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ABSTRACT In advanced driver assistance systems to conditional automation systems, monitoring of
driver state is vital for predicting the driver’s capacity to supervise or maneuver the vehicle in cases of
unexpected road events and to facilitate better in-car services. The paper presents a technique that exploits
millimeter-wave Doppler radar for 3D head tracking. Identifying the bistatic and monostatic geometry for
antennas to detect rotational vs. translational movements, the authors propose the biscattering angle for
computing a distinctive feature set to isolate dynamic movements via class memberships. Through data
reduction and joint time–frequency analysis, movement boundaries are marked for creation of a simplified,
uncorrelated, and highly separable feature set. The authors report movement-prediction accuracy of 92%.
This non-invasive and simplified head tracking has the potential to enhance monitoring of driver state in
autonomous vehicles and aid intelligent car assistants in guaranteeing seamless and safe journeys.

INDEX TERMS Bistatic radar, Doppler effect, head movements, STFT, 3D motion detection, wireless
sensing.

I. INTRODUCTION
The role of humans in driving is expected to shift from
active control to supervision or to passiveness in advance
driver assistance systems (ADAS) to partial and conditional
automation transportation. Monitoring driver state is vital for
ascertaining the capability of supervising or maneuvering the
vehicle when unexpected road events occur and for under-
standing the driver’s comfort level.

In-vehicle sensing of driver attention/distraction can be
achieved by analyzing posture changes and head, hand, foot,
and eye movements [1], [2]. Sensing of human activities in
a vehicular setting has been a hot topic because of its impor-
tance in ADAS and conditionally autonomous driving and its
potential in facilitating human–car interaction andmonitoring
driver health/fatigue/distraction in driving-safety systems.
Most of the current solutions are based on either visible-
light cameras or wearable sensors. Camera-based sensing is
affected strongly by variations in light levels during a journey,
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and in darkness it relies on external illumination, which could
distract the driver. Also, privacy concerns arise [3], [4].

In addition, the technology entails a trade off between
frame rate (decreasing motion blur) vs. cost. While wearable
sensors [5] can overcome some of these issues, wearing the
devices may be inconvenient for the driver, and the connec-
tion to the environment (e.g., via the steering wheel) can
limit which driver states may be inferred (e.g., stress and
fatigue) [6].

In recent years, device-free human sensing from wireless
signals [7] has gained popularity, thanks to being less inva-
sive and coping with occlusion and darkness. This develop-
ment has inspired in-vehicle wireless human sensing in the
form of monitoring vital signs, such as heart rate [8] and
breathing [9], and the driver’s state [10]–[12]. Our WiBot
system [10] characterizes driver motion from head turns and
hand gestures by means of WiFi signals, and, by developing
WiCAR [11], we extended this to humans, in-car models,
and external-setting-independent in-vehicle activity recogni-
tion. Importantly, all three studies utilized CSI as the signal
descriptor, since WiFi is seeing increasing application for in-
vehicle entertainment. WiFi’s operating frequency, however,
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FIGURE 1. Detecting head movements via mmWave signals.

is susceptible to the multipath effect due to passengers and
nearby cars, and the head tracking’s accuracy is constrained
by wavelength. We have addressed this via radio signals at
widely separated frequencies (1.8 and 30 GHz) in a monos-
tatic configuration, for distinguishing a driver’s head motions
from those of the body [13].

So far, most radio frequency sensing efforts have focused
on changes in the received signal strength, channel state
information, and micro-Doppler motion [14]. In contrast,
we have used millimeter-wave Doppler radar to perform in-
vehicle driver/passenger 3D head tracking for three distinct
head movements, as illustrated in Fig. 1.

Pitch, roll, and yaw movements in 3D space are of great
interest because they provide information on driver attention
levels and behavior [15]. For example, repeatedly pitching
forward and backward may indicate drowsiness, yaw move-
ments may point to shoulder checking and thereby indicate
awareness of one’s surroundings, and rolling motions may
reveal distraction (e.g., reaching for objects or attending to
rear-seat passengers).

We recently presented detection of translational move-
ments and separating between the head and torso [13]. In this
paper, we demonstrate that appropriate choice of the radar
configuration (bistatic vs. monostatic) followed by estimation
of the time-varying Doppler spectra allows distinguishing
and accurately estimating rotation and translation of the head
within a single system, which has not been studied before.
While head translation along the radar line of sight leads
to a Doppler shift in the frequency of the reflected signals,
the rotational head movements have minute impact on the
Doppler spectra and introduce a time-varying Doppler spec-
trum around the carrier frequency. A car-like arrangement in
an anechoic chamber with a carrier frequency of 30 GHz was
used to investigate the optimal radar configuration of receiver
(RX), transmitter (TX), and subject.

A dynamic object’s detectability by radar depends on its
size, geometry, andwavelength. Size is inversely proportional
to wavelength, which means that λ < size of the body part if
one is to obtain the complete reradiated signal. At 30 GHz,
λ is 1 cm, which is much smaller than a substantial head
movement, so these motions can be captured with high
accuracy.

Our approach computes a distinctive feature set by mark-
ing movement boundaries and performing joint short-term

time–frequency analysis. Head rotations introduce Doppler
modulations that can be examined to estimate the manner
in which the head is moving. Via reduction and removal of
redundancies and correlations in the feature set, we reduce it
to the twomost separable features. The final step is to separate
among movement classes by using a support-vector machine
classification algorithm.

The in-vehicle environment is normally static; i.e., the
physical surroundings are fixed, and only the human
body is in motion. This enables us to focus on dynamic
Doppler-based features and to extract features that allow
distinguishing between classes of movement, among them a
pitch forward, pitch backward, roll left, and roll right (trans-
lation) and also a yaw left and yaw right (rotation).

To the best of our knowledge, the 3-dimensional head
movement detection using mmWave wireless radar has not
been presented before. The only published work closest to
our research is [12], that detects 2D head orientation with
CSI signals. Besides, this is the first work that present
the importance of bistatic and monostatic configuration of
TX/RX antennas and the subject, to separate rotational and
translational head movements and improve the accuracy
of detection. And most importantly, the idea of translat-
ing head movements detected from non-intrusive wireless
signals to analyze human distracted behavior is a new
advancement.

The main objectives of this work are to
1) Derive the optimal geometry to separate yaw move-

ments in a car-like arrangement within an anechoic
chamber and show that 30 GHz millimeter-wave sig-
nals are appropriate for this scenario

2) Demonstrate the advantage of bistatic over monostatic
configurations for RF sensing that identifies head rota-
tion and translation, since it captures more scattered
components of the signal

3) Show that translation along the radar line of sight is
more easily distinguished in amonostatic configuration
and that detecting all rotational- and translational-
movement classes within one system requires addi-
tional RX units, at 0◦ and 90◦.

The discussion is organized such that Section II describes
the concepts that were the building blocks of our research.
Details of the experimental setup, human study and
frequency–time analysis are presented in Section III, and
Section IV covers the system implementation. The results
are presented in Section V followed by system limitations in
Section VI and conclusions in Section VII.

II. FUNDAMENTAL CONCEPTS
In this section, we introduce the significance of mmWave
radar and its specifications in our work, then specify the
target head movements and the reasoning behind focusing
our methodology on them. Finally, we provide an empiri-
cal demonstration of the feasibility of both monostatic and
bistatic configurations with regard to translational and rota-
tional movements.
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A. THE SIGNIFICANCE OF MMWAVE RADAR
Millimeter-wave radar is a well-established vehicular tech-
nology. Short-range radar applications (parking assistance
and pre-crash applications), medium-range ones (cross-
traffic alerts, lane-change assistance, and blind spots’ detec-
tion), and long-range ones (adaptive cruise control) already
operate in the automotive domain, at such frequencies
as 76–81 GHz [16]. Typically, a frequency-modulated con-
tinuous waveform is used for deriving information about the
existence, location, and velocity of neighboring vehicles from
reflections. We are not, however, aware of applications of
mmWave radar within the passenger cabin for monitoring
driver state, even though it offers significant advantages over
lower-frequency regimes with regard to in-vehicle driver state
monitoring.

The accuracy with which minute movement can be
recognized from RF signals is conditioned on the wave-
length for the signal frequency and also on the bandwidth
available (for 30–300 GHz, λ=0.001–0.01 m). Moreover,
in in-car scenarios, the reduced range of mmWave signals
does not limit the sensing capabilities, since the distance
between antenna and sensed subject is small (usually 1–2 m).
Compared to other mmWave spectrum areas, the frequencies
around 30 GHz specifically provide a good compromise in
this respect, showing the lowest attenuation among all fre-
quencies above 20 GHz [17]. Since device-free RF sensing
relies on reflected, heavily attenuated signal components, this
makes frequencies around 30 GHz particularly suitable for
in-vehicle device-free RF sensing.

B. TARGET MOVEMENT DESCRIPTION
Humans’ head movements are physically complex and
unstructured but contain rich information about behavioral
characteristics. Moving the head relies fundamentally on sup-
port against the force of gravity. Head movements steer and
are closely linked to the sensory structures of the head, espe-
cially those for vision [18]. Humans tend to use a combination
of head and eye movements to stabilize their line of sight and
focus on a target [19]. Especially in head rotations, the eye
movements follow the head to keep gaze shifts in balance.
In addition, head movements such as nodding or shaking are
used for nonverbal communication. Therefore, head motions,
alongside eye movements, are vital in characterizing human
states of attention and interest. Since motions of the head
have a bigger impact on RF signals than eye movements do,
we chose them as our target movement.

In situations wherein the human’s position is partially
fixed, such as being seated (in a car or otherwise), locomotion
is restricted and a subset of complex head movements such
as pitch, roll, and yaw could provide enriched information
about the behavior, interest, and attention. The emphasis here
is on large, significant movements for behavior-detection pur-
poses, and we specify these in the form of class memberships
involving the horizontal (pitch and roll) and rotational (yaw)
plane. The geometry of these movements is explained below.

FIGURE 2. The TX–RX configurations used for finding the optimal bistatic
angle for accurate yaw detection.

1) TRANSLATIONAL HEAD MOVEMENTS
As depicted in Fig. 1, the subject is modeled as a vector ES
from the origin Os, pointing toward the head. Relative to Os,
ES is described in the Cartesian coordinate system as (x, y, z)
and in the spherical coordinate system as (r, θ, φ), where
φ = 0◦ is in the +x-axis direction. The antenna coordinate
system is described by (ra, θa, φa) relative to originOa, where
ERa = (ra, 0, 0) is the direction of maximum gain.
The subject is placed electrically far from the antenna
(||Os − Oa|| � λ).
For measuring pitch, the receiver is placed such that ERa is

parallel to the x-axis. Pitch is defined as a change in θ in the
φ = 0◦ direction,

Eωp = (ωp · θ̂ + 0 · φ̂ + 0 · r̂) (1)

Projecting the angular velocity Eωp onto the x-axis shows
that the component of the angular velocity in the direction of
ERa results in a measurable change in the Doppler frequency
at the receiver; therefore, any pitch forward or backward by
the head can be detected in changes to the Doppler shift (see
Fig. 1). A roll movement with angular velocity Eωr is defined
in the same manner as a change in θ in the φ = 90◦ direction,
and ERa is parallel to the y-axis (the receiver is placed beside
the subject).

2) ROTATIONAL HEAD MOVEMENTS
Yaw of the head is a rotational movement defined as change
in φ in the direction of θ = 0◦,

Eωy = (ωy · φ̂ + 0 · θ̂ + 0 · r̂) (2)

Yaw movement of the head is expected to cause less Doppler
frequency shift than head pitch or roll. This is because yaw
movement is partially projected onto the x-axis and does
not result in significant components projected onto either the
x- or the y-axis. Hence, the change inDoppler frequency is not
sufficient for distinguishing between right and left yaw. These
can be distinguished, however, with an appropriate bistatic
configuration and the joint frequency–time analysis discussed
in the following sections.
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FIGURE 3. Head-rotation-caused fluctuations in normalized RSS values in various system configurations.

C. THE IMPACT OF GEOMETRY ON MOVEMENT
DETECTION
While TX andRX are collocated in amonostatic radar config-
uration, bistatic radar is a system configuration in which they
are separated by a considerable distance [20]. The bistatic
configuration is specified in terms of the bistatic angle, β,
which is defined as the angle (0–180◦) between TX and
RX, with its vertex at the target. Bistatic radar has complex
geometry relative to monostatic radar but provides better
receiver sensitivity, a refined radar cross-section, and wider
spatial diversity [21].

The different geometry leads to differences between the
two setups in scattering of the radiating signal. The angle
of incidence between the transmitting and receiving antenna
is large in a bistatic setup, in sharp contrast to the collo-
cated antennas in a monostatic one, and this guarantees that
the scattering will not be confined to the strongest scat-
tering lobe and should significantly reduce the impact of
backscatter [22]. That creates motivation for identifying the
less observable or less dominant movements with a reduced
radar cross-section (RCS). Scattering due to movement in a
different direction results in a large RCS in some bistatic con-
figurations, revealing the subtle movements and providing
a higher signal/clutter ratio [23]. This implies that bistatic
radar should be favored when the target reflects very little
energy in the monostatic direction. Although the design and
development of an optimal bistatic geometrical configuration
is challenging, it could significantly improve the classifica-
tion accuracy since this can capture information about those
dynamic scattering properties of the target that are invisible
to monostatic radar [24], [25]. The bistatic system’s geometry
affects radar operation characteristics such as the Doppler
equation. For a static transmitter and receiver, the bistatic
Doppler frequency is given by fB [26]

fB =
2V
λ
.cos(δ).cos(β/2), (3)

where β is the bistatic angle, δ is the angle between the
target velocity vector and bistatic angle bisector, and V is
target velocity. We consider different β (0◦, 45◦, 90◦, and
180◦) as shown in Fig. 2, and keep all experiment settings
and parameters (described in Section III) constant to find
out how changing β can affect the signal characteristics from
head movements.

D. THE IMPACT OF MOVEMENTS ON THE RSS
The RSS is the variation in amplitude of the base signal
caused by human body movements, which is the parameter
most easily measured by mainstream wireless
technologies.

Our first step was to analyze the impact of head rotations
on the RSS. The normalized values for RSS indicator graphs
for yaw left and yaw right in various configurations are
given in Fig. 3. These graphs provided some fundamental
information about the configurations that aided in Doppler
effect and STFT analysis. The 180◦ configuration does not
capture any movement information and has high noise levels
(see Fig. 3d and 3h), the reason being the subject sitting
in the TX and RX line of sight and blocking all the signal
that should be received at the RX. The 90◦ configuration
displays a clear gradient rise and drop for yaw right and left
(see Fig. 3c and 3g). This occurs because rotational head
movement leads to multipath scattering, and less-observable
movement is captured more in the bistatic configuration as
explained in Subsection II-C. The 90◦ configuration seems
the most reasonable in comparison to 45◦ and 0◦. Head
movement is more easily detected with a larger radar cross
section (RCS) which depends on the target’s reflectivity,
i.e., the RCS of the head is unique in each configuration.
In 90◦ configuration, the complete head rotation from TX to
RX gets captured while the complete range of motion for 90◦

head rotation is not covered at 0◦ and 45◦ configurations, refer
to Fig. 3a, 3e, and 3b, 3f.
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FIGURE 4. Fluctuation in Doppler spread values in various configurations.

E. THE IMPACT OF MOVEMENTS ON THE
DOPPLER EFFECT
The Doppler effect is the primary feature used in detecting
body movements. A positive frequency shift indicates that
the target is moving toward the RX, while a negative one
indicates moving away from the RX. The full distribution
of the frequency shift due to the Doppler effect is called the
Doppler spread, BD. We calculated BD by computing the fast
Fourier transform (FFT) of the received signal [27].

Fig. 4a and 4f show the Doppler spread graph for pitch
movements, toward and away from the RX in the monostatic
configuration. Both forward and backward pitch motions are
clearly distinguishable from the Doppler spread, since the
Doppler shift is significantly greater in one direction for
each movement. Yaw right and left movements have a less
pronounced impact and Doppler shift at either end of the
frequency spectrum and create almost equal shift on the two
sides so cannot be separated with a monostatic configuration
(cf. Fig. 4b and 4g). Inline with RSS analysis, yaw right
and left can be distinguished clearly via the Doppler shift
information in the Doppler spread graphs for 45◦ (Fig. 4c and
4h) and 90◦ (Fig. 4d and 4i).

Using equation 3 and assuming that the amplitude of 2V/λ
term is the same for all yawmovements, the range of variation
of cosδ. cos(β/2) for both yaw right and left were compared
for 0◦, 45◦ and 90◦ configurations. It was observed that
while the range of variation of cosδ. cos(β/2) for yaw right
and left in the 90◦ configuration has no overlap, the 45◦

and 0◦ configurations display overlap and fB = 0 in 180◦

configuration.

III. METHODOLOGY
The measurements were conducted at 30 GHz in a
3 × 2.78 × 5 m anechoic chamber in the Radio Science
Lab at the University of British Columbia. At 30GHz the λ
is 1cm, which is much smaller than a proper manually mea-
sured head movement of approximately 10-15cm, therefore
it is possible to capture it with high accuracy. The reason
for using specifically 30GHz frequency is that it met our

FIGURE 5. System block diagram.

FIGURE 6. The experimental testbed in (a) bistatic configuration, and
(b) monostatic configuration.

criteria of separating 3D head turns and it is representative of
unlicensed 60GHz frequency, with the change in wavelength
only by a factor of 2 (λ = 0.5cm) and low attenuation level
(<1.2dB/10m) behaviour much similar to 30GHz. There
were complete equipment facilities in our lab for 30GHz
frequency, to use them for experiment set up and evaluate our
technique. Examining a range of higher frequencies is one of
our future work. The chamber provided a static environment
with stable positioning of the objects, a certain signal-to-
noise ratio, and known clutter, which should afford isolation
of signal variation due solely to the human body. Wireless
channel impairments are expected in realistic environments
and will need to be resolved by future work. The schematic
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FIGURE 7. Spectrograms for yaw left and right in 0◦ and 90◦ configurations.

block diagram and the experimental testbed used in our study
are shown in Fig. 5 and Fig. 6.
An E8362C PNA microwave network analyzer was used

as both source and VNA, at the TX and RX. For reason of
limited VNA frequency range, a block upconverter (BUC)
(Norsat 7040STC) was used to upconvert the 1.45 GHz CW
source signal to a 30 GHz signal transmitted with a horn
antenna (Pasternack PE9850). At the RX side, an orthomode
transducer (OMT) (SAT-303-31528-C1-1) was used to sepa-
rate two orthogonal polarized signals for the RX horn antenna
(SAC-2309-315-S2). To monitor the 30 GHz signal received
with the VNA, an E8257D analog signal generator created a
14.275 GHz sinusoidal wave, which was doubled with a fre-
quencymultiplier and passed through amixer to downconvert
the received signal. A laptop was connected to the VNA via a
TCP connection for remote control of experiment operations.
The equipment parameters are listed in Table 1.

For all measurement carried out in both monostatic and
bistatic configurations, the TX antenna location was fixed
at 90 cm away from the human subject. The RX antenna
was placed 90 cm away from the human subject at 0◦, 45◦,
90◦, and 180◦ with respect to the TX antenna, as shown
in Fig. 2. The human subject sat in front of the TX antenna
such that the head was within the antennas’ aperture, to make
sure all head movements were captured. Each type of head
movements was performed similarly across all configuration
angles, with the human face starting at the TX and ending at
an angle to 90◦ toward or away from the RX for yaw and roll
movements. Finally, measurements were collected multiple
times for different subject on different times to avoid any
environment or subject bias in the results.

A. STFT ANALYSIS OF MOVEMENTS
We performed a discrete-time short-time Fourier trans-
form (STFT) for input signal x[n] with window function
w[n]. While the FFT of the full t-second dataset captures all
Doppler activity in a single spectrum, an STFT is better for
identifying the direction, time of occurrence, and duration of
movements. STFT takes the Fourier transform of a windowed
input signal, with the input signal split into m = N/τ chunks
and the Fourier transform performed for each individually. N
is the total number of points in x(n) and τ is the time separa-
tion between sections. In this case, time-localized frequency

TABLE 1. Measurement parameters.

information can be obtained given by,

STFT (x[n]) =
∞∑
n=1

x[n]ω[n− m]e−jωn. (4)

Windowing function w(n) can be understood as a brick-
wall filter of width τ , but it is recommended to use a tapered
window, such as a Hann or Hamming function, combined
with some overlap between neighboring sections to minimize
sidelobe amplitude [28].

Fig. 7 shows the STFT analysis of yaw movements at
0◦ and 90◦. Frequency resolution of the Short Time Fourier
Transform (STFT) plot is sampling rate

FFT size = .9141 Hz/bin where
sampling rate = 234 Hz and FFT size = 256. The time
resolution is window−overlap

sampling rate = 0.1368s where window = 64
which is a Hamming window and overlap = 32. There are
four movements in each spectrogram: yaw right, yaw left, and
both repeated. In Fig. 7(a), frequency spreads from negative
to positive values in all movement thus, yaw left and right
are indistinguishable from each other. In Fig. 7(b), however,
each preceding movement has an opposite frequency shift,
and makes movements clearly distinguishable.

IV. IMPLEMENTATION
In this section, we describe the steps in our process to detect
head movements, refer to Fig. 8. We achieved accurate sep-
aration between movements via event boundary detection in
which the boundaries were marked by means of an impulsive
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FIGURE 8. 3D head motion detection from wireless signals.

windowing approach and frequency–time STFT analysis was
used to calculate the features. For obtaining a distinctive,
highly uncorrelated, and easily separable feature set, data
reduction was employed and reduced features were extracted
accordingly. Then an appropriate machine learning algorithm
was applied and trained to predict states of the human head.

A. EVENT BOUNDARY DETECTION
Before one can detect and identify individual activities being
performed, windowing the RF signal is required to separate
them from each other over time.

Abrupt and instantaneous changes occurring in time-series
data from a natural physical environment demands effi-
cient detection of changes, and cost should be optimized.
We adopted a concept of finding locations where data values
are changing abruptly and utilizing these in marking the
boundaries of a window. This is a change-point problem
which identifies the points in the input data where statistical
attributes fluctuate [29].

In mathematical terms, the input data in ordered sequence
can be represented as y1 : n = (y1, ..., yn). The output
model should include the number of change points, m, along
with their locations, τ1 : m = (τ1, . . . , τm). The change-
point positions must be integers, with each lying in the range
between 1 and n− 1. We defined τ0 = 0 and τm + 1 = n and
assumed the change points to be ordered such that τi < τj
if, and only if, i < j. Consequently, the m change points will
split the dataset into m + 1 segments, with the ith segment
containing y(τi1+1) : τi.

To resolve the issues highlighted above, we made use of a
maximum-likelihood estimation algorithm that dynamically
identifies indices in our data where a significant statistical
change has occurred. In particular, we aimed to find all points
in our data where the standard deviation has large and abrupt
changes.

We refer to these points as the window boundaries, and
we assume that one independent activity is being performed
between every two adjacent boundaries.

In our 20 seconds of measurement, four distinct head
movements were performed, with no movement regions
between these. The total number of change points detected is
12–15, with accurate capturing of the head-movement events,

FIGURE 9. Windowing for event detection.

as indicated by Fig. 9. We assigned labels to windows of
movements and of no movements accordingly.

B. FREQUENCY–TIME ANALYSIS
1) FEATURE CALCULATION
For each window computed, joint frequency–time anal-
ysis was performed and all instantaneous features were
obtained from the Doppler spectra. Our pool of extracted
features is composed of derived features such as mean, min-
imum, and maximum values of RSS, alongside frequency,
velocity, displacement, and Doppler spread. The pool of
multi-dimensional features still requires further processing,
to reduce them to a subset that is more robust in distinguishing
the set of classes. For this purpose, dimensional reductionwas
performed.

2) DATA REDUCTION AND FEATURE EXTRACTION
Since the features obtained via the spectrogram analysis are
derived features and we allow for a large number of explana-
tory variables, there is a possibility of high correlations and
over-fitting the model, through which some results might not
generalize between datasets. To address this problem, the
d-dimensional feature set was projected into an l-dimensional
feature set, where l < d . This method, called principal com-
ponent analysis (PCA), involves orthogonal transformation
of the data matrix, converting the set of correlated variables
to linearly uncorrelated variables, referred to as principal
components.

The amount of variance in each principal component is
explained by its Eigenvalue; PCA is performed by Eigen
decomposition of correlation matrix, EPCA of Z to transform
correlated rows into a new orthogonal coordinate system:
EPCA = ZTZ = V3V−1 where 3 is the diagonal matrix of
Eigenvalues λ(k) ofZ>Z and λ1 has the highest variance [30].
Dimensionality reductionwith PCAwas a very critical step

for our multi-dimensional dataset which helped to remove
the correlations between features and to extract the most
distinguishable features.

3) CLASSIFICATION AND PREDICTION OF HUMAN STATE
Supervised learning was employed to train the classification
model, based on the labeled data, and predict values for
an unknown dataset. To achieve this, the data was split-
ted into a training set (75%) and a test set (25%), using a
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FIGURE 10. Class separation with SVM for 0◦ and 90◦ TX–RX
configurations.

cross-validation library from Scikit-learn. The classification
model was built with the training set and its performance was
evaluated with the test set. Our calculated feature set contains
data in non-standard form – the independent variables’ values
are not on the same scale. Hence, to apply PCA and the
classification model, the Scikit-learn pre-processing library
was used to scale the feature set. After that, PCA was applied
to the standardized training and test set. It was observed that
our dataset contains greater than 50% variance in the first two
principal components. Since it is still possible to visualize the
separation of boundaries, as shown in Fig. 10, we opted to
retain the first two components.

A support-vector machine (SVM) was used for classi-
fication and a discriminating or conditional classifier was
designed to create a hyperplane that separates between
classes. It is a supervised learning method that takes labeled
training data of n points in the form (Ex1, y1) , . . . , (Exn, yn) as
input and determines the optimal hyperplane to categorize
new classes. In two-dimensional space, where the yi values
are either 1 or −1, the hyperplane is a single line dividing
the plane into two parts, to categorize the data into two
classes [31]. SVM’s are reliable classical machine learning
classifiers used in wrieless sensing for applications such as
human fall detection [32], [33].

V. EVALUATION AND RESULTS
The following metrics that are commonly used in machine
learning algorithms were applied to evaluate our algorithm’s
performance,

Accuracy = (TP+ TN )/(TP+ TN + FP+ FN ) (5)

Precision = TP/(TP+ FP) (6)

Recall = TP/(TP+ FN ), (7)

where TP = true positives, FP = false positives, TN = true
negatives, and FN = false negatives. To clarify these metrics,
the example of the ‘‘yaw movement’’ class is considered
here. TP would correctly detect yaw movements and FP
indicates non-yaw movements detected as yaw. TN indicates
non-yaw movements correctly detected as non-yaw, and FN
presents actual yaw movement detected as non-yaw. Recall
and precision values provide more concrete evaluation of the
detection algorithm. Recall, or sensitivity, is the percentage
of actual yaw movements correctly detected as yaw by the

system, and precision, or positive predictive value, is the
proportion of yaw-movement detection that reflect actual yaw
movements. F1 score is the harmonic mean of precision and
recall and accuracy refers to the fraction of correctly detected
head movement classes out of all the events detected. One
should strive for algorithm performance levels of 100% for
accuracy, precision, recall, and F1.

Extensive research was performed to achieve maximum
accuracy for detecting translational and rotational movements
independently and in combination. The former refers to the
system being able to detect the given type of movement,
translation or rotation, while considering all other move-
ments to be noise. Combined movement detection refers to
the system’s detection of both translational and rotational
movements.

Fig. 11 shows the confusion matrices for translational
and rotational movements in monostatic and bistatic con-
figurations. From RSS and Doppler spread empirical study,
it was inferred that bistatic angles of 45◦ and 90◦ preserve
the most relevant information about rotational movements.
Further analysis from STFT features for these two configu-
rations’ data revealed reaching maximum accuracy at 90◦ for
complete 90◦ head rotation. For pitch movements, as shown
in Fig. 11(a) and (b), 0◦ configuration shows a maximum
accuracy of 96%, precision and recall of 90%, while the accu-
racy falls to 85%, precision to 73% and recall to 56% with
90◦ configuration. For yaw movements (Fig. 11(c) and (d)),
in contrast, the 90◦ configuration performs best, with an
accuracy level of 91%with precision and recall value of 96%.
In amonostatic configuration, the accuracy drops to 77%with
precision of 53% and recall of 57%.

Fig. 12 shows the confusion matrices for combined trans-
lational and rotational movements. For combined pitch and
yaw, the maximum 80% accuracy was obtained in the mono-
static configuration, while the bistatic 90◦ configuration
yielded an accuracy of 76%, refer to Fig. 12(a) and (b),
respectively. This shows that we cannot accurately detect
complete 3D movement with one type of configuration. It is
predicted strongly that both monostatic and bistatic config-
urations are needed simultaneously for detecting combined
translation and rotation movements, though due to hardware
limitations, it was skipped in our measurements. Instead,
we evaluated the data of combined 0◦ and 90◦ configurations
in Fig. 12 which show that the accuracy improves to 88%,
with precision and recall of 90%, for combined movements’
detection. Roll is another translational movement that behave
similar to the pitch movement with a greater Doppler impact
at 90◦, due to the direction of movement, than at 0◦ con-
figuration. Performing analysis with a feature set containing
labels for all pitch, roll, and yaw, 84% accuracy was reached
when pitchmovements were captured in a 0◦ and roll and yaw
movements in a 90◦ configuration.
The evaluation metrics calculated for head movements are

in line with our claim that a bistatic configuration signifi-
cantly improves the detection accuracy for rotational move-
ments while translational movements are handled best by
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FIGURE 11. Confusion matrices for pitch and yaw movements in 0◦ and 90◦ configurations. Accuracy, precision and recall are calculated using
Equation 5, 6 and 7. Classes NM, PitchFwd, PitchBack, YawFR, YawRF, represent no movement, pitch forward, pitch backward, yaw right and yaw left
respectively.

FIGURE 12. Confusion matrices for combined yaw and pitch movements at (a) 0◦ configuration, (b) 90◦ configuration, and (c) combined configuration at
0◦ and 90◦, and (d) pitch movement at 0◦ and roll and yaw movements at 90◦.

a monostatic configuration. From our individual movement
detection results, we strongly believe that the accuracy will
be significantly improved if data is collected in a multistatic
configuration.

VI. LIMITATIONS
The primary focus of this research is to solve a complex
problem of separating rotational and translational movements
from each other with high accuracy. The technique is demon-
strated for a single person as there are potential solutions
to remove the impact of another person, for instance one
sitting behind. One way is to utilize the direct relationship
of RMS delay to transmitted power. In both monostatic
and bistatic configurations, when a passenger is behind the

driver, the driver blocks the transmitted signal, thus less
power is received by the passenger. In case of any reflection
from the passenger, the echo will have a higher RMS delay
spread especially if it goes throughmultiple reflections which
implies less received power compared to the reflected signal
from the driver. At the receiver, any received signal below a
certain threshold can be simply ignored.

The other way in which this challenge can be addressed
with our solution is the utilization of appropriate antenna
full beam width in bistatic configuration to minimize the
reflection from movements outside the beam width.

In order to enhance the robustness of the approach we need
to counter for any changes in the accuracy due to adverse
road conditions. The current results are achieved from
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measurements performed in an anechoic chamber to primar-
ily separate the translational and rotational head movements.
This challenge can be resolved by incorporating car move-
ment information from existing motion sensors in modern
cars. These motion sensors are with integrated three-axis
accelerometer, three-axis gyroscope and three-axis magne-
tometer which provide accurate information about the car
movement process, any sudden changes in velocity, angle
or direction. The data collected by motion sensors for usual
and unusual road conditions could be utilized to spot any
abrupt changes in the wireless signals. The change in the
signal behaviour could be treated as car movement noise and
filtered out to prevent the changes in the accuracy of human
movement detection.

VII. CONCLUSION AND FUTURE WORK
Human head tracking is an intriguing concept especially in
ADAS, partially and conditionally autonomous driving due to
its potential in monitoring human behavior. Research into RF
sensing is yielding effective tools which, in combination with
the availability of cheaper high-frequency devices, allow for
high-resolution movement detection. In this paper, to achieve
in-vehicle 3D head tracking, a new technique was proposed
that exploited a 30 GHz millimeter-wave Doppler radar with
a car-like arrangement within an anechoic chamber. To detect
rotational vs. translational movements which has not been
studied yet to the best of our knowledge, the usage of bistatic
and monostatic geometry for antennas was evaluated. Data
reduction and joint time–frequency analysis provided a dis-
tinctive feature set to isolate dynamic rotational and transla-
tional head movements via class memberships.

From our experiments and analysis of translational and
rotational movements at 0◦, 45◦, 90◦, and 180◦ configura-
tions, we demonstrated the advantages of a bistatic over a
monostatic configuration for RF sensing of rotational move-
ments. It was shown that 90◦ is the optimum bistatic angle
to capture the full rotational (yaw) movement with 92%
accuracy. Our combined approach of refined configuration
and frequency–time analysis shows that translation along the
radar line of sight is more easily distinguished in the monos-
tatic configuration and that detecting all classes of rotational
and translational movement within one system requires addi-
tional RX units at, 0◦ and 90◦, for an accuracy above 88%.

Our approach can be characterized as comprising marking
boundaries to detect individual movements and separate them
from each other, after which the pool of features is com-
puted via STFT analysis, where a distinctive feature set for
dynamic movements’ separation is obtained by removing the
correlations between features via a PCA-based feature extrac-
tion technique. A supervised machine learning classification
algorithm SVM was used to train our model and predict the
unknown movement classes. This non-invasive and simpler
approach to head tracking holds potential to improve driver
state monitoring in ADAS and conditionally autonomous
vehicles and help intelligent car assistants guarantee a smooth
and safe journey. In particular, it is vital to predict the driver’s

capacity to supervise or maneuver the vehicle in case of
unexpected road events.

The authors intend to perform these experiments in real-
world vehicle conditions to verify our approach’s practicality.
On account of the beamforming capability of mmWave signal
and the static nature of the in-car environment, we expect to
see similar accuracy with regard to head movements. Also,
we plan to extend our system’s movement-detection capa-
bility and classes by detecting small head displacements and
conducting comparisons with fine-motion-tracking devices.
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