newly written letter by finding the best
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matching vector in the dictionary (i.e., the smallest |Px
!� Pl

!
| (l =

A, B, C,…, Z)). After the first training cycle, the recognition
accuracy is ~68% and it improves to 84% after 10 training cycles
(Fig. 4f). The recognition error stems from variations in
handwriting including writing stroke, speed, and path. Besides

improving the recognition of Px
!
, the weight of the OE synapse

(PSC of the photomemristor) also changes during the 10 learning
and 10 testing cycles because of persistent photoconductivity in
the ITO/ZnO/Nb-STO structure (Supplementary Fig. 5). Fig. 4g

demonstrates that the weight change ΔwA
��!

during repeated writing

of the letter ‘A’, where ΔwA
��!

is defined as (PSC2-PSC1)/PSC1 and
PSC1 and PSC2 are measured before and after stimulation, starts
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to resemble PA
�!

more and more during cycling. In fact, the

complete color map of Δwl
��!

(l = A, B, C,…, Z) after 20 cycles
shown in Fig. 4h is almost identical to the map of spiking

proportions Pl
!

in Fig. 4g. Feature conversion from spiking

proportions Pl
!

to memorized values of Δwl
��!

, as demonstrated
further by their relationship in Supplementary Fig. 18, enables
feature learning and memory of handwritten inputs.

Our dimensionality-reduced architecture with implemented
feature extraction and feature learning provides a novel strategy
for smart sensing and processing technologies. The extracted

features Pl
!

can be considered as a ‘language’ for human-machine
or machine-machine communications. Compared with other
systems (Supplementary Table 2), our optoelectronic spiking
afferent nerve system demonstrates bio-realistic hierarchical
architectures, optical spiking communication, and multiple
coding principles. Moreover, the integration of optoelectronic
memristors enables hardware-based dimensionality-reduced fea-
ture extraction and learning with recognizing and memorizing
capabilities. A proof-of-concept demonstration of word recogni-
tion and memory on a letter-by-letter basis is shown in

Supplementary Fig. 19. Here, the features (Pl
!
) and weight

changes (Δwl
��!

) of 25 photomemristors are integrated to learn the
handwritten word ‘ESKIN’ (i.e., five per letter), enabling the
implementation of a ‘bag-of-words’ model33.

Further dimensionality reduction in the classification of
handwritten words is possible by combining the vectors of two
subsequent letters. This attractive feature of our spiking afferent
nerve system is demonstrated for the word ‘APPLE’ in Figs. 5a
and 5b. In this realization, the dimensionality of the word is
reduced from 25 to 15, limiting the number of required
photomemristors. Similarly, the handwritten words ‘ORANGE’,
‘BANANA’, ‘PEAR’, ‘CHERRY’, and ‘GRAPE’ can be represented
also by 15-dimensional vectors (Supplementary Fig. 20). To
classify these words, we built an artificial neural network (Fig. 5c).
The network consists of fifteen inputs and six outputs,
corresponding to the elements of the 15-dimensional vectors
and the six handwritten words, respectively. We trained the
artificial neural network by repeated writing of the words. As
shown in Fig. 5d–i, all words are recognized successfully after
only four training cycles, as each output neuron responds to only
one input word (Fig. 5j). In this proof-of-principle experiment,
the words are relatively short. We therefore combined only two
alphabet letters. For the processing of longer words, three or more
alphabet letters could be combined to reduce the vector
dimensionality further and recognize words efficiently.

Discussion
Inspired by biological tactile sensing and processing in neural net-
works, we designed and demonstrated an artificial optoelectronic
spiking afferent nerve with neural coding, perceptual learning, and
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memorizing capabilities. Owing to its hierarchical structure and
optical spike-based tactile sensing and processing features, our
optoelectronic spiking afferent nerve recognizes Morse code, braille,
and object movements. In addition, with the implementation of
neural coding and perceptual learning based on activity-dependent
spiking and weight modifications, our system can recognize, learn,
and memorize handwritten letters and words, providing a pro-
mising strategy for artificial tactile sensation, computation in sen-
sory memory, biomimetic sensors, smart optoelectronic prostheses,
neurorobotics, and human–machine interactions.

Methods
2D MXene synthesis and characterization. The Ti3AlC2 powder (parent material
for the MXene, synthesized in house) and the MXene were investigated by means
of X-ray diffraction and scanning electron microscopy combined with energy-
dispersive X-ray spectroscopy, for compositional and structural analysis (not
shown here). For more detailed structural analysis, high resolution transmission
electron microscopy was performed in the double-corrected Linköping FEI Titan3

60–300, operated at 300 kV (Supplementary Fig. 1).
For MXene derivation, the etchant was prepared by adding 0.8 g of LiF to 10 mL

of 9 M HCl and left under continuous stirring for 5 min. A total of 0.5 g of Ti3AlC2

powder (450 mesh) was gradually added (over the course of 5 min) to the etchant,
and the reaction was allowed to run for 24 h at room temperature. The acidic
mixture was washed with deionized H2O first via centrifugation (1 min per cycle at
4000 rpm) for two cycles. After each cycle, the acidic supernatant was decanted as
waste followed by the addition of fresh deionized H2O before another centrifuging
cycle. Then 3 M HCl and 1 M LiCl were used for additional washing via
centrifugation (each for three cycles, 1 min per cycle at 4000 rpm). Finally, the
mixture was washed with deionized H2O for another two cycles. These washing
cycles were repeated until pH 4–5 was achieved. The final sediments were re-
dispersed in deionized H2O (0.2 g MXene per 50 mL of water), deaerated with N2,
followed by sonication for 20 min. The mixture was then centrifuged for 30 min at
3000 rpm, and the supernatant was collected.

MXene pressure sensors fabrication. Commercial polyimide (PI) films were
used as the flexible substrates of the sensors. Patterned Au/Ta electrodes with
thickness of 50 nm/5 nm were deposited on PI substrates using sputtering (Ta: DC
30W, Ar 30 sccm, 25 s. Au: DC 30W, Ar 30 sccm, 300 s). PDMS films were used as
capping layer. Before sticking to the patterned flexible substrate, plasma treatment
(1 min) was used to make the surface of PDMS hydrophilic. Then, the MXene
solution was dropped on the selected area and the solution evaporated in the air.
Finally, the PDMS capping layer with MXene was aligned to the patterned area on
the flexible PI substrate (Supplementary Fig. 2).

Synaptic photomemristor fabrication. Commercial conductive Nb-doped SrTiO3

(NSTO) substrates were used as bottom electrode of the synaptic photomemristors.
Photosensitive ZnO films with a thickness of 60 nm were grown by magnetron
sputtering (5.8 × 10−3 mbar, Ar 16 sccm, O 4 sccm, power 60W) on top of the
NSTO substrates. This resulted in the formation of a Schottky barrier. Transparent
and conductive ITO films grown by magnetron sputtering (3.4 × 10−3 mbar, Ar
10 sccm, power 50W) through a metal shadow mask were used as top electrode.
The working area of the synaptic photomemristors was 100 µm × 100 µm.

Device and system characterization. To test the pressure sensors, a force stand
with integrated force gauge was used to apply pressures to the MXene-based
sensors. The pressures were calculated according to the applied force and the area.
I–V curves of sensors under different pressure loads shown in Fig. 2a were mea-
sured using a Keithley 4200 semiconductor characterization system. The electronic
circuits (ring oscillator and edge detector) were tested using a Keithley
2400 sourcemeter and a Keysight DSO1024A oscilloscope. The synaptic photo-
memristors were measured using an Agilent B1500A semiconductor device para-
meter analyzer and 375 nm light pulses from an LED. The intensity of the light
pulses was 0.65 ± 0.06 mWmm−2, which was calibrated by a photodetector from
Thorlabs (FD11A) and an optic spectrometer from Ocean Optics (USB2000+). To
characterize the pressure-dependent PSC of the system, the force stand with force
gauge was used to apply pressures and the Agilent B1500A was used to record the
PSC. In measurements with multiple inputs, finger motion, or handwriting was
performed on a sensor array and the PSCs of the synaptic photomemristors were
recorded using the Agilent B1500A. The programs for data analysis and decoding
were written using Wolfram Mathematica 12 and Matlab. 3D-printed blocks of
braille characters were used to demonstrate braille recognition through pressure
sensing.

Data availability
The source data underlying the figures in the main manuscript and Supplementary
Information are provided as Source Data file. All other data that support the findings of
this study are available from the corresponding authors upon reasonable request.

Code availability
The codes used in this study are included in the Supplementary Information or available
from the corresponding authors upon reasonable request.
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