
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Peltonen, Aleksi; Sethi, Mohit; Aura, Tuomas
Formal verification of misbinding attacks on secure device pairing and bootstrapping

Published in:
Journal of Information Security and Applications

DOI:
10.1016/j.jisa.2020.102461

Published: 01/04/2020

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY-NC-ND

Please cite the original version:
Peltonen, A., Sethi, M., & Aura, T. (2020). Formal verification of misbinding attacks on secure device pairing and
bootstrapping. Journal of Information Security and Applications, 51, Article 102461.
https://doi.org/10.1016/j.jisa.2020.102461

https://doi.org/10.1016/j.jisa.2020.102461
https://doi.org/10.1016/j.jisa.2020.102461


Journal of Information Security and Applications 51 (2020) 102461 

Contents lists available at ScienceDirect 

Journal of Information Security and Applications 

journal homepage: www.elsevier.com/locate/jisa 

Formal verification of misbinding attacks on secure device pairing and 

bootstrapping 

� 

Aleksi Peltonen 

a , ∗, Mohit Sethi a , b , Tuomas Aura 

a 

a Aalto University, Finland 
b NomadicLab, Ericsson Research, Finland 

a r t i c l e i n f o 

Article history: 

Available online 13 February 2020 

Keywords: 

Device pairing 

IoT Security 

Misbinding attack 

Bluetooth 

EAP-NOOB 

DPP 

ProVerif 

Formal modelling 

a b s t r a c t 

In identity misbinding attacks against authenticated key-exchange protocols, a legitimate but compro- 

mised participant manipulates the honest parties so that the victim becomes unknowingly associated 

with a third party. These attacks are well known, and resistance to misbinding is considered a critical 

requirement for security protocols on the Internet. In the context of device pairing, on the other hand, 

the attack has received little attention outside the trusted-computing community. This paper points out 

that most device pairing protocols are vulnerable to misbinding. Device pairing protocols are character- 

ized by lack of a-priory information, such as identifiers and cryptographic roots of trust, about the other 

endpoint. Therefore, the devices in pairing protocols need to be identified by the user’s physical access 

to them. As case studies for demonstrating the misbinding vulnerability, we use Bluetooth and proto- 

cols that register new Internet of Things (IoT) devices to authentication servers on wireless networks. 

We have implemented the attacks. We also show how the attacks can be found in formal models of the 

protocols with carefully formulated correspondence assertions. The formal analysis yields a new type of 

double misbinding attack. While pairing protocols have been extensively modelled and analyzed, mis- 

binding seems to be an aspect that has not previously received sufficient attention. Finally, we discuss 

potential ways to mitigate the threat and its significance to security of pairing protocols. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Secure device pairing is a process that bootstraps secure com- 

munication between two physical devices. It is a type of authen- 

ticated key-exchange, but with the special characteristic that the 

endpoints are physical devices which the user can see or touch di- 

rectly. Unlike most security protocols, secure device pairing does 

not require pre-established cryptographic credentials or security 

infrastructure. Instead, the user acts as an out-of-band communi- 

cations channel or as a trusted party that provides the initial secu- 

rity. 

The focus of this paper is on identity-misbinding [2] or 

unknown-key-share attacks [3] where the wrong endpoints are 

� This article is an extended version of a paper that appeared in ASIACCS 2019 [1] . 

It includes an extended background section, rewritten EAP-NOOB protocol example, 

a section describing misbinding attacks on the Wi-Fi Alliance DPP protocol, and a 

full formal model of misbinding in Bluetooth pairing. 
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Sethi), tuomas.aura@aalto.fi (T. Aura). 

paired with each other. These attacks depend on one of the user’s 

devices being compromised, and they do not violate the basic se- 

crecy goals. Nevertheless, such vulnerabilities have been consid- 

ered unacceptable in network security protocols. Our main mes- 

sage is that most device-pairing protocols are vulnerable to the 

misbinding attacks, and they may not always be avoidable. As we 

will argue, the vulnerability is not caused by technical errors in the 

protocol design; rather, it arises from the lack of verifiable identi- 

fiers in situations where the endpoint identity is defined by the 

user’s physical access to the device. 

This paper is not intended to sound alarm but rather to bring 

clarity and understanding to a previously ignored question about 

device authentication. Our contributions are the following: (i) 

bringing attention to identity-misbinding vulnerabilities in device- 

pairing and bootstrapping protocols, (ii) detailed analysis and char- 

acterization of the vulnerabilities, (ii) examples of concrete, imple- 

mented attacks against Bluetooth Secure Simple Pairing and the 

proposed EAP-NOOB and DPP protocols for registering new de- 

vices to a network, (iii) formal specification of the violated secu- 

rity property as a correspondence assertion that takes into account 
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the user intention, and (iv) balanced discussion of the impact of 

the attacks and potential countermeasures. The significance of our 

work arises from the wide deployment of the vulnerable pairing 

protocols in everyday applications. 

The rest of the paper is structured as follows. Section 2 dis- 

cusses the relevant state of the art in security protocols and at- 

tacks. Section 3 explains the misbinding attack against device- 

pairing protocols, and Section 4 describes a similar attack when 

registering new IoT devices to an authentication server or wire- 

less network. In Section 5 , we show how to model the attacks 

and the related security properties. We also discover a new vari- 

ant of the misbinding attack. Section 6 considers the potential 

solutions. Section 7 discusses the significance of the results, and 

Section 8 concludes the paper. 

2. Background 

2.1. Security protocol attacks and correspondence assertions 

The goal of authenticated key exchange is to establish a shared 

cryptographic key between two or more communication endpoints, 

which then use the shared key for protecting communication in- 

tegrity and confidentiality. Authenticated key-exchange protocols 

should be secure against the so-called Dolev-Yao attacker [4] , which 

is able to spoof, intercept and modify messages in the network in 

arbitrary ways, except when it lacks the necessary cryptographic 

keys. The attacker may impersonate one of the communication 

endpoints or set itself as a man in the middle (MitM) between 

them. Even carefully designed protocols have been found to be vul- 

nerable to forwarding and interleaving attacks [5,6] , in which the 

attacker itself is a legitimate participant in the protocol but can 

mislead others by cleverly replaying messages. In closed systems, 

such insider attacks could sometimes be tolerated, but in large sys- 

tems and open networks such as the Internet and the Internet of 

Things, there always are some malicious “insiders”. Thus, modern 

security protocols are required to be immune to these attacks. 

The authentication goals of key-exchange protocols can be de- 

fined in terms of matching or agreement between the records 

made by different endpoints on the protocol execution [7,8] . The 

same goals can be stated as correspondence assertions [9] . These 

assertions define relations between later and earlier events in the 

protocol execution. For example, a common assertion is that, if Al- 

ice accepts a session key to be used with Bob, both Alice and Bob 

must have previously declared an intent to create such a session 

key. This way, we can make global assertions about the events 

that should or should not take place in a distributed system. In- 

jective correspondence further requires that each such declaration 

of intent can result in at most one accepted session key. When for- 

malized, the correspondence assertions are typically parameterized 

with all the knowledge of protocol inputs and parameters which 

should match between the events and endpoints. 

An advantage of specifying security properties as correspon- 

dence assertions is that, in addition to basic authentication prop- 

erties, the assertions capture the protocol designer’s implicit ex- 

pectations about its execution and, thus, can help to detect subtle 

flaws that might otherwise go unnoticed. 

2.2. Identity misbinding 

In this paper, we are interested in failures of authentication pro- 

tocols where the following two conditions hold: 

1. One of the protocol endpoints is confused about the identity 

of the other communication endpoint. 

2. The confusion is caused by malicious behavior by one of the 

intended communication endpoints. 

Consider the high-level scenario of Fig. 1 (a). A is a client com- 

puter that wants to connect to the server E and, therefore, initiates 

the cryptographic authentication protocol. In security-protocol ter- 

minology, A is the initiator and E is the responder . Unfortunately, 

the responder E is malicious and tricks A to connect to another 

responder B instead. The result is that A believes it has a secure 

connection to E while, in reality, the connection is with B . The re- 

sponder B in this scenario can be entirely honest, and B correctly 

believes it is talking with A . 

This attack can work only if there is a weakness in the authen- 

tication protocol. As we will explain below, most modern authenti- 

cation protocols are designed to prevent such attacks. Nevertheless, 

let us persist on exploring the potential failures. 

In the above scenario, the initiator is confused about the iden- 

tity of the responder. It is equally possible that the responder is 

confused about the identity if the initiator. This second scenario is 

shown in Fig. 1 (b). B is a server that believes it is accepting a con- 

nection from client E , but the malicious E exploits a weakness in 

the authentication protocol and tricks B into accepting a connec- 

tion from A instead. As the result, B believes that it has a secure 

connection with E while, in reality, the connection is with A . 

Next, we take a look at a concrete protocol that is vulnerable 

to the above attacks. Fig. 2 shows two well-known attacks against 

a badly-authenticated Diffie-Hellman (DH) key exchange. The at- 

tacks correspond to the two scenarios discussed above. In Fig. 2 (a), 

the malicious responder E forwards messages from the initiator A 

to another responder B . The endpoints A and B establish a Diffie- 

Hellman shared secret. However, A thinks that it has created a 

shared secret with E . In Fig. 2 (b), on the other hand, E acts as 

a kind of man-in-the-middle attacker that modifies messages be- 

tween the initiator A and responder B . The Diffie-Hellman shared 

secret is established between A and B , but the responder B mistak- 

enly thinks it shares the secret with E . 

The above attacks were identified by Diffie et al. [7] , and 

they have later been given many names including unknown-key- 

share [3] and identity misbinding [2] . We will use the name mis- 

binding in this paper. 

The impact of misbinding attacks is somewhat difficult to un- 

derstand because it does not compromise secrecy of data. First, 

the malicious entity E does not learn the shared secret and, thus, 

cannot intercept the data sent over the established secure connec- 

tion. Indeed, E could learn and leak more secrets by completing the 

protocol normally and becoming a endpoint of the secure chan- 

nel. Second, one could argue that B has correctly authenticated A , 

and more controversially, that A has correctly authenticated E be- 

cause E is entitled to choose any key share it likes. Nevertheless, 

something clearly is amiss about the authentication. A and B have 

different understanding of who they are communicating with, and 

one of them has the wrong idea about who shares the session key. 

This violates correspondence properties that an authenticated key 

exchange intuitively should have. 

2.3. Standard defenses against misbinding 

Diffie et al. [7] initially presented the misbinding attack to mo- 

tivate the station-to-station (STS) protocol. In basic STS, the signa- 

tures are encrypted with the Diffie-Hellman session key, and the 

paper also suggests another variant where a message authentica- 

tion code (MAC) replaces the encryption. The function of the en- 

cryption or MAC is to bind the session key to the signatures, which 

prevents the attacker, who does not know the session key, from re- 

placing the signatures with its own in the way it does in Fig. 2 . 

The STS protocol, including both the encryption and MAC vari- 

ants, is still vulnerable to misbinding attacks if the attacker E man- 

ages to register A ’s or B ’s public signature key as its own. This vul- 

nerability is well known and caused by failure of the certification 
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Fig. 1. Misbinding of (a) initiator identity at responder and (b) responder identity at initiator. 

Fig. 2. Misbinding of (a) initiator and (b) responder in badly-authenticated Diffie-Hellman. 

Fig. 3. SIGMA protocols (a) bind identity to the session key with a MAC to detect misbinding against (b) initiator and (c) responder. 

authority to verify that the subject possesses the private key. Nev- 

ertheless, the dependence on the CA following best practices can 

and should be avoided, as in the protocols that we discuss next. 

The SIGMA protocol family by Krawczyk [2] computes the MAC 

explicitly on the message sender’s identifier, rather than its signa- 

ture, as seen in Fig. 3 (a). The SIGMA protocols are highly influential 

because they include the IKEv2 key exchange [10] and its predeces- 

sors in the IPsec protocol suite. As a consequence, resistance to the 

misbinding attacks is considered one of the critical requirements 

for key-exchange protocols designed for the Internet. 

The SIGMA defense to misbinding is easy to understand by 

considering how the potential attacks are detected, as shown in 

Figs. 3 (b) and 3 (c). When verifying the MAC, the receiver verifies 

that the identity claimed by the other holder of the Diffie-Hellman 

shared secret matches its own expectation. This guarantees the 

correspondence between the two endpoints’ beliefs. 

A slightly different approach was taken in the ISO 9798-3 pro- 

tocol [11] , where each endpoint includes the identity of the other 

endpoint in its signature. This allows he receiver to compare its 

own understanding of the two identities with that of the sender. 

All the known defenses against misbinding follow this general pat- 

tern where each endpoint communicates its view of the initiator and 

responder identities in the protocol messages, and each side compares 

its own view with that of the other . Consequently, lack of corre- 

spondence between the initiator or the responder views will be 

detected. 

2.4. Device pairing and relay attack 

Secure device pairing is a bootstrapping process that estab- 

lishes a secure channel between two previously unassociated de- 

vices. These devices often communicate over a short-range wire- 

less channel such as Bluetooth [12] , Wi-Fi [13] , or Zigbee [14] . 

While the goals of device pairing are similar to those of any au- 

thenticated key-exchange protocol, there is one major difference: 

the devices typically have no prior security context, such as knowl- 

edge of each other’s public keys or certificates and identifiers. They 

may not even have identifiers or an assigned owner before the 

pairing establishes those. Additionally, the devices may not be able 

to rely on the availability of trusted infrastructure due to the ad- 

hoc and local nature of the short-range wireless communication. 

Typical device pairing protocols perform a Diffie-Hellman (DH) 

or an Elliptic Curve Diffie-Hellman (ECDH) key exchange over the 

in-band wireless channel and then use a human-assisted out-of- 

band (OOB) channel to thwart potential impersonation and man- 

in-the-middle attackers in the in-band channel. Several researchers 

have studied the security and usability of device pairing protocols 

in considerable detail [15–18] . The existing literature assumes a 

powerful Dolev-Yao type attacker on the in-band wireless channel 

and an OOB channel that provides some inherent protection for the 

confidentiality and/or integrity of the data exchanged over it. 

Bluetooth (see Section 3.1 ) is one of the most widely deployed 

and analyzed wireless technologies. Modern Bluetooth devices use 
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the Simple Secure Pairing (SSP) [12] protocols, although some may 

be backward compatible with the less secure Legacy Pairing meth- 

ods. Wireless devices have different input and output capabili- 

ties, which is why SSP supports multiple different user interactions 

and is actually a family of key-exchange protocols. In the numeric- 

comparison mode, the user is asked to compare six-digit codes on 

two device displays while, in the out-of-band mode, the user deliv- 

ers similar verification information securely from one device to an- 

other. Either way, the out-of-band communication by the user pre- 

vents man-in-the-middle attacks on the ECDH key exchange that 

takes place over the in-band wireless channel. There is also a just- 

works mode for devices that support neither output nor input of 

six-digit codes. Obviously, this mode lacks secure authentication. 

Research literature on Bluetooth security discusses several at- 

tacks that are relevant to pairing protocols in general. It may be 

possible to spy on the OOB channel or to misrepresent the device 

capabilities so that the devices negotiate the insecure just-works 

mode [19] . The attacker can trick remote devices into believing 

that they are in direct communication by relaying unmodified pro- 

tocol messages between their locations [20] . In the legacy version 

of Bluetooth where session encryption was not mandatory, relay- 

ing of the authentication messages could result in pairing of the 

wrong devices. In modern protocols, this attack is relevant when 

the primary goal is the device authentication and not protection of 

the following communication, for example, when a Bluetooth de- 

vice is used as a door key or as a location beacon. Moreover, the 

Bluetooth just-works mode can lead to accidental or maliciously 

induced association with a wrong peer device, as noted among 

others by Suomalainen et al. [21] . If the device supports multiple 

simultaneous key exchanges, there can be confusion between the 

resulting sessions [22] . The end result in these attacks is akin to 

identity misbinding because the reality of the created security as- 

sociations does not correspond to the device’s or user’s perception. 

Poorly designed internal architecture of a Bluetooth endpoint, 

such as a mobile phone, may also lead to attacks. Naveed 

et al. [23] describe how malicious applications on an Android 

smartphone can hijack connections from attached Bluetooth (medi- 

cal) devices in order to steal data. The problem arises from the fact 

that the Android permission and security model allows any appli- 

cation with the Bluetooth permission to communicate with all ex- 

ternal Bluetooth-paired devices. A more general lesson that we can 

draw from the paper is that it is important to pay attention to ma- 

licious insiders, such as untrusted apps, residing in the endpoint 

devices, which may be able to interfere with the communication 

without fully compromising the device. 

The pairing protocols critically depend on user actions, such as 

comparing or delivering codes. Ellison [24] introduced the concept 

of security ceremonies where the users are participants to the pro- 

tocol and their actions are specified, modelled and analyzed just 

like those of the communicating endpoints. Carlos et al. [25] use 

Bluetooth as an example for reasoning about basic security prop- 

erties of a security ceremony. We will continue this line of inves- 

tigation by including the user and user actions in our models of 

pairing protocols including Bluetooth SSP. 

2.5. Trusted computing and cuckoo attack 

The published work closest to ours comes from the trusted- 

computing community. In trusted computing, a computer or a mo- 

bile device incorporates a secure hardware component that is cer- 

tified by the manufacturer and acts as a trusted entity inside the 

device. The most common secure hardware component is a trusted 

platform module (TPM) [26] , which supervises the boot process of 

the device and either enforces secure boot or measures (as a cu- 

mulative hash value) the loaded software. The latter case is also 

called dynamic root of trust for measurement (DRTM). The latest 

microprocessors have more advanced trusted execution environ- 

ments (TEE), such as ARM TrustZone 1 and Intel SGX 

2 , which allow 

trusted software to be isolated and launched after the device has 

booted. A common feature in these technologies is that, in addi- 

tion to enforcing some security policies inside the computer, they 

can attest the integrity of the device and its software configura- 

tion to an external verifier. This could allow, for example, the user 

to cryptographically verify the integrity of a cryptocurrency wal- 

let before storing high-value secrets to it. The attestation naturally 

needs to be cryptographically linked to a secure communication 

channel [27] with the verifier. 

Parno et al. [28] first pointed out the problem that, while users 

may be able to cryptographically verify that they are communicat- 

ing with a trusted hardware module and measured software, it is 

difficult to be certain that they are physically accessing the very 

device where that module is embedded. In the cuckoo attack , the 

device in the verifier’s physical proximity is not actually trusted 

but tricks the verifier into believing so. The cuckoo device achieves 

this by forwarding the communication to another device which has 

the correct configuration and a DRTM for attesting it. 

Fink at al. [29] suggest measuring the round-trip times of re- 

quests to the trusted device to detect if it is in the proximity of 

the verifier. Zhang et al. [30] also investigate the problem of a hu- 

man user distinguishing genuine secure hardware from adversar- 

ial devices. They divide the presence attestation into two phases: 

first, existence checking, which uses the standard remote attesta- 

tion protocols, and second, residence checking, which provides as- 

surance that the attesting hardware module is, in fact, in the spe- 

cific physical device. We will return to the suggested mechanisms 

for residence checking in Section 6 . Ding et al. [31] further argue 

that presence attestation with DRTM differs significantly from de- 

vice pairing where both devices are trusted. The current paper sets 

out to investigate whether this is always the case. 

2.6. Formal modelling 

Formal modelling and model checking are standard method- 

ology in the development and analysis of key-exchange proto- 

cols [32–34] . Various protocol flaws have been found with these 

methods but, perhaps more significantly, formal models are a way 

to lift the security-protocol design to a higher abstraction level 

than message formats and state machines, and to define precisely 

the security properties that the protocol is expected to have. 

The model checkers for security protocols are special compared 

to other formal modelling tools in that, in addition to taking the 

system design as input, they typically have a built-in model of 

the Dolev-Yao type powerful attacker, which the researcher does 

not need to explicitly define. Instead, the researcher has to spec- 

ify the desired security properties. The model checker then deter- 

mines whether the attacker is able to play a game against the hon- 

est parties and trick them into violating these properties. There is, 

however one type of attack that the researchers need to explic- 

itly consider: corrupt insiders. The corruption of an insider is often 

modelled as a previously honest party handing out its secrets and 

capabilities to the attacker, after which it is subsumed into the at- 

tacker. 

Jia and Hsu [35] develop a formal model of the Bluetooth SSP 

for the Murphi model checker [34] . They discuss two potential vul- 

nerabilities in the numeric-comparison authentication mode. First, 

an impersonator device can pretend to be a good one and trick the 

user into pairing an honest initiator device with it. The example 

given in the paper is one where the entertainment system in a 

1 https://developer.arm.com/technologies/trustzone . 
2 https://software.intel.com/en-us/sgx . 

https://developer.arm.com/technologies/trustzone
https://software.intel.com/en-us/sgx
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Fig. 4. Device pairing (a) in the normal case and (b) with identity misbinding. 

rental car has been replaced with one that is under the adversary’s 

control. Once the unsuspecting user has paired her phone with it, 

the system can steal confidential data. Second, a proxy MitM device 

can forward the unmodified connection to another device (similar 

to [20] ). While these threats might be considered obvious and un- 

avoidable, the formal analysis focuses our attention to them and 

enables systematic consideration of the threats. 

The most interesting idea of Jia and Hsu for us is the notion of 

intention preservation . It means that the initiating device is paired 

with the device with which the user originally intended to pair it, 

even if the non-initiating device belongs to an intruder. They show 

that Bluetooth pairing with numeric comparison has this property. 

We develop further the idea of modelling user intention, which we 

state as a correspondence assertion. Because of subtly different se- 

curity definitions, we end with a different result regarding Blue- 

tooth pairing. 

3. Misbinding in device pairing 

We will now look at identity misbinding attacks against wire- 

less device pairing where user authenticates the key exchange be- 

tween two physical devices. Fig. 4 (a) shows a common structure 

for many such pairing protocols. The unauthenticated key exchange 

takes place over an insecure in-band channel, and the user with 

physical access to the devices authenticates the in-band exchange 

over a secure out-of-band channel. The two phases may not al- 

ways be distinguishable by time, but they are distinguishable by 

the channel. 

The authentication in user-assisted pairing protocols is typically 

based on physical access to the device. That is, the user must see 

or touch the devices directly. The devices could have serial num- 

bers, public keys, or other unique identifiers, but it is the physical 

access that defines which devices need to be paired. 

We consider a scenario where one of the devices selected by 

the user for the pairing is compromised. (Recall that identity mis- 

binding is an insider attack where one of the intended commu- 

nication endpoints is corrupt.) The device has to be compromised 

at least to the extent that the user can control the device’s inputs 

and outputs on the OOB channel. In Fig. 4 (b), the user wants to 

pair devices A and E . However, device E is malicious and relays the 

authentication messages to another device B . Devices A and B end 

up paired, which does not correspond to the user’s intention. De- 

vice B does not need to collude with E and may be entirely honest, 

except that the attacker can put it into the pairing mode and in- 

teract with it. 

Let’s try to understand why this attack is not easy to prevent. 

If we take guide from other authenticated key-exchange protocols, 

such as SIGMA, we might try to prevent the attack by checking 

that the two endpoints agree on the identifiers A and B . This com- 

parison can be done either on the in-band or on the OOB channel, 

as long as the identifiers are cryptographically bound to the cre- 

ated session. Sadly, that does not help in device pairing. The attack 

by E will cause A and B to be paired, but if the user is not aware 

of the identifiers communicated in band, the user still thinks A 

is paired with E . As the next step towards a solution, we would 

need to check that the device identifiers A and B correspond to 

the user’s expectations. For example, if device A shows the peer 

identifier to the user, the user sees that it is B and not E as in- 

tended. However, the typical user in device pairing does not have 

any expectations about the device identifiers: the user just sees 

two physical devices and wants them to be paired. 

Many pairing protocols are like this: the user’s physical access 

to the device defines its identity. Since the physical device identity 

cannot be communicated in bits and bytes, it cannot be included 

into the messages sent over the in-band or out-of-band channel, 

and it cannot be used as input to a cryptographic function. Cryp- 

tographic protocol vulnerabilities of the early days could often be 

fixed by adding a missing identifier to the right message, but that 

is not the case with device pairing where the endpoints either 

have no identifiers or, if identifiers exist, user intentions are not 

expressed in terms of them. 

So far, our discussion of misbinding may appear as rehashing 

of the relay attack in the context of device pairing. This perception 

is partly true, but the misbinding attack is easier to implement. 

As hinted in Fig. 4 (b), if all three devices are within the wireless 

range from each other, E does not actually need to relay the wire- 

less in-band traffic. It can let A and B communicate directly over 

the wireless channel and focus on relaying the authentication mes- 

sages between the two OOB channels. E can then pull out after the 

authentication is complete, which leaves A and B communicating 

directly. 

Comparing with the cuckoo attack against trusted computing 

hardware, there are also similarities. The problem there was the 

lack of secure binding between the physical device and the long- 

term public key of the DRTM inside it. Our problem is the lack 

of secure binding between the physical devices and the ephemeral 

session key. The similarity extends to the lack of definite solu- 

tions by the means of traditional security protocol design. How- 

ever, there are ways of mitigating the threats, as we will see in 

Section 6 . 

Next, we will look at some examples of the attack in actual 

pairing protocols. That will help us assess the impact of the vul- 

nerability in a more concrete way. 

3.1. Bluetooth case study 

We use the widely-studied Bluetooth SSP as a case study of 

misbinding in pairing protocols. The attack is shown in Fig. 5 . The 

human user Alice is trying to pair the computer A with the phone 

E . She is unaware that the phone E has a malicious app that is con- 

trolled by the attacker Mallory. The malicious app is able to spoof 

the pairing user interface on the phone at Mallory’s command. The 

attacker also has a third device B , which is hidden from the user’s 

view. The attacker’s goal is to pair Alice’s device A with the third 

device B while Alice believes that A is paired with E . For a suc- 

cessful misbinding attack, A and B must be within Bluetooth radio 
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Fig. 5. Misbinding attack against Bluetooth SSP numeric comparison. 

range from each other. For example, Mallory and device B could be 

in the next room from where Alice performs the pairing process. 

A brief explanation of the notation is required here: For the 

purposes of telling the story, we denote the three devices A, E 

and B . Two of these match the notation of the Bluetooth specifi- 

cation, where the initiating device is A and the non-initiating device 

is B . The user intends device E to play the non-initiating role, but 

the attacker prevents it from participating in the protocol. Here, 

these symbols only denote the physical device, and they are not 

names or identifiers that could be communicated in the protocol. 

For that purpose, each device has a unique 48-bit Bluetooth ad- 

dress (BD_ADDR) and a name, which is non-unique and often can 

be modified by the user. 

From the user’s and the attacker’s points of view, the following 

steps occur in the misbinding attack of Fig. 5 : 

1. Alice makes device E discoverable and starts a search for 

other devices on device A . Mallory makes device B discov- 

erable. Device A presents Alice with a list of the names of 

discoverable devices in its vicinity. Alice chooses the one she 

thinks is E . At this point, Mallory needs to arrange things 

so that Alice mistakenly chooses B from the list. To achieve 

this, the malicious app in device E should keep that device 

non-discoverable, even though Alice thinks otherwise. Mal- 

lory should also ensure that the name of device B matches 

the name that Alice expects to see for device E . (We will 

discuss the naming in more detail below.) As the result of 

the attacker’s meddling, the wrong devices A and B start the 

cryptographic pairing protocol with each other. 

2. During the pairing, devices A and E display six-digit codes 

and expect the user to compare them. Mallory reads the six- 

digit code from the screen of device B and forwards it to the 

malicious app in device E . 

3. The malicious app in device E displays the replayed six-digit 

code to Alice. 

4. Seeing the same six-digit verification code on the screens of 

devices A and E , Alice confirms the pairing on both devices. 

The action on the compromised device E has no real effect; 

instead, Mallory confirms the pairing on device B . This al- 

lows the pairing of A and B to complete. In the end, Alice 

believes A and E have successfully paired when, in fact, de- 

vice A is paired with B . 

To understand why the Bluetooth SSP protocol does not pre- 

vent the attack above, we need to look at the protocol in more 

detail. The hardest practical obstacle for the attacker is, in fact, 

not the actual SSP protocol but the device naming and selection 

that takes place before the actual pairing. Bluetooth core specifi- 

cation [12] defines Inquiry and Paging procedures for discovering 

Fig. 6. Bluetooth Secure Simple Pairing with numeric comparison [12] . 

nearby devices and subsequently connecting to one of them. The 

user typically selects the name of the non-initiating device from a 

list of nearby devices on the initiating device. The device names 

are strings that aid the user in identifying the correct peer de- 

vice. Each device has a default name that often indicates its make 

and model, for example “Nokia8” or “Alice’s iPhone”. Depending on 

the device, the name may be user configurable. In the attack, Mal- 

lory needs to trick Alice into choosing device B from the list by its 

name. Thus, Mallory should rename B to have the same name as E . 

The rare tricky case for Mallory is if she wants to use a device 

B that does not have a configurable name, or if Mallory does not 

have the permission to change the device name. In that case, Mal- 

lory may be able to choose a device B that has the same make 

and model as device E and thus the same default name. If Mal- 

lory absolutely needs to use a device B with a Bluetooth name 

that is not configurable and does not match device E , there is still 

a way forward. The Inquiry and Paging procedure is not authen- 

ticated, and the attacker can manipulate the device names on the 

in-band wireless channel. While that requires more skill and tools 

than changing the name of device B on its user interface, message 

modification on a wireless channel is within the expected capabil- 

ities of a Dolev-Yao attacker. 

Once Alice has been fooled into choosing the wrong device, the 

SSP security protocol starts between devices A and B . We will re- 

view the pairing protocol to be certain that it does not present ob- 

stacles to the attack. The numeric-comparison mode of SSP, shown 

in Fig. 6 , has several phases that must be completed before an 

initiating device A and a non-initiating device B are paired se- 

curely. In phase 1, the devices perform an ECDH key exchange. In 

phase 2, the non-initiating device B commits to a random nonce 

Nb , which it reveals after the initiating device A has sent its own 

nonce Na . Device A checks the commitment to ensure that the 

nonces have been fairly chosen. The user-assisted authentication 

then takes place. Each of the devices displays to the human user 

a six-digit verification code, which it computes from the ECDH key 

shares and nonces. If the codes match, the user confirms successful 

pairing on both devices, which allows them to continue. In phase 

3, the devices confirm cryptographically the derived ECDH secret 

and their input and output capabilities, which were used to select 

the authentication mode in the beginning. In phase 4, the devices 

derive a link key, i.e. a shared session key. Finally, in phase 5, they 

use the link key for encryption in the Link Manager Protocol. 
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The critical thing to observe about the SSP protocol is that it 

does not even try to verify the device names (or other device prop- 

erties like make, model and serial number). This is understandable 

because Bluetooth device names do not uniquely identify a device. 

The protocol does bind the link key to the link-layer addresses of 

the two devices but, during the pairing, each device will accept any 

peer address. 

Note that only the software in device E needs to be compro- 

mised for the misbinding attack, while devices A and B can be en- 

tirely normal. The only access the attacker needs on device B is to 

make it discoverable, to change its name if necessary, and to con- 

firm the code comparison. Moreover, the attack requires device E 

to be compromised only to the extent that the attacker can spoof 

the pairing user interface. We implemented the attacker in device 

E as a full-screen app that receives the six-digit code over the 4G 

data connection and emulates the pairing process without actually 

participating in the pairing protocol on the in-band channel. Thus, 

the vulnerability occurs relatively often in practice, even though 

we do not know of attack implementations outside our laboratory. 

The above attack against Bluetooth pairing will work for any 

version of SSP or Legacy Pairing. Indeed, we believe it will work 

for all device-pairing protocols where the device identity is deter- 

mined only by physical access to the device. 

4. Misbinding in device bootstrapping 

4.1. EAP-NOOB Case study 

We will now look at a protocol for security-bootstrapping and 

registration of Internet-of-Things (IoT) devices to an online server. 

Although the protocol differs considerably from device pairing, 

they are similar in the sense that the identity of the correct de- 

vice is defined by physical access to it. This makes the protocol 

vulnerable to identity misbinding attacks. 

Extensible Authentication Protocol (EAP) [36] is an authentica- 

tion framework used, for example, in enterprise wireless networks. 

It normally assumes that the wireless devices are pre-registered at 

a back-end authentication server. This means that the deployment 

of new wireless devices is a multi-step process that includes de- 

vice registration and credential provisioning. 

Nimble out-of-band authentication for EAP (EAP-NOOB) [37] is 

an authentication method for EAP that also supports user-assisted 

bootstrapping and registration of new devices. It is intended for 

off-the-shelf IoT devices that initially have no known identifiers, no 

credentials, and no knowledge of their intended owner and net- 

work. EAP-NOOB registers the new devices to the authentication 

server and associates them with the user’s account on the server. 

The device, called peer , first performs an ECDH key exchange with 

the server. The authentication takes place when the user delivers 

a single out-of-band (OOB) message from the peer device to the 

server, or in case of peer devices with only input capability such 

as cameras, from the server to the peer device. Information de- 

livered in the OOB message enables mutual authentication of the 

peer and server, and it authorizes, on one hand, the server and 

user to take control of the device and, on the other, the device 

to be registered to the server and user account. The protocol does 

not limit the ways in which the OOB message is transferred; the 

implemented ways include a QR code, an NFC message, LED light, 

and an audio clip. After the OOB message has been delivered, the 

device registration completes in-band between the peer and the 

server. 

The misbinding attack (shown in Fig. 7 ) arises when the peer 

device is compromised. Alice has a new device E , which she wants 

to register to the network and to the authentication server. In this 

case, the device has an NFC interface from which the OOB mes- 

sage can be read with a mobile phone app. Unknown to Alice, the 

attacker Mallory has compromised the device E to the extent that 

Mallory can control the NFC output. By mounting the misbinding 

attack, the attacker can trick the user into registering a different 

peer device B to the user’s account in the server. From the user’s 

and the attacker’s points of view, the following steps take place in 

the attack: 

1. Alice initiates the registration of device E to the wireless 

network and authentication server A . Device E starts (or pre- 

tends to start) the EAP-NOOB protocol with the server. At 

the same time, Mallory initiates the registration of another 

new device B to the same network and authentication server 

A . Device B starts the EAP-NOOB protocol with the server. 

2. Unknown to Alice, the attacker reads an OOB message from 

the NFC output of device B and relays the message to the 

compromised device E . Device E is now ready to output the 

relayed message. 

3. Alice logs into her user account on server A with the mo- 

bile phone app. She then taps the NFC output on device E to 

read the OOB message. The compromised device E outputs 

the relayed message. 

4. The app on Alice’s phone delivers the OOB message to the 

server. Since the message originated from device B , this ac- 

tion registers device B to Alice’s account in the server and 

establishes credentials for future authentication and wireless 

network access of device B . Alice mistakenly believes that 

device E has been registered. 

The above attack will work regardless of the direction and the 

number or the messages sent over the OOB channel. The compro- 

mised device E simply relays all OOB messages between the user’s 

phone and device B , until device B is authorized to register to Al- 

ice’s account ton the server. 

A slight complication arises when the OOB communication is 

initiated by the server. In that case, there could be multiple de- 

vices attempting to register at the same time to the same server. 

Since the OOB messages are specific to the device, the user has 

to choose the correct device on the server. To trick the user into 

choosing the wrong device B , the attacker must match the make, 

model and any other metadata of device E by which the user se- 

lects the correct device from those available for registration. It is 

easiest for the attacker to clone the metadata of device E by creat- 

ing a virtual device B whose behavior is fully under the attacker’s 

control. On the other hand, if the attacker wants to register an ac- 

tual physical device B , it may have to choose one of the same make 

and model as device E . 

Unlike in device pairing with Bluetooth, Mallory’s device B does 

not need to be in close proximity to Alice or to A . Mallory can run 

the EAP-NOOB protocol on her device B from anywhere in the cov- 

erage area of the wireless networks served by the same authenti- 

cation server. She only needs the capability of sending or receiving 

the OOB message to or from the compromised device B . 

Device bootstrapping and registration with EAP-NOOB is de- 

signed to be efficient for deploying large numbers of devices. Thus, 

the person installing the devices might not be the eventual user, 

and the failure of device E to associate with the server might go 

unnoticed for some time. In comparison, device pairing with Blue- 

tooth is often followed by another user action such as transfer of 

media, which may lead to the user detecting the failure of device 

E to pair. 

4.2. DPP Case study 

Device Provisioning Protocol (DPP) [38] is a bootstrapping 

mechanism recently standardized by the Wi-Fi Alliance for con- 

figuring Wi-Fi network information on devices with limited user 
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Fig. 7. Misbinding attack against EAP-NOOB. 

Fig. 8. Misbinding attack against DPP. 

interfaces. We discuss the misbinding threat separately for DPP be- 

cause of its expected wide deployment. 

DPP relies on a configurator , e.g. a smartphone application, for 

bootstrapping all other devices, called enrollees , in the network. 

In the most typical use case, every enrollee has a public boot- 

strapping key, which is communicated to the configurator in the 

bootstrapping phase over an out-of-band channel. The OOB data 

includes communication metadata such as the radio channel on 

which the enrollee device is listening. The configurator authenti- 

cates the enrollee using the bootstrapping key and then configures 

it for Wi-Fi access. 

The misbinding attack against DPP ( Fig. 8 ) is almost trivial: 

when the user is configuring a compromised device E , the attacker 

replaces the public key and communication metadata output from 

E with those of another device B . This requires the attacker to com- 

promise the interface, such as NFC, which outputs the OOB mes- 

sage. In one variant of DPP, the public bootstrapping key is printed 

as a QR code, and in that case, the device compromise is equal to 

replacing this piece of paper in the retail packaging. In other vari- 

ants, the configurator and device exchange one or more dynamic 

messages, and the attacker has to relay them in real time between 

the two devices. 

5. Formal analysis of misbinding 

We modelled the case-study protocols and their security re- 

quirements with ProVerif [32,39] . First, we wanted to enhance pre- 

vious models of device pairing and especially Bluetooth SSP to cap- 

ture the misbinding attack. It was not clear to us why the existing 

models missed the attack when so many other, even more subtle 

issues have been detected. We also wondered if the attack and the 

security goals it violates can be reduced to previously known ones. 

As a result, we learned that the formal models can be made more 

complete so that they discover the misbinding attack, and that the 

violated security properties are different from what has previously 

been analyzed. Another goal of our modelling work was to un- 

derstand how pairing protocols differ from each other in relation 

to the misbinding vulnerability, and whether registering a physical 

device to an online service is fundamentally different from pairing 

two physical devices. We found that misbinding occurs in a wide 

range of protocols where endpoints are defined by physical access. 

We also found that the attacks can be classified into a small num- 

ber of variants, and not all protocols are vulnerable to all of them. 

5.1. Modelling device pairing 

We will mainly discuss Bluetooth SSP with numeric compari- 

son because of its familiarity to many readers. The full model is 

included in Appendix Appendix A . However, we also modelled the 

SSP OOB mode and Wi-Fi Direct [40] with similar results. 

In addition to the protocol messages and the device state ma- 

chines, we model the security ceremony that includes user inten- 

tions, choices and actions . We follow the example of Carlos [41] and 

model the user as a separate process in ProVerif. However, while 

Carlos considers pairing between two devices belonging to differ- 

ent users, we consider pairing where a single user has physical ac- 

cess to both intended endpoints. Thus, our model consists of three 

kinds of processes: user, initiating device A , and non-initiating de- 

vice B . Both types of devices can become compromised and, thus, 

take the role of E , which corresponds to the two scenarios of Fig. 1 . 

The challenging part of the model was capturing the user in- 

tention, i.e. decision to pair specific two devices, when the devices 
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are identified by physical access and do not have names or other 

identifiers . In the end, the solution is fairly simple and intuitive: 

the users and devices have identifiers in the model (see below), 

but the identifiers can never be communicated over a channel or 

used as input to a cryptographic function. Instead, they are used 

for marking local events and for checking correspondence proper- 

ties between the events, such as whether the user intended the 

devices to be paired. This inability to communicate the identifiers 

goes a long way towards explaining why the traditional solutions 

of adding explicitly or implicitly communicated identifiers are not 

applicable to device pairing. 

Similar to Chang et al. [22] , we use private channels in ProVerif 

to model the physical access by the user to the devices. These chan- 

nels protect both secrecy and integrity of the communication. In 

the case of Bluetooth, the private channels are used both for read- 

ing the numeric codes and, if the values match, for confirming the 

match to the devices. To initiate pairing, user needs to have ac- 

cess to two private channels, PhysicalChannelA to an initia- 

tor device and PhysicalChannelB to a non-initiator device. We 

use these physical channels as the device identifiers, which is both 

practical and semantically correct. For the users, on the other hand, 

we simply create new identifiers. 

Compromised endpoints are commonly modelled by leaking 

their secrets, such as private keys, to a public channel. Conse- 

quently, the built-in attacker model of the model-checking tool can 

emulate any honest or malicious behavior by that endpoint. In the 

Bluetooth model, however, the devices do not have any master se- 

crets. Instead, we model the compromise of a device by leaking its 

private channel to the network . This allows the attacker to take con- 

trol of that channel. 

In addition to modelling the compromise of devices, we also 

model the compromise of a user. This is done to conceptually dis- 

tinguish between a tampered device and a malicious user having 

physical access to an intact device. There is no real difference be- 

tween the two in the Bluetooth case. However, the distinction be- 

comes significant when we compare mitigation techniques and dif- 

ferent levels of user access to the device. 

The user model is shown below. The user (i) selects two de- 

vices and logs her decision to pair them as an event, (ii) compares 

the six-digit verification codes displayed by the devices, and (iii) 

confirms a match to the devices. The user may be compromised 

any time, yielding control of the physical access channels to the 

attacker. 

Intuitively, misbinding is a violation of the following security 

property: two devices are paired only if their user intended them to 

be . When formalizing the absence of misbinding as a correspon- 

dence property in ProVerif, we need to be more precise: If two 

devices complete the pairing with the same link key and a user has 

physical control of at least one of them, then either the user previ- 

ously intended the two devices to be paired, the user is compromised, 

or both devices are compromised. In ProVerif, this correspondence 

property can be defined as follows: 
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Fig. 9. Five variants of misbinding found with ProVerif. 

As expected, ProVerif returned false for the query and pro- 

duced a counterexample, i.e. an execution trace that violates the 

security property. There are two versions of the query, one with 

PhysicalChannelA and another with PhysicalChannelB on 

the second line. The queries can be refined to exclude already an- 

alyzed attacks or to focus on specific cases. 

Investigating further, we found five different types of misbind- 

ing attacks with ProVerif, which are summarized in Fig. 9 . Each 

sub-figure shows two rooms. The honest user tries to pair two de- 

vices, initiator A 1 and non-initiator B 1, in her room. One of these 

devices is compromised, and the other ends up being paired (indi- 

cated by the thick red arrow) with a device in the room above. The 

sub-figures show the locations of the honest users, compromised 

users, and compromised devices. The black one-directional arrow 

is specific to Bluetooth SSP with numeric comparison. It shows 

how the attacker forwards the six-digit code from one device to 

another. 

The first one of the attack variants, seen in Fig. 9 (a), is the ba- 

sic misbinding attack described in Section 3 . In that attack, the 

compromised device is the non-initiator B 1, and there is a com- 

promised user with physical access to the third device B 2. This 

corresponds to Figs. 4 (b) and 5 , where E corresponds to B 1. Other 

attacks arise as variations of the first one. On one hand, the com- 

promised device in the user’s physical possession can be the ini- 

tiator A 1 or the non-initiator B 1. On the other hand, the third may 

be a compromised one or an uncompromised device accessed by a 

compromised user. These choices make the four different variants 

of the misbinding attack in Figs. 9 (a)-(d). 

It came as a surprise to us that there is a fifth type of misbind- 

ing attack, which we call double misbinding . In this attack, seen in 

Fig. 9 (e) and more clearly illustrated in Fig. 10 , there are two hon- 

est users. Each one of them is trying to pair two devices, one of 

which is compromised. The compromised devices collude so that, 

as the result, the two uncompromised devices are paired. 

Double misbinding is easiest to understand in the out-of-band 

mode of Bluetooth SSP, where the user transfers some information 

out-of-band from one device to another. In that case, one compro- 

mised device receives the OOB message from the first honest user 

and forwards it secretly to the second compromised device, which 

outputs it to the second honest user. The attack is also possible 

in SSP with numeric comparison because all the values needed for 

computing the verification codes Va and Vb are transmitted on the 

wireless link (see Fig. 6 ). The attacker can sniff these values, com- 

pute Va and Vb , and show them on the displays of the two com- 

promised devices. 

Afterward finding the five attack variants by formal verification, 

we systematically enumerated the different combinations of ini- 

tiator and non-initiator devices, compromised and uncompromised 

users and devices, and user physical access in a setting of maxi- 

mum two users and four devices. This analysis confirmed that, af- 

ter removing impossible and equivalent cases, the five attack vari- 

ants remain. Increasing the number of users and devices does not 

seem to give raise to any new types of attacks because there is 

maximum that can be involved in a single pairing. 

5.2. Modelling device bootstrapping 

Although the ProVerif models of EAP-NOOB and Bluetooth dif- 

fer greatly, the parts relevant to detecting misbinding are similar. 

The main difference is that, in EAP-NOOB, only the peer device 

is identified by the physical access channel. The EAP-NOOB server 

has a strong cryptographically verifiable identity (HTTPS URL and 

web certificates), and we assume that the server cannot be com- 

promised. The query for the absence of misbinding attacks is as 

follows: 

Again, ProVerif finds a counterexample to this query. Because 

only the peer side can be compromised, there are only two pos- 

sible variants of misbinding. They correspond to Fig. 9 (a) and (c). 

In the first one, the server is A 1, the compromised peer device B 1, 

and the uncompromised peer device B 2. In the other attack vari- 

ant, both peer devices are compromised and there is no need for a 

user to operate device B 2. The first of these two variants matches 

the attack discussed earlier and shown in Fig. 7 . 

We also modelled DPP with ProVerif and verified its vulnerabil- 

ity to misbinding of the enrollee, as explained in Section 4.2 . 

6. Mitigation 

6.1. Authentication solutions 

As explained in Section 2.2 , the STS and SIGMA protocols and 

their variants [2,3,7] tackle misbinding by binding endpoint iden- 

tities cryptographically to the created session. These solutions are 
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Fig. 10. Double misbinding. 

suitable for situations where the devices have certificates, public 

keys for authentication, and unique names. This is typically not the 

case in device pairing. Moreover, as we explained in Section 3 , the 

endpoints in device pairing have no a-priory knowledge of each 

other’s identifiers, and neither does the typical user who is assist- 

ing the key exchange. 

The common way to communicate the device identifier, such 

as model and serial number, to the user is printing them on an 

identification plate attached to the device. Together with a certifi- 

cate issued by the manufacturer, this information can be used for 

authenticating the device. Another possibility is to print a finger- 

print of the device’s public-key onto the device, e.g. as a hexadec- 

imal value. If a metal plate, sticker or printing on the device is not 

considered tamper-proof enough, the identifiers could be etched to 

the device enclosure. While such physical indicators can ultimately 

be counterfeited, the burden on the attacker is increased signifi- 

cantly. The disadvantage of these solutions is that the user needs 

to compare the authenticated device identifiers with the serial- 

number plates or key fingerprints, which complicates the pairing 

process. 

6.2. Presence checking 

As noted in Section 2.5 , trusted-computing research has not 

put much faith in the printed serial numbers or public-key fin- 

gerprints. Instead, the researchers have tried to find more secure 

ways of checking the presence of a DRTM inside a physical device. 

We can generalize these approaches from DRTM to any device with 

a trusted computing base (TCB) that is surrounded by potentially 

compromised layers of software. The techniques for DRTM pres- 

ence checking could be applied to checking the physical presence 

of the pairing endpoint for a given device, which could prevent the 

misbinding attacks. 

The round-trip time measurement suggested by Fink [29] de- 

pends on the latency caused by the cuckoo in the communica- 

tion chain. In our attacks against device pairing, the in-band com- 

munication takes place directly with the third device, and tim- 

ing measurement is unlikely to be able distinguish between two 

devices within the Bluetooth radio range. This issue of distance 

bounding has been widely studied in relation to RFIDs and wire- 

less keys [42,43] . 

Ding et al. [31] provide a summary of several other solu- 

tions. One is a hardware-based secure channel, i.e. a trusted path , 

that allows the user to communicate directly with the DRTM or 

TCB inside the device. This could, for example, be an LED indi- 

cator light or a special-purpose USB port. The need for such a 

feature in smart devices is well known, but the idea has never 

been widely adopted by device manufacturers. The great variety 

of manufacturers and form factors in smart devices would also 

make it difficult for the user to know which feature can be truly 

trusted. Another solution is to enclose the devices into a Faraday 

cage to prevent them from communicating with external entities 

during the key-presence checking. This approach was previously 

suggested for bootstrapping sensor nodes wirelessly [44] . Zhang 

et al. [30] propose several presence checking methods based on 

analog channels, which do not provide strong security guarantees 

but make the attacks impractical. One method is based on com- 

paring the GPS location measurements by the two endpoints, and 

another on comparing images captured by co-located devices of 

their immediate environment. They also propose measuring the 

timing of a screen-to-camera video channel, which would be dif- 

ficult to forward to a remote device without causing a detectable 

delay. 

In one practical form of presence checking, which is already 

widely deployed, the user can ask a peer device to blink an LED 

indicator light. The primary purpose for this is to help the user to 

identify a specific physical device among many similar ones. For 

example, the pairing process of Apple Homekit devices relies pri- 

marily on a static code that is attached to the device or inside the 

retail packaging. Before scanning the static code during the pairing 

process, the user can optionally ask the selected device to blink its 

LED. If we consider this a security feature, the assumption must 

be that the attacker cannot make the LED blink, at least not at 

the right time. Naturally, if the device is compromised, the attacker 

might be able to make the LED blink at the right time. Neverthe- 

less, even such a weak device identification mechanism increases 

the burden of the attacker compared to not having one; without 

it, the attacker could achieve misbinding simply by replacing the 

static code on the user’s new device. 

6.3. Asset tracking 

We believe the practical approach to detecting misrepresented 

device identities might be asset tracking , i.e. bookkeeping of the 

physical assets that belongs to an organization or an individual. 

This requires each device to have a unique identifier, which is reg- 

istered into a database when the user purchases a device. In the 

simplest case, the database is accessed only by human users, in 

which case any existing asset tracking system or database can be 

used. 

When the organization knows the models and serial numbers 

of its devices and the purpose assigned to each one, the informa- 

tion can be used for cross-checking during device pairing. For ex- 

ample, if there is only one new display device allocated for Alice, 

Alice can compare the device information from the database with 

the identifier authenticated in the device pairing process when she 

deploys the device. 

For this to work, each device needs to know its own identifier 

and learn the peer identifier during the key exchange. The identi- 

fiers should be bound to the cryptographic key exchange in such 

a way that agreement on session key cannot be reached without 

also agreeing on the identifiers. Each device should show the iden- 
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tifier of its peer to the user, e.g. when initiating the pairing pro- 

tocol or when confirming the numeric comparison. In Bluetooth 

SSP protocol, this would require changes to the input of the ver- 

ification codes, while EAP-NOOB already has a built-in authenti- 

cated message field ( PeerInfo ) for communicating such auxiliary 

peer information. Of course, the software of an uncompromised 

device should not allow the users to modify the device identi- 

fier. As the result of these measures, device A in the scenario of 

Fig. 4 (b) would show the identifier of the unknown device B to the 

user and the attacker cannot replace it with the expected identifier 

of device E . 

Manufacturer-issued device certificates [45,46] can further help 

the process by providing secure information about the types and 

models of the devices. This will reduce the reliance on the as- 

set database because all other information except correctness of 

the device identifier can be communicated in the certificate. One 

downside of certificates when compared to purely ad-hoc OOB 

based pairing mechanisms is that the certificates can reveal the 

identities of the participating devices to both passive and active 

observers. The identities can be encrypted with the SIGMA 3-round 

protocol by encrypting the identity and certificate payloads [47] . 

However, in these protocols, one side must reveal its identity 

first, thereby putting it at disadvantage. Wu et al. [48] propose 

a policy mechanism for mitigating this weakness with identity- 

based encryption and hierarchical human-readable names. Such 

mechanisms could be used for protecting the manufacturer cer- 

tificates in any pairing or device bootstrapping protocol includ- 

ing those where the main authentication method is an OOB 

channel. 

For the average consumer, it is difficult to keep track of pur- 

chased devices over any longer span of time. However, this obsta- 

cle may be disappearing as smart devices are increasingly cloud 

connected and their ownership is therefore often registered by the 

manufacturer or some other cloud service. The same online ser- 

vice can replace the corporate asset-tracking system for an indi- 

vidual user. Furthermore, there are proposals for logging Internet- 

of-Things devices to a blockchain [49,50] , which could also be used 

for asset tracking. 

Above, we have mostly discussed device pairing and Bluetooth, 

but the same solutions also work for EAP-NOOB and device regis- 

tration to the cloud. The main difference is that only one endpoint 

of the key exchange is a physical asset that needs to be tracked. 

The fact that the authentication server is online and provided to 

the user as a service means that it could help with ownership 

tracking or connect directly to the manufacturers on the user’s be- 

half. 

6.4. On bluetooth SSP and double misbinding 

As noted in Section 5.1 , SSP with numeric comparison is vul- 

nerable to double misbinding because all the inputs for computing 

the verification codes Va and Vb are transmitted on the wireless 

link and can be sniffed. If Va and Vb were computed as function 

of the ECDH shared secret, the two compromised devices could 

not show the value on their displays. This would prevent dou- 

ble misbinding, although not the simpler misbinding attacks. Sim- 

ilar protocols in the future might consider taking advantage of 

the secrecy to limit the space that the attacker has for maneu- 

vering. A possible disadvantage is that the devices would have to 

compute the ECDH shared secret before displaying the verification 

codes, which could impact the user experience on devices with 

slow processors. The current SSP protocol also has a clean design 

where the six-digit verification codes are not at all expected to be 

secret. 

7. Discussion 

It remains to be discussed how serious the misbinding vulner- 

ability is and whether we should be worried about it. We do not 

want to be alarmist but instead try to provide balanced arguments 

for thinking about the issue. 

First, the vulnerability exists in a wide range of protocols and 

systems. Any pairing or bootstrapping protocol that relies solely on 

the user’s physical identification of the endpoints will be equally 

vulnerable regardless of the protocol design. In fact, even strong 

authentication of the endpoint identifiers does not prevent mis- 

binding unless each endpoint knows what the other’s identifier 

should be. 

The risk of misbinding attacks against out-of-band authentica- 

tion is increased by the fact that the attacks are easy to imple- 

ment. The compromised device only needs to forward authenti- 

cation messages on the user-interface level. This is considerably 

easier for the typical attacker than, for example, relaying commu- 

nication at the radio or logical link layer. It is also easier than 

continuously forwarding application-layer messages to and from a 

compromised device. This makes misbinding an attractive attack 

for technically less competent attackers. In our attack implementa- 

tions against Bluetooth or EAP-NOOB, device E was compromised 

by simply installing a malicious app that emulates the pairing user 

interface at the attacker’s command. 

Misbinding depends on the user trying to pair with or regis- 

ter a device E that is compromised. Thus, there must be a (par- 

tially) corrupt insider involved. The user is misled because the user 

makes a bad decision and trusts the corrupt device. Some protocol 

designers might dismiss the problem at this point, thinking that 

it is outside their threat model. One counterargument to such dis- 

missal is that the corrupt device is not the one that ends up being 

paired, and thus the honest device B also suffers. Another coun- 

terargument is that the Internet of Things will be full of corrupt 

insiders, just like the regular Internet. Also, we should protect the 

users from their own mistakes whenever possible. 

The practical impact of misbinding attacks is somewhat difficult 

to grasp. It has been demonstrated with the help of two example 

scenarios, one presented by Diffie et al. in the original STS paper 

and the other by Krawczyk in a lecture: 

• A connects to bank B , over a supposedly secure session, to 

deposit an electronic coin. Since E mounted a misbinding at- 

tack, bank B thinks the coin was deposited by E . This is the 

scenario of Fig. 1 (b). 

• E and B are fighter jets, and A is their commander. E has 

been compromised by the enemy. A tells E to self-destruct, 

but because E mounted a misbinding attack, the command 

goes to B . This is the scenario of Fig. 1 (a). 

The banking scenario does not seem to have obvious equiva- 

lents in the world of physical devices. The fighter jets, on the other 

hand, are devices, and we can construct a related IoT example: 

• E and B are IoT devices, and A is the user’s computer. E has 

been infected by malware. User wants to connect from A to 

E and wipe E ’s memory. Because E mounts a misbinding at- 

tack, the user wipes device B instead. 

Note that all these scenarios require some prior relation be- 

tween the endpoints, and the misbinding attack leads to a fail- 

ure of correspondence between that prior relation and the newly- 

established secure connection. In pairing and bootstrapping, there 

often is no such common history. Either one of the endpoints is a 

new, fresh device, or the history is not significant because the end- 

points have no secure way of knowing that they have reconnected 
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to the same peer. This may be one reason why the practical impact 

of misbinding for IoT devices remains somewhat elusive. 

We also need to compare misbinding to alternative attacks. In 

Fig. 4 (b), the attacker in device E can achieve almost the same re- 

sults by accepting the connection from A , establishing another con- 

nection to B , and then forwarding the application-layer messages 

between A and B . The main difference between misbinding and 

such relaying of communication is that the misbinding attacker 

can remove itself from the communication chain after the pairing. 

Thus, in misbinding, the continuation of the attack does not de- 

pend on the compromised device E being online or within radio 

range. Furthermore, the user is in physical control of the compro- 

mised device E but not of B . In misbinding, if the user disables de- 

vice E , e.g. by disconnecting it from the network or even by phys- 

ically destroying it, device B and its connection with A will never- 

theless persists — unknown to the user. 

Since the design of STS and IKE, there has been consensus 

among security protocol designers that misbinding vulnerabilities 

are not acceptable in authenticated key-exchange protocols for 

computer networks and for the Internet. In device pairing, there is 

no similar consensus, and the attack has been mostly ignored with 

the exception of the trusted-computing community. We do not 

expect this paper to stop people from using protocols like Blue- 

tooth SSP. The misbinding attacks and impact scenarios are rela- 

tively marginal compared to the advantage of encrypting wireless 

communication and having basic authentication in place, and the 

value of these is not nullified by misbinding. The attacks should, 

however, not be ignored because they are so widely applicable to 

device-pairing and IoT bootstrapping protocols. Our message is that 

protocol and system designers should understand the misbinding 

vulnerability for physical devices, keep eyes open for unexpected 

consequences in new situations, and make an informed judgment 

about whether additional countermeasures are needed. 

8. Conclusion 

We studied identity-misbinding (or unknown-key-share) at- 

tacks in device pairing protocols where the devices are identi- 

fied by physical access rather than cryptographic credentials. We 

showed that Bluetooth and other similar device-pairing protocols 

are vulnerable to this attack regardless of their cryptographic de- 

tails. The same vulnerability also exists in protocols for security- 

bootstrapping IoT devices. We confirmed the attacks by imple- 

menting them. Formal modelling allowed us to discuss the precise 

definition of misbinding, which led to the discovery of a new at- 

tack variant, double misbinding. We also discussed potential mit- 

igation mechanisms, arguing in favor of solutions based on asset 

tracking. While the vulnerability to identity misbinding does not 

make the existing device pairing protocols completely insecure, it 

is a threat that needs to be fully understood also in device pairing, 

and this paper is a step towards that goal. 
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