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Abstract: This paper investigates energy efficiency and dynamic behavior through simulation and
experiments of a compact electro-hydrostatic actuator system (EHA) consisting of an electric motor,
external gear pump/motors, hydraulic accumulator, and differential cylinder. Tests were performed
in a stand-alone crane in order to validate the mathematical model. The influence and importance of a
good balance between pump/motors displacement and cylinder areas ratios is discussed. The overall
efficiency for the performed motion is also compared considering the capability or not of energy
recovery. The results obtained demonstrate the significant gain of efficiency when working in the
optimal condition and it is compared to the conventional hydraulic system using proportional
valves. The proposed system presents the advantages and disadvantages when utilizing components
off-the-shelf taking into account the applicability in mobile and industrial stationary machines.

Keywords: electro-hydrostatic actuator (EHA); differential cylinder; efficiency; simulation

1. Introduction

Off-road machines and industrial stationary applications have a huge growth potential with
respect to energy savings. Their duty cycle often requires large output power and machine robustness
to handle such working loads. In conventional systems, low efficiency is mainly caused by an internal
combustion engine (in heavy mobile applications), hydraulic rotational machines, long hoses, and
throttling losses of valves to transfer mechanical power to the actuator. In order to improve these
drawbacks, a combination of electric and hydraulic technology is an option, considering the high
efficiency, reduced noise, and the absence of local emission in electric components [1].

The combination of electric and hydraulic components in a closed circuit defines the concept of
electro-hydrostatic actuator systems (EHAs). These systems are a compact and reliable self-contained
unit composed of an electric motor, pump/motor, and hydraulic cylinder. EHAs can be driven utilizing
three different configurations: Fixed displacement pump and variable speed electrical motor, variable
displacement pump and fixed speed motor, and both variable. The latter can provide the highest
energy efficiency, however, the cost is higher and it requires more complex control systems in order to
achieve maximum efficiency regardless of the hydraulic operation point [2,3].

After all, the concept based on the fixed displacement pump and variable speed electrical motor
can offer the lowest manufacturing costs, simplicity, and high efficiency. Though it has a slower dynamic
response [2,4]. Several studies have shown the capacity of fixed-displacement pumps being used for
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distinct applications. An EHA with vane pump is presented in [5] for industrial applications and the
virtual prototype represented an effective tool to evaluate the energy consumption in injection molding
machines. In [6], an axial-piston pump reaching efficiencies up to 60% during actuation is reported and
in [7], an internal gear pump is applied in a high-speed power unit for mobile applications. Aside from
the pump working principle, in [8] the authors provided a review of electro-hydraulic technology and
presented different circuit configurations for EHA using differential cylinders applications.

Differential cylinders are mostly employed in construction machines due to requirements of
output force and installation space. When these actuators are utilized, the inflow and outflow are not
balanced, affecting the accuracy in the actuator position, control performance, and energy efficiency.

Flow compensation methods were previously explored, most of them utilizing pilot-operated
check-valves [9,10], and shuttle valves [11]. In [12], the influence of hydraulic accumulator to compensate
the flow mismatch between cylinder areas and pump displacement on energy efficiency in an open-loop
circuit is investigated. Regarding the configurations of pump-controlled systems for differential
cylinders, a review and classification is given in [13].

The usage of EHA systems in differential cylinders has been studied extensively, considering the
wide possibilities of system configuration and components. This work investigates the performance
of a system without implementing the flow compensation method, only relying on the external gear
pump/motors available in the market (off-the-shelf), reducing costs.

This paper proposes a circuit layout using two fixed displacement pump/motors driven by
one variable speed electrical motor, controlling a differential cylinder in closed circuit operation
mode. The system behavior and the energy efficiency are analyzed regarding the flow balance
between volumetric displacements of the pump/motors and cylinder areas. The influence of the
pressure dependent pump/motor’s leakages on balancing the pump/motors and cylinder is discussed
and additional hydraulic components are included in order to avoid cavitation and overpressure.
The analysis is carried out by simulation using a mathematical model validated through experimental
tests. A stand-alone crane setup is utilized in order to test the compact EHA for mobile and
stationary applications.

The following section introduces the setup utilized, followed by the mathematical model. After that,
Sections 4—6 present results obtained by simulation and experimental data, discussion, and finally
conclusions can be found at the end of the paper, respectively.

2. Test Setup

This section describes the structure of the test setup utilized to validate the simulation results.
The system was installed in a single-cylinder hydraulic mobile crane as shown in Figure 1. The crane
is just for test purposes; no safety regulations or standards were applied for this study case.
For the hydraulic part, two external gear motors (which are used as pump/motors) are driven
by a permanent magnet synchronous motor. A low-pressure hydraulic accumulator is assembled
between the pump/motors to act as a pressurized reservoir, making the system more compact and
running in a closed circuit. Three pressure sensors are utilized to collect experimental data to validate
the simulation results. In addition, two check-valves are applied to prevent cavitation and two relief
valves for safety purposes.

Table 1 presents the parameters of the main components utilized into the test setup. In Figure 2,
the system installed in the crane and main components pointed out is shown.
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4 ﬁ mpMo Icl)lrulator ume[ isplacement (Dpy,) [em®/rev] 3.
3 5 Blded, ﬁl&ﬁ%@f{&ﬁbﬁﬂ%@m@ﬁ% (Bygy) lemirexd] 1363
4 5 CcumUIator DXRBHB%HS [mm] 662375) x 400
o) C h'ndpr 1m9nq1nnq [mm 0/30 x 400
4  Hydraulic Acc ? & e 0.7
5  Cylinder 60/30 x 400
Figure 2. Test setusp instal : . N7 A | mponents for this study).
igure 2. Test setup ins ed ‘components for this

3. Mathéndatical Model Des

This section describes Prgsent the hydraulic components
and the crane load in MATLA e model considers an ideal source of speed driving two

pump/mgiqrs. sThesmainpatameters wilizedipthenadelarepiesentadilaterdm this sectionhased on
experim@nt@l) validation.
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The pump/motor effective volumetric flow rate is expressed by:

qvpm = mea)pm - QL<AP/ Cl)pm)/ 1)

where Dy, is the volumetric displacement, wpy, is the angular speed, and g, the sum of internal and
external leakages.
The leakages depend on the differential pressure over the pump/motor and its angular speed.
They are determined by:
qL = (Cl + C2-|wpm|)~(AP)/ (2)

where C; and C; are constant values calculated for each pump/motor based on the manufacturer
catalogue information and experimental data.

Three control volumes are considered in the system: The two chambers of the cylinder and the
low-pressure volume in the accumulator line. The effective bulk modulus, ., represents the total
compressibility of the system considering oil, air trapped inside the circuit, and hoses. It is calculated by:

1

Beff = ,
11, (Y1
B TR +(Vt)ﬁg

®)

where fy is the bulk modulus of the hoses, ; is the bulk modulus of the hydraulic fluid, V is the
volume of air trapped in the system, V; the total volume, and f¢ the bulk modulus of the gas, which is
a variable value and considered the instantaneous pressure in the system.

The pressure dynamics of the chambers was modeled utilizing the continuity equation for a

control volume, that is:
dp  Peff v
v Z qv — ) 4)

where dp/dt is the pressure derivative inside the closed volume, V the initial volume of the chamber,
and 4V /dt the volume variation in time.
The friction force of the cylinder was based on the LuGre model given by:

d
Fp, = 00z 4+ 01 d_j + opv, 5)
dz 00z
i~ g™ ©
(22
g(v) = Fc + (Fs + Fo)e™ ) @)

where oy is the stiffness of the elastic bristles, o7 is the damping coefficient, and o3 is the viscous
friction coefficient. The z and dz/dt represent the average deflection and deflection rate of the bristles,
respectively. ¢(v) is a positive function and depends, for instance, on material properties, lubrication,
and temperature. Fc is the Coulomb friction force, Fg is the static friction force, and v is the Stribeck
velocity. The friction parameters utilized in the simulation were obtained experimentally previously
by [12].

The load force applied in the system is represented by the free body diagram of the crane
in Figure 3.



Actuators 2020, 9, 12 50f 16
Actuators 2020, 9, 12 5 of 15
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where m; and m, are the masses of the segments the crane is composed of, r; and r, are the
whdistancarhe twearettre cerissesOfrthes semaehtsepmendrenid domjposedonf, andind, 5, are the disgénce
bethetereehetherventef nfasmes endhtbegefergrmedthipgoidic gy amiel ohd gris the gnglétbbbmebrottdaehter
of Ragkoaddthttacheiedhreepurdiciiing shanakdrsinplifisasionathmloachisseansidergtbatithearaithed
to tihe chai iattshashia tromsiyabls it SHORHE3ba s corsiRifeasshate vl thed opdi AidiAt fidhed
to the btNabflerpdsthamel ihdralic foitsiderisithe Angle Sete1a4be elindehrrhibaiint PG ithe

netth§ disRREGHRIY %tht{}?ecgﬁé‘fézeﬁmgﬂql{b%%ﬂiﬂaer and the joint, and dy the distance between the
cylind erTBS Saéﬁg}le& e eaTé 82 and Ornioaq shown in Figure 3 can all be determined in the function of 6 by

their dnitial values megsured when the gylinder ig fully retracte plus the variation € & . ion of 0 by

their initial values measured when the cyhnde)}” is }flyl_](y‘(%z:tracted plus the variation of 6: (10)
ao
=Yyq+ —,do 10
Brus 2 Oyl =2, (113 )
dt
a0
O = Om1o + 11
melmz =r§3r?20 +z%g; (123 )
ao
Omz = Om20 + 150 (12)
gmload = emloado i g+ (13)
= + ﬁ ' (13)
and angle a is found using the sine rlﬁ@lg‘i‘i]/e_n %”.ﬁmdo dt’
and angle a is found using the sine rule given by: d,
sin(d) = x—sin(y) , (14)

. d
where d, is the distance of the upper fé@%éﬂi)n?pgi%”he cylinder and the joint. x, is the bod{14)
length of the cylinder when fully retracted plus the stroke displacement. To obtain x; the cosine rule
whezetllize dheedidtamgérof the upper fastening point of the cylinder and the joint. x; is the body length

of the cylinder when fully retracted plus the —Jo obtain x; the cosine rule is utilized,
resulting in: x, = _|d,* +d,* — 2d,d,cos(y). (15)

X = \/d12 + dp? — 2dydycos(y). (15)
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Deriving Equation (15) in function of time ¢, the velocity of the cylinder can be expressed by:
Deriving Equation (15) in function of time f, the velocity of the cylinder can be expressed by:

dy .
dx dld,zith sin(y)

da = iy s ) (16)
ar Q%#ﬁ%@fmz ) (16)
12 +do? — 2dydycos(y

ec va]lves r anti-cavitation purposes were mo e]le% as an orifice a]l owing volumetric flow
eck valves for anti-cavitation purposes were modeled as an orifice allowing volumetric flow

rom the reservoir to the cyli r chambers when the pressure djfference over the valyes is ar.
rom the reservclurftto 1;t]%%e c%rlllllﬁ(éeer lcli!lam%gr? vg]%en e%,l%_essui‘le t&lfﬁerence civer ! e Vtal ves 1522.55%}?1
e pressure reli alves were also ed as an orifice that allgws volumetric, flow when the
[ € ;P]J;essure refiefva Ve?1 wm;g1 also mﬁgﬁ%?ecf as an or1 l"fﬁ ]f}la% failtiows Vo(ifu{rﬁetnc ! OW whenvt\iw c}ﬁam eg
chamber pressurg reaches the cracki ressure. nfluence, o e valve dynamijc was no
pressure rBaches the cracﬁmg pressure.n%h]g (Afitenice of the Valve dynamic was noC%){nves]hgﬁea.
invesfioa . . . C g
Sﬁ%e tf% Jowing sections present the experiment results and the model validation, as well as the
The fo}lowm sections present the experiment results and the model validation, as well as the
energy analysis.
energy analysis.

4. Model Validation
4. Model Validation
Experiments were carried out to evaluate the system performance and validate the mathematical

mod EXPRTEBREES Y s eRTdeckoyt ppraikiaia the s e NPeisokpancsad piatidain theenathrmatisal
Resebridrensirbopdone Aaprioxmaie iz N0 sehwaspaplissprdhe shapeiapd A setatisnal
frequsney of BslegisicmatewaruserbAs i qﬂwmpéi%fq&s@ae&gln%a%ﬂ%ggénf&ggﬁéla%h.
%ﬁéim&%&%&a&%ﬁ%&gm@, a3 wadlel %B%E%&%éi%&l@% e¥lindrr Resitien
and coampasLeiesiiRe aneitvhthearurrlatoLline PrrsTbRsFe fieoesdnd andecoprrersdsiyith
b1 M IEm el it fals NS ThPRRBE et udt s $hEWn REGHFHAsREGHR ED b ahaRietel
carnRlemenieg f@fg‘ﬁ}&ﬁ@%anigﬁrﬁiwpﬁesisggétééahemwmﬁ%@ﬁgﬁmﬁb&m@r&a Faleeh
memg’aggwﬂmgi%%%dﬁ@é(ﬁg&é{ﬂ%ﬁficients, volumetric displacement, cylinder friction

coefficients, and check-valve opening pressure.
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Figure 4. Electric motor rotational speed measured by the encoder.
Figure 4. Electric motor rotational speed measured by the encoder.

Table 2. Pump/motor parameters.

Parameter Values i Paramete.r Values

Aia[l_‘\alll};l‘g}ss/f)a} Valueié{% 10_12 l’ara}zlln%e]'r Valueﬁ'qm
Coslmfs/Ba]  1.604 9H3d3 114 dy [m]m] 0.983 0,647
Cep prpdPala]  2.559 4 #1071 d, [m][kg] 0.647 25.11
CCopi®d/Pa]l 1.4 x 10515 x 10713 m, [leglksl 25.11 21.40
% a] 2515 ﬁggpg) m, [Kej kel 21.40 30693
“‘gl[ g E} 30000(?0060 mm% %%] 40 o7y
Ufflﬁﬁm] 5477224061 n [IP?ULd [m] 0.693 1.674
oF[IN§/m] 10000 300 1y [8]10 [rad] 0.977 0.1169
Fy{iaysl 240.610.0005 Toadfen]radl 1.674 0.1572
Fsﬁ{Nja) 7 % 108 Hmw@,ﬁoa,aﬁrad) 0.11690-1775
PRy 0000514 % 10’ 8, [rad] 01572
By (Pa) 7 x 108 Omioaa (rad) 0.1775

B, (Pa) 1.4 x10°
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5.1. Energy Analysis

5.1. lysi
févl’ﬁ% é’l%av}gﬁsc’iated model presented above, the system is now analyzed in terms of consumed and

deliveising theeyalidattichsrodel pedheitedyafbeenthesyetofradt obetvaealrech pintertorsdié slanstreets
and ddivéeedrpasienlss digdhssednergy efficiency. The influence of ratio between pump/motor
displatemeryserdreylinderiarénsts plan giswtssedis calculated by:
The torque T required by both pump/motors is calculated by:
T,= Ap.Dan/ , 17
T = j]p_ ﬁgm}?ﬁlri;fgch' ((17}
and the pewer at the eleetrie motor shaft is given by:

Phem=1l0, (i)
where mechanical efficiency, 7pecp, is based on the catalogue data.
whergmechanicaht it Nt Huredf PoRest enche ailegys data.

The useful cylinder mechanical power is calculated by:

dx
Peyr = FCysz. ((19))
Poyi = Fey =, 19
where F,,; is the net force exerted by the Cyhjélder and % is the position.
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sum gW@ﬁlBth and output energies are determined by integrating the powers in each motion and sum

given by: t1 t2 t3 t4
Einpue = (11 T.w.dt + 412 Feyy. [X]. dt + 3 T.w.dt + 14 Fy. |%]. dt, (19)
Einput = [0 Twdt+ PaFoylx|dt+ PeTwdt+ PeaFoy,lx|dt, (20)
and 0 t1 2 t3
and
1 22 3 4
Efiguunic = J H@mwﬂ T+ f Feypiiele+f f Tt (20)
0 1 t2t2 t3

where the time instants are shown in Figure 9.

The energy analysis ean be done in two different approaches. First, consideting that the energy
available in the eleetriec motor shaft when loweting the crane can be sent baek to the grid (or battery
pack), resevesingeerergyin thisldaseals ekerai-effillicsteicisnistersndredreantideringadlepatts M lard
invigvedion Kation (20).

The other approach is not considering the capacity of enetgy tecovery, working similarly to the
eonventional metetr@iftfRvwcenited b gyktenand dvasisag thehsteredepopattintianergt chh T beesgyraythe
tHectticmiotarotbaiitisfuns dissifiatedaand cend)sespuflipriigratie frotsance ppospp denguorfuhincase,
thseatquptflid¢pyaderhttentsdniis iniguiibrao)eglesiedected.

Energy values with and without energy recovery can be seen in Figure 10.
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The total efficiency when the system is able to recover energy resulted in approximately 54%,
while the system without energy recovery was around 38%. These values are only taken into account
the hydraulic component losses, not considering the energy conversion at the electric motor.

5.2. Influence of the Volumetric Displcacemnt Ratios
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The total efficiency when the system is able to recover energy resulted in approximately 54%,
while the system without energy recovery was around 38%. These values are only taken into account
the hydraulic component losses, not considering the energy conversion at the electric motor.

5.2. Influence of the Volumetric Displcacemnt Ratios

It is important to notice that the leakages of both pump/motors have a significant influence
on the system performance, especially when operating in higher rotational frequencies as shown in
Equation (2). When the cylinder is advancing, the flow suction of the pump/motor on the rod side
chamber (B-Side) is lower than the resulting from the cylinder displacement creating a counter pressure
in the actuator chamber B (see Figure 7). The faster the cylinder moves, the higher the pressure is,
Hmitimg2the erdhe operation range. In this system condition, when rotational frequencies are Hikliés
than 550 rpm, the pressure relief valve opens (30 bar). As the pressure in chamber B increases, the
BresensesmtiRaRiBEsUAR IRCFRABDSE W1l IREEEIERT 38 AMRIEhEsS RS JRearN IBE PURGS/HRE M es Hafthe
PumIPérﬂ’ﬁ%Me energy efficiency, two possible approaches are proposed. The first one is utilizing
the pFSERPTRNR S RN B dRE Il Rid e dorisible ARRIRa REséd D PIRBREHaldhee HoltRReris
siiprirantbstperssurs pretistoraesnip Ludeto the ueid theroPHEn ARSI ACRIsed Rxithe prakalanee
HRlwmeEic i splaceranty Ghip R It eFA SRMBAR 91 R B Fatioroivie 2 igedl loRedoRg
BEesHyS GhHhen aheedrur sign b isRIHEHRITOWE Sratcéfisiengysdoal avmparatigravidh gl wpaed
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pump/motors. Figure 15 presents the corresponding accumulator line pressure.
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As shown in Figure 13, the pressures have a sudden increase during the lifting motion when the
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In other words, the absence of change of load direction implies no need of piloted valves.
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Table 3. Overall efficiency related to the volumetric displacement ratios.
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5.3. Comparison with an Electro Hydraulic System

In order to compare the energy efficiency gained from an electro-hydrostatic actuator (EHA) with
an electro hydraulic system (EHS), utilizing a cylinder controlled by a directional proportional valve
with constant pressure source, both systems under the same load condition and actuator motion were
analyzed. A load mass of 500 kg was assumed in order to evaluate the system performance in work
conditions close to nominal operating conditions. The cylinder position (see Figure 12) was used as the
reference input signal, this way it was able to evaluate the different concepts.

In the EHS model, the cylinder pressure was limited to 130 bar during an operation condition,
so it was considered with a constant supply pressure of 160 bar and the efficiency of the pressure
source of 75% for a variable-displacement pump (piston pump). This is the mean value for a piston
pump operating between 30% and 100% of volumetric displacement at 160 bar and 1775 rev/min [14].
The directional proportional valve model was based on [15], an asymmetrical proportional valve with
2:1 orifice ratio. Figure 18 presents the pressure levels in the chambers for both actuation systems.
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The results presented in Jglle 4 showed théidhmount of energiKlind power that cditlbe saved

source and grime mover efficiency, in terms of maximum input power, the EHA required only 46% of
EHA (w . .
the poxr/ggg Tequire d by EHS, i.e., tonsumed. The e22%tgy consumed aléag the motion perférmed was

41% less, consequently, the overall efficiency resulted in a significant improvement.

6. ConcRiboinso 1 225 8.7 38.7
regeneration) . . . .
A nonlinear dynamic model of the electro-hydrostatic actuator, including pressure and

ﬂow-delgendent leakages at the pump/motors and cylinder LuGre friction, was developed and
Validalgec? X rr?ﬁientally. Based 1an the simulatiof5and experimenttl.4esults, the prop2séd system
architecture resulted in an efficiency of 38% when electrical energy regeneration is not considered, and
up to 54% with energy regeneration when operating with a load mass of 40 kg.

The impact of the volumetric displacement ratio of the pump/motors is analyzed using the
validated model. Since no directional valves are included in the system to balance the inflow and
outflow from the differential cylinder, it should be done by the pump/motors. The results revealed that
a change from ratio 0.74 to 0.75 (ideally value) on the volumetric displacement leads to a difference
of 10% on the energy efficiency for a specific working cycle, load mass, and maximum rotational
frequency. As a general conclusion, the design target is to select the pump/motor and cylinder with
displacement ratio and area ratio, respectively, as close as possible.

Since achieving the perfect match between pump/motor and cylinder is a hard task, one option
is reducing the cracking pressure of the relief valve on the rod side. Consequently, the cylinder
counter-pressure is reduced, allowing the system to operate in an efficiency range near the
optimal condition.

The energy performance of the proposed EHA was also compared with an EHS where the throttle
losses and leakage through the proportional valve are present. The consumed energy was 46% lower
to move a load of 500 kg at the same trajectory.
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Therefore, besides an expected unbalance between pump/motor volumetric displacements
and cylinder areas, an EHA with two pump/motors driving an asymmetrical cylinder can
achieve a substantial gain considering energy consumption if compared to the conventional
valve-controlled system.
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