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Introduction

In neuroimaging, as in many fields, the journey of the data from the measurement equipment

to a figure in a publication is growing longer and more complicated. New preprocessing steps

are added at the beginning of the pipeline [1–3], new multivariate techniques in the middle

[4–6], and new statistical methods at the end [7]. Using these new techniques often requires

writing pieces of programming code referred to as "scripts," and, in accordance with the grow-

ing data analysis pipelines, these scripts also tend to increase in length and complexity. When

programming code becomes sufficiently convoluted, even the most experienced programmers

will make mistakes, which can ultimately lead to erroneous conclusions. Papers have had to be

retracted due to programmer error [8–10].

Ideally, analysis code should be a testament to the scientific rigor and technological creativ-

ity of the researcher, in much the same way as the scientific articles they write. This means

dealing with the disorder that arises as ideas get tried and discarded, mistakes are made and

fixed, and smaller analyses are made on the side. The tips in this article aim to facilitate a suc-

cessful organization of the analysis code, thereby keeping the complexity of data analysis code

within tolerable limits and reducing errors.

This article is a guide for those who have already written their own data analysis pipelines

and wish to improve their designs. Those looking for information on how to get started writ-

ing a data analysis pipeline for neuroimaging are referred to other works [11–15].

There is a large body of literature on managing complexity and reducing the chance for

programmer error in software [16–20]. However, most of it deals with the construction of pro-

grams and software libraries intended to be used across projects. This article focuses on analy-

sis scripts that sit at the point at which the general purpose functionality that is exposed by

software libraries meets the specific demands of a single study [21]. This makes scripts some-

what of an outlier in the software landscape, as they are pieces of code that are not reusable

(pieces that need to be reusable are better implemented in a software library), only have to

function correctly on one specific data set (hence there is little need to test for "edge cases"),

and will generally only be used by yourself and your collaborators (save the occasional run for

review purposes and replication studies). Therefore, many of the standard practices of the soft-

ware industry do not apply or need translation in order to arrive at concrete advice of what to

do and what to avoid when writing analysis scripts.

To move beyond mere truisms, the analysis pipeline developed by van Vliet and colleagues

[22] has been extended to implement all tips in this paper and will be used as case study to dis-

cuss the practical consequences of each tip in terms of code. The example pipeline starts from

the raw magnetoencephalography (MEG) and structural magnetic resonance imaging (MRI)

data from the Wakeman and colleagues [23] data set and performs several artifact reduction

steps, source estimations, functional connectivity analyses, cluster permutation statistics, and
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various visualizations. The size and complexity of the pipeline is representative of that of the

pipelines in modern studies at the time of writing. Where van Vliet and colleagues [22] give a

detailed explanation of all analysis steps, the current paper focuses on the design decisions that

were made during the implementation. You can find the code repository for the analysis pipe-

line at: https://github.com/aaltoimaginglanguage/conpy. Of special interest is the scripts folder

of that repository, which contains the analysis scripts. The "Application of the tip to the exam-

ple analysis" sections refer frequently to the example code, and it is recommended to study

these sections and the code side by side. The electronic version of this document contains

many hyperlinks to sections of the code, which the reader is encouraged to follow to see how

the tips can be implemented in practice.

By nature, analysis scripts are specific to a single study. Hence, the primary intention for

the example pipeline is to be a source of ideas to use when writing your own analysis pipelines.

However, should you wish to construct a pipeline similar to the example, a stripped down ver-

sion can be found at https://github.com/aaltoimaginglanguage/study_template along with

instructions on how to use it as a template for new analysis pipelines.

Tip 1. Each analysis step is one script

An effective strategy to reduce software complexity is to break up a large system into smaller

parts [24, 25]. The first tip is therefore to isolate each single step of an analysis pipeline into its

own self-contained script. This greatly reduces complexity by allowing us to reason about the

pipeline on two levels. At the lower level, we can reason about the implementation of a single

step, while ignoring the rest of the pipeline for a moment. At the higher level, we can treat the

individual steps as "black boxes" and focus on how they are combined together to form the

complete pipeline (see also Tip 3), ignoring their implementation for a moment.

This raises the question of what exactly constitutes a single analysis step. The decision of

where to "cut" the pipeline can be made from different perspectives:

Complexity perspective

Each individual script should be easy to understand and reason about, so one way to define a

single step is by its complexity: If a single script becomes too complex to be easily understood

as a whole, it should be split up into smaller steps, if possible.

Thematic perspective

Ideally, understanding one script should not require knowledge of another script. If each script

can be viewed as a self-contained box that performs a single task, the pipeline as a whole

becomes simply a collection of these boxes that are executed in a specific order. A script should

therefore aim to implement a single task (not multiple) and implement it completely, not only

part of it. See Tip 2 for another thematic consideration.

Time perspective

While running the entire analysis pipeline may take days, a single script should finish in a rea-

sonable time. This invites frequent testing as you iteratively develop the script, allows you to

quickly evaluate the effect of a parameter, and makes it painless to ensure that the latest version

of the script matches the latest result.

These perspectives may clash with another, so compromises are sometimes necessary. We

will now look how these perspectives influenced the way the van Vliet and colleagues’ [22]

pipeline was split into individual steps.
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Application of the tip to the example analysis

The van Vliet and colleagues [22] pipeline consists of 13 analysis scripts that process the data,

five visualization scripts that construct the figures used in publications, a configuration file

(config.py), and a "master" script that calls the individual analysis scripts (dodo.py, see Tip 3).

The analysis scripts are relatively short (Fig 1), containing an average of 40.8 lines of code (SD

14.8), while the configuration (see Tip 6) and master scripts (see Tip 3) are longer.

Often, the reasoning behind the scope of each script was made from a thematic perspective.

For example, one script performs the source estimation (09_power.py) and another the con-

nectivity estimation (10_connectivity.py). However, the decision to split the artifact reduction

steps into two scripts (02_filter.py; 03_ica.py) was made from a time perspective. Since the

independent component analysis (ICA) computation takes time, it was split off into its own

script to avoid having to repeat it unnecessarily. Finally, the decision to split up the construc-

tion of the forward models (i.e., leadfield) into three steps (06_fsaverage_src.py, 07_forward.

py, 08_select_vertices.py) was made from a complexity perspective.

Tip 2. A script either processes a single recording or aggregates

across recordings, never both

In neuroscience, it is common to apply the same data processing steps to multiple recordings.

For example, a frequently seen construct is the “big loop” over data from multiple participants.

However, running a single processing step on a single recording is a very common use case

(for example, during development or when a problem is encountered with one of the record-

ings), which the design should make possible without having to modify (e.g., "commenting

out") any code.

Fig 1. For each script in the analysis pipeline, the number of lines of the file, broken down into lines of programming code (code), lines of

descriptive comments (comment), and blank lines (blank). The first 13 scripts perform data analysis steps, the next five scripts generate figures, the

config.py script contains all configuration parameters, and the dodo.py script is the master script that runs all analysis steps on all recordings.

https://doi.org/10.1371/journal.pcbi.1007358.g001
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Hence, the second tip is that scripts should generally only operate on a single recording,

passed as a parameter from the command line, and not have the “big loop” (instead, the script

is applied to all recordings in a separate "master" script [see Tip 3]). The exceptions to this are

scripts that aggregate data across recordings (e.g., compute a grand average or perform statis-

tics) and therefore must have the “big loop,” in which case the sole purpose of the script should

be aligning the data (e.g., morphing to a template brain) and computing the aggregate. This

reduces the complexity of the code, since it allows the reader to either focus on the intricacies

of a data processing step (without having to worry about how the data is later reconciled across

recordings) or focus solely on the details of how multiple data sets are aligned and combined.

Application of the tip to the example analysis

In the example pipeline, there is a strict separation between scripts that perform data analysis

on a single participant (steps 0–10) and scripts that aggregate across participants (steps 11 and

12). The scripts implementing steps 0–10 all take a single command line parameter indicating

the participant to process. This is implemented with the argparse module of the standard

Python library, which facilitates the generation of a helpful error message when this parameter

is omitted, along with documentation on how to run the script. Not only does this help to keep

the number of lines of code and the running time of the script down (Fig 1), it also opens up

the possibility for the master script (see Tip 3) to automatically skip running the script for par-

ticipants that have already been processed earlier.

Tip 3. One master script to run the entire analysis

Once the individual steps have been implemented as a collection of scripts, the pipeline can be

assembled in a "master" script that runs all the steps on all the data. This master script is the

entry point for running the entire analysis, and therefore the third tip is that there should ide-

ally only be one such script.

By having a strict separation between the scripts that implement the individual steps and

the master script, it becomes possible to view the pipeline on two levels: The implementation

details of each single step and how the steps fit together to build the pipeline. To understand

the latter, the master script provides the "floor plan" of the analysis, which can be studied with-

out having to go into detail on how each individual step is performed. Hence, the only function

that the master script should perform is to call the other scripts in the correct order. Actual

data analysis steps, including logic for combining results across scripts, should always be per-

formed in a separate script, which is in turn called from the master script.

A master script can be as simple as having a single script that executes all other analysis

scripts in order. However, if some analysis steps take a long time to run, it becomes worthwhile

to implement functionality to make sure an analysis script is only run when needed. Keeping

track of which scripts have changed since they were last ran and whether the input data to a

script has changed is a task that has been studied in great detail in the area of software engi-

neering, and many specialized tools, known as "build systems," are available to perform the

required bookkeeping tasks. For example, build systems that are optimized for creating data

analysis pipelines include snakemake, pydoit, luigi, and nipype [26].

Application of the tip to the example analysis

The master script of the example pipeline, dodo.py, is implemented using the pydoit build sys-

tem. In the script, all analysis steps are described as "tasks", with steps 0–10 having a "subtask"

for each participant. Each task is associated with one of the analysis scripts, along with a list of
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files that are used by the script and produced. This allows the build system to work out the

dependency graph of the analysis pipeline (Fig 2).

The build system keeps track of which tasks are "up to date," which means the latest version

of the analysis scripts of all analysis steps up to and including the current step have all been

run. This means that the entire analysis pipeline can be run often and cheaply: All steps that

are up to date will be skipped. Making a change anywhere within the analysis code will prompt

the recomputation of all the steps that need to be rerun.

The build system also provides a set of commands that allow for executing specific parts of

the pipeline (e.g., a single analysis step on all participants, a few specific steps on a few specific

participants, etc.) without having to change (e.g., comment out) any code.

Tip 4. Save all intermediate results

The fourth tip is that all intermediate results generated during the execution of a script should

be stored, if feasible.

From a complexity perspective, the more each script can be isolated from the rest of the

pipeline, the easier it is to understand and represent as a self-contained black box. Hence, it is

important that each script can function in isolation and does not rely on data that was left in

memory by another script. Another big advantage is that saving intermediate results makes it

possible to skip any data processing steps that are unchanged since the last time the pipeline

was executed (see also Tip 3). Finally, having all intermediate results readily available facilitates

manual checks and exploration of the data.

In cases of limited storage capability, the cost of storage needs to be weighed against the

benefits of not having to recompute the result. Here, it helps to identify computational bottle-

necks and only store the minimum amount of data needed to bypass the bottleneck when

rerunning the script. For example, for linear data transformations (such as principal compo-

nent analysis [PCA], ICA, minimum norm esitimates [MNE], and beamformers) the compu-

tational bottleneck is in the computation of the transformation matrix, which by itself does not

take much disk space. Applying the transformation matrix to the data is computationally

cheap, while the result may take up a large amount of disk space.

Fig 2. Dependency graph showing how the output of one script is used by another. Stacked boxes indicate scripts that are run for

each participant.

https://doi.org/10.1371/journal.pcbi.1007358.g002
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Application of the tip to the example analysis

In the example analysis pipeline, each script begins by loading the data that were produced by

previous analysis steps as requires. Each script ends by saving all data that was produced by the

script. This includes the processed MEG data and also, for example, the ICA decomposition

matrix, along with the indices of the ICA components that were judged to correspond to eye-

blink contaminants.

Tip 5. Visualize all intermediate results

Data analysis pipelines, such as those used in neuroscience, are sufficiently complex that fail-

ures should be expected and planned for. When designing the pipeline, think about the system

for catching errors when they happen.

While using analysis scripts offers many advantages over using a graphical user interface

(GUI), a severe disadvantage is the lack of direct feedback. Since the result is usually not imme-

diately visualized, errors may stay hidden for a long time. Programming a computer is not

unlike receiving a wish from a mischievous genie: You will get exactly what you asked for but

not necessarily what you wanted. As long as the final result of a series of processing steps looks

reasonable, intermediate steps might contain nonsensical results that we would never know

about unless we take care to check everything. Therefore, an analysis pipeline should invite fre-

quent visual checks on all intermediate results.

The fifth tip is that for each intermediate result, the script should create a visualization of

the result and save it to disk. This does not need to be a publication ready figure, but must pro-

vide a visual confirmation that the data analysis operation had the intended result. By re-creat-

ing the figures every time a script is run and overwriting the file on disk, the figure remains up

to date.

After running all the analysis scripts, a complete visual record should be available of the

data as it moves through the pipeline. Care should be taken that the order of the figures

matches that of the analysis steps. Such a record invites frequent visual checks of the obtained

results and therefore somewhat offsets the main advantage that GUI programs have over

scripting.

Application of the tip to the example analysis

Whenever an intermediate result is saved to disk in the example analysis pipeline, a simple

visualization is also created and added to a "report" file. The main analysis package used in

the example pipeline, MNE-Python [27], provides a report class that compiles a set of figures

into a single HTML file. Each script adds (and overwrites) figures to the same report, which

will grow in length as more scripts are run. The resulting HTML file contains an easy to navi-

gate visual record of the data flowing through the pipeline. Each participant has their own

report file.

Tip 6. Each parameter and file name is defined only once

It is not uncommon that a parameter is used in multiple scripts. The sixth tip is that the value

of each parameter should be defined in one place. Instead of copying the value of a parameter

into all scripts that need it, the parameter should be imported, i.e., the programmer specifies

the location where the parameter is defined and the programming language will take care of

fetching the value when it is needed. In the programming literature, this is referred to as the

"don’t repeat yourself" (DRY) principle [18].
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A good tactic for managing parameters is to create a single configuration script, which sole

function is to define the values for all parameters. It makes it obvious where to look for the def-

inition of a parameter and decreases the chances of accidentally defining the same parameter

at two different locations.

File names are also parameters and ones that are commonly shared across scripts too. One

script produces a file that is used by another. Just like other parameters, the tip mandates that

all file names should be defined once and imported (not copied) by scripts that need it. It is

not uncommon for a file name to change when parts of the analysis pipeline are added or

removed. By ensuring the change needs to be made in only one location, scripts are less likely

to load data from the wrong file.

Application of the tip to the example analysis

The example pipeline has a central configuration script config.py, which defines all relevant

parameters for the analysis, such as filter settings, the list of subjects, the experimental

conditions, and so forth. All analysis scripts import the configuration file and thereby gain

access to the parameters. Whenever a parameter needs to be changed or added, the configura-

tion file is the single authoritative location where the edit needs to be made, and the change is

propagated to all analysis scripts.

The config.py script starts by offering some machine specific parameters, such as the num-

ber of central processing unit (CPU)-cores to dedicate to the analysis and where on the disk

the data is to be stored. The configuration script queries the hostname so that different param-

eters can be specified for different machines.

Since the pipeline stores all intermediate results and their visualizations, there is a large

number of file names to deal with. In many cases, each file name is used four times: Once in

the script generating the file, once in the script consuming the file, and twice in the master

script, dodo.py. For this reason, a helper class, Filenames, has been written that offers an effi-

cient way to manage them. The class is used to create an fname namespace that contains short

aliases for all file names used throughout the pipeline. It also leverages Python’s native string

formatting language to allow quick generation of lists of file names that adhere to a pattern

(e.g., "sub01_raw" and "sub02_raw").

Tip 7. Distinguish files that are part of the official pipeline from

other scripts

The development of a complex analysis pipeline is seldom a straightforward path from start to

finish, and the creative process thrives under a certain level of messiness [28]. However, when

miscellaneous files are scattered about (littering the folders that contain the main pipeline),

they obfuscate what is relevant and what is not. A good strategy is to alternate between bouts

of creativity (where "technical debt" [29] is allowed to accumulate) and periods of cleaning up,

during which the overall organization and design of the pipeline is reevaluated and the techni-

cal debt repaid.

The seventh tip calls for an organization system that distinguishes between files that are in a

stable state and part of the main pipeline and files that are work in progress, temporary, or part

of analyses on the side. A good system reduces the effort of the cleaning process, making it eas-

ier to commit to a regular tidying up of the virtual workplace. It is important that the system

does not become burdensome, as a simple system that is actually used is better than a more

powerful one that is not.

This can be implemented in whatever way suits your workflow best, ranging from simply

maintaining a rigid naming convention and folder structure to using more powerful tools
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https://github.com/AaltoImagingLanguage/conpy/blob/2f9926334fecc57de0e38b8f5124385dc661f17f/scripts/08_select_vertices.py#L24
https://github.com/AaltoImagingLanguage/conpy/blob/2f9926334fecc57de0e38b8f5124385dc661f17f/scripts/dodo.py#L136-L164
https://github.com/AaltoImagingLanguage/conpy/blob/2f9926334fecc57de0e38b8f5124385dc661f17f/scripts/dodo.py#L136-L164
https://github.com/AaltoImagingLanguage/conpy/blob/master/scripts/dodo.py
https://github.com/AaltoImagingLanguage/conpy/blob/master/scripts/fnames.py
https://github.com/AaltoImagingLanguage/conpy/blob/2f9926334fecc57de0e38b8f5124385dc661f17f/scripts/config.py#L162
https://github.com/AaltoImagingLanguage/conpy/blob/2f9926334fecc57de0e38b8f5124385dc661f17f/scripts/config.py#L164-L221
https://github.com/AaltoImagingLanguage/conpy/blob/2f9926334fecc57de0e38b8f5124385dc661f17f/scripts/config.py#L164-L221
https://docs.python.org/3/library/string.html#formatstrings
https://docs.python.org/3/library/string.html#formatstrings
https://doi.org/10.1371/journal.pcbi.1007358


such as a version control system (VCS) [30, 31]. Note that a VCS is not an organization system

in itself but merely a tool for implementing one. It is up to the data analyst to devise their own

system and have the discipline to stick to it.

Application of the tip to the example analysis

During the development of the pipeline, many scripts were written to try out different analysis

approaches, conduct tests, and do miscellaneous other tasks. The naming system was such that

all analysis scripts that are officially part of the pipeline are either prefixed with a number

(00_– 12_) and all scripts that produce figures for the manuscript with figure_. From time to

time, any script lacking such a prefix would be closely scrutinized to determine whether is was

still relevant and (if not) deleted. Deleted files were never truly gone though, as the project is

managed by the VCS git [31, 32]. Git keeps track of the history of a file, allowing to return to

previous versions, as well as parallel copies when doing something experimental.

Conclusion

Writing understandable code is a skill that can be honed by forming good habits. Whenever a

problem arises in a pipeline, there is an opportunity to look beyond the specific problem to the

circumstances that allowed the problem to occur in the first place and the formation of new

habits to prevent such circumstances in the future. However, it is important not to become

bogged down in rules. Every new project is a chance for reviewing your habits: Keep things

that were beneficial and drop things that were not or which costs exceed their utility.

Be aware that there is a lot of software tooling available to automate repetitive tasks and per-

form bookkeeping. Whenever a rule needs enforcing or a repetitive action needs performing,

there is likely a software tool available to automate it. However, while they can make it easier

to adopt good habits and keep the code organized, they cannot do the job by themselves. Ulti-

mately, it is up to the data analyst to keep things tidy and reevaluate the design of the analysis

pipeline as it grows. When and how to do this is best learned through experience. By reflecting

at the end of each project what were good and bad design choices, the analysis pipeline of the

next project will be better than the last.
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