
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Peltonen, Aleksi; Sethi, Mohit; Aura, Tuomas
Formal verification of misbinding attacks on secure device pairing and bootstrapping

Published in:
Journal of Information Security and Applications

DOI:
10.1016/j.jisa.2020.102461

Published: 01/04/2020

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY-NC-ND

Please cite the original version:
Peltonen, A., Sethi, M., & Aura, T. (2020). Formal verification of misbinding attacks on secure device pairing and
bootstrapping. Journal of Information Security and Applications, 51, Article 102461.
https://doi.org/10.1016/j.jisa.2020.102461

https://doi.org/10.1016/j.jisa.2020.102461
https://doi.org/10.1016/j.jisa.2020.102461

Journal of Information Security and Applications 51 (2020) 102461

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

Formal verification of misbinding attacks on secure device pairing and

bootstrapping

�

Aleksi Peltonen

a , ∗, Mohit Sethi a , b , Tuomas Aura

a

a Aalto University, Finland
b NomadicLab, Ericsson Research, Finland

a r t i c l e i n f o

Article history:

Available online 13 February 2020

Keywords:

Device pairing

IoT Security

Misbinding attack

Bluetooth

EAP-NOOB

DPP

ProVerif

Formal modelling

a b s t r a c t

In identity misbinding attacks against authenticated key-exchange protocols, a legitimate but compro-

mised participant manipulates the honest parties so that the victim becomes unknowingly associated

with a third party. These attacks are well known, and resistance to misbinding is considered a critical

requirement for security protocols on the Internet. In the context of device pairing, on the other hand,

the attack has received little attention outside the trusted-computing community. This paper points out

that most device pairing protocols are vulnerable to misbinding. Device pairing protocols are character-

ized by lack of a-priory information, such as identifiers and cryptographic roots of trust, about the other

endpoint. Therefore, the devices in pairing protocols need to be identified by the user’s physical access

to them. As case studies for demonstrating the misbinding vulnerability, we use Bluetooth and proto-

cols that register new Internet of Things (IoT) devices to authentication servers on wireless networks.

We have implemented the attacks. We also show how the attacks can be found in formal models of the

protocols with carefully formulated correspondence assertions. The formal analysis yields a new type of

double misbinding attack. While pairing protocols have been extensively modelled and analyzed, mis-

binding seems to be an aspect that has not previously received sufficient attention. Finally, we discuss

potential ways to mitigate the threat and its significance to security of pairing protocols.

© 2020 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Secure device pairing is a process that bootstraps secure com-

munication between two physical devices. It is a type of authen-

ticated key-exchange, but with the special characteristic that the

endpoints are physical devices which the user can see or touch di-

rectly. Unlike most security protocols, secure device pairing does

not require pre-established cryptographic credentials or security

infrastructure. Instead, the user acts as an out-of-band communi-

cations channel or as a trusted party that provides the initial secu-

rity.

The focus of this paper is on identity-misbinding [2] or

unknown-key-share attacks [3] where the wrong endpoints are

� This article is an extended version of a paper that appeared in ASIACCS 2019 [1] .

It includes an extended background section, rewritten EAP-NOOB protocol example,

a section describing misbinding attacks on the Wi-Fi Alliance DPP protocol, and a

full formal model of misbinding in Bluetooth pairing.
∗ Corresponding author.

E-mail addresses: aleksi.peltonen@aalto.fi (A. Peltonen), mohit.sethi@aalto.fi (M.

Sethi), tuomas.aura@aalto.fi (T. Aura).

paired with each other. These attacks depend on one of the user’s

devices being compromised, and they do not violate the basic se-

crecy goals. Nevertheless, such vulnerabilities have been consid-

ered unacceptable in network security protocols. Our main mes-

sage is that most device-pairing protocols are vulnerable to the

misbinding attacks, and they may not always be avoidable. As we

will argue, the vulnerability is not caused by technical errors in the

protocol design; rather, it arises from the lack of verifiable identi-

fiers in situations where the endpoint identity is defined by the

user’s physical access to the device.

This paper is not intended to sound alarm but rather to bring

clarity and understanding to a previously ignored question about

device authentication. Our contributions are the following: (i)

bringing attention to identity-misbinding vulnerabilities in device-

pairing and bootstrapping protocols, (ii) detailed analysis and char-

acterization of the vulnerabilities, (ii) examples of concrete, imple-

mented attacks against Bluetooth Secure Simple Pairing and the

proposed EAP-NOOB and DPP protocols for registering new de-

vices to a network, (iii) formal specification of the violated secu-

rity property as a correspondence assertion that takes into account

https://doi.org/10.1016/j.jisa.2020.102461

2214-2126/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.jisa.2020.102461
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jisa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2020.102461&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:aleksi.peltonen@aalto.fi
mailto:mohit.sethi@aalto.fi
mailto:tuomas.aura@aalto.fi
https://doi.org/10.1016/j.jisa.2020.102461
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 A. Peltonen, M. Sethi and T. Aura / Journal of Information Security and Applications 51 (2020) 102461

the user intention, and (iv) balanced discussion of the impact of

the attacks and potential countermeasures. The significance of our

work arises from the wide deployment of the vulnerable pairing

protocols in everyday applications.

The rest of the paper is structured as follows. Section 2 dis-

cusses the relevant state of the art in security protocols and at-

tacks. Section 3 explains the misbinding attack against device-

pairing protocols, and Section 4 describes a similar attack when

registering new IoT devices to an authentication server or wire-

less network. In Section 5 , we show how to model the attacks

and the related security properties. We also discover a new vari-

ant of the misbinding attack. Section 6 considers the potential

solutions. Section 7 discusses the significance of the results, and

Section 8 concludes the paper.

2. Background

2.1. Security protocol attacks and correspondence assertions

The goal of authenticated key exchange is to establish a shared

cryptographic key between two or more communication endpoints,

which then use the shared key for protecting communication in-

tegrity and confidentiality. Authenticated key-exchange protocols

should be secure against the so-called Dolev-Yao attacker [4] , which

is able to spoof, intercept and modify messages in the network in

arbitrary ways, except when it lacks the necessary cryptographic

keys. The attacker may impersonate one of the communication

endpoints or set itself as a man in the middle (MitM) between

them. Even carefully designed protocols have been found to be vul-

nerable to forwarding and interleaving attacks [5,6] , in which the

attacker itself is a legitimate participant in the protocol but can

mislead others by cleverly replaying messages. In closed systems,

such insider attacks could sometimes be tolerated, but in large sys-

tems and open networks such as the Internet and the Internet of

Things, there always are some malicious “insiders”. Thus, modern

security protocols are required to be immune to these attacks.

The authentication goals of key-exchange protocols can be de-

fined in terms of matching or agreement between the records

made by different endpoints on the protocol execution [7,8] . The

same goals can be stated as correspondence assertions [9] . These

assertions define relations between later and earlier events in the

protocol execution. For example, a common assertion is that, if Al-

ice accepts a session key to be used with Bob, both Alice and Bob

must have previously declared an intent to create such a session

key. This way, we can make global assertions about the events

that should or should not take place in a distributed system. In-

jective correspondence further requires that each such declaration

of intent can result in at most one accepted session key. When for-

malized, the correspondence assertions are typically parameterized

with all the knowledge of protocol inputs and parameters which

should match between the events and endpoints.

An advantage of specifying security properties as correspon-

dence assertions is that, in addition to basic authentication prop-

erties, the assertions capture the protocol designer’s implicit ex-

pectations about its execution and, thus, can help to detect subtle

flaws that might otherwise go unnoticed.

2.2. Identity misbinding

In this paper, we are interested in failures of authentication pro-

tocols where the following two conditions hold:

1. One of the protocol endpoints is confused about the identity

of the other communication endpoint.

2. The confusion is caused by malicious behavior by one of the

intended communication endpoints.

Consider the high-level scenario of Fig. 1 (a). A is a client com-

puter that wants to connect to the server E and, therefore, initiates

the cryptographic authentication protocol. In security-protocol ter-

minology, A is the initiator and E is the responder . Unfortunately,

the responder E is malicious and tricks A to connect to another

responder B instead. The result is that A believes it has a secure

connection to E while, in reality, the connection is with B . The re-

sponder B in this scenario can be entirely honest, and B correctly

believes it is talking with A .

This attack can work only if there is a weakness in the authen-

tication protocol. As we will explain below, most modern authenti-

cation protocols are designed to prevent such attacks. Nevertheless,

let us persist on exploring the potential failures.

In the above scenario, the initiator is confused about the iden-

tity of the responder. It is equally possible that the responder is

confused about the identity if the initiator. This second scenario is

shown in Fig. 1 (b). B is a server that believes it is accepting a con-

nection from client E , but the malicious E exploits a weakness in

the authentication protocol and tricks B into accepting a connec-

tion from A instead. As the result, B believes that it has a secure

connection with E while, in reality, the connection is with A .

Next, we take a look at a concrete protocol that is vulnerable

to the above attacks. Fig. 2 shows two well-known attacks against

a badly-authenticated Diffie-Hellman (DH) key exchange. The at-

tacks correspond to the two scenarios discussed above. In Fig. 2 (a),

the malicious responder E forwards messages from the initiator A

to another responder B . The endpoints A and B establish a Diffie-

Hellman shared secret. However, A thinks that it has created a

shared secret with E . In Fig. 2 (b), on the other hand, E acts as

a kind of man-in-the-middle attacker that modifies messages be-

tween the initiator A and responder B . The Diffie-Hellman shared

secret is established between A and B , but the responder B mistak-

enly thinks it shares the secret with E .

The above attacks were identified by Diffie et al. [7] , and

they have later been given many names including unknown-key-

share [3] and identity misbinding [2] . We will use the name mis-

binding in this paper.

The impact of misbinding attacks is somewhat difficult to un-

derstand because it does not compromise secrecy of data. First,

the malicious entity E does not learn the shared secret and, thus,

cannot intercept the data sent over the established secure connec-

tion. Indeed, E could learn and leak more secrets by completing the

protocol normally and becoming a endpoint of the secure chan-

nel. Second, one could argue that B has correctly authenticated A ,

and more controversially, that A has correctly authenticated E be-

cause E is entitled to choose any key share it likes. Nevertheless,

something clearly is amiss about the authentication. A and B have

different understanding of who they are communicating with, and

one of them has the wrong idea about who shares the session key.

This violates correspondence properties that an authenticated key

exchange intuitively should have.

2.3. Standard defenses against misbinding

Diffie et al. [7] initially presented the misbinding attack to mo-

tivate the station-to-station (STS) protocol. In basic STS, the signa-

tures are encrypted with the Diffie-Hellman session key, and the

paper also suggests another variant where a message authentica-

tion code (MAC) replaces the encryption. The function of the en-

cryption or MAC is to bind the session key to the signatures, which

prevents the attacker, who does not know the session key, from re-

placing the signatures with its own in the way it does in Fig. 2 .

The STS protocol, including both the encryption and MAC vari-

ants, is still vulnerable to misbinding attacks if the attacker E man-

ages to register A ’s or B ’s public signature key as its own. This vul-

nerability is well known and caused by failure of the certification

A. Peltonen, M. Sethi and T. Aura / Journal of Information Security and Applications 51 (2020) 102461 3

Fig. 1. Misbinding of (a) initiator identity at responder and (b) responder identity at initiator.

Fig. 2. Misbinding of (a) initiator and (b) responder in badly-authenticated Diffie-Hellman.

Fig. 3. SIGMA protocols (a) bind identity to the session key with a MAC to detect misbinding against (b) initiator and (c) responder.

authority to verify that the subject possesses the private key. Nev-

ertheless, the dependence on the CA following best practices can

and should be avoided, as in the protocols that we discuss next.

The SIGMA protocol family by Krawczyk [2] computes the MAC

explicitly on the message sender’s identifier, rather than its signa-

ture, as seen in Fig. 3 (a). The SIGMA protocols are highly influential

because they include the IKEv2 key exchange [10] and its predeces-

sors in the IPsec protocol suite. As a consequence, resistance to the

misbinding attacks is considered one of the critical requirements

for key-exchange protocols designed for the Internet.

The SIGMA defense to misbinding is easy to understand by

considering how the potential attacks are detected, as shown in

Figs. 3 (b) and 3 (c). When verifying the MAC, the receiver verifies

that the identity claimed by the other holder of the Diffie-Hellman

shared secret matches its own expectation. This guarantees the

correspondence between the two endpoints’ beliefs.

A slightly different approach was taken in the ISO 9798-3 pro-

tocol [11] , where each endpoint includes the identity of the other

endpoint in its signature. This allows he receiver to compare its

own understanding of the two identities with that of the sender.

All the known defenses against misbinding follow this general pat-

tern where each endpoint communicates its view of the initiator and

responder identities in the protocol messages, and each side compares

its own view with that of the other . Consequently, lack of corre-

spondence between the initiator or the responder views will be

detected.

2.4. Device pairing and relay attack

Secure device pairing is a bootstrapping process that estab-

lishes a secure channel between two previously unassociated de-

vices. These devices often communicate over a short-range wire-

less channel such as Bluetooth [12] , Wi-Fi [13] , or Zigbee [14] .

While the goals of device pairing are similar to those of any au-

thenticated key-exchange protocol, there is one major difference:

the devices typically have no prior security context, such as knowl-

edge of each other’s public keys or certificates and identifiers. They

may not even have identifiers or an assigned owner before the

pairing establishes those. Additionally, the devices may not be able

to rely on the availability of trusted infrastructure due to the ad-

hoc and local nature of the short-range wireless communication.

Typical device pairing protocols perform a Diffie-Hellman (DH)

or an Elliptic Curve Diffie-Hellman (ECDH) key exchange over the

in-band wireless channel and then use a human-assisted out-of-

band (OOB) channel to thwart potential impersonation and man-

in-the-middle attackers in the in-band channel. Several researchers

have studied the security and usability of device pairing protocols

in considerable detail [15–18] . The existing literature assumes a

powerful Dolev-Yao type attacker on the in-band wireless channel

and an OOB channel that provides some inherent protection for the

confidentiality and/or integrity of the data exchanged over it.

Bluetooth (see Section 3.1) is one of the most widely deployed

and analyzed wireless technologies. Modern Bluetooth devices use

4 A. Peltonen, M. Sethi and T. Aura / Journal of Information Security and Applications 51 (2020) 102461

the Simple Secure Pairing (SSP) [12] protocols, although some may

be backward compatible with the less secure Legacy Pairing meth-

ods. Wireless devices have different input and output capabili-

ties, which is why SSP supports multiple different user interactions

and is actually a family of key-exchange protocols. In the numeric-

comparison mode, the user is asked to compare six-digit codes on

two device displays while, in the out-of-band mode, the user deliv-

ers similar verification information securely from one device to an-

other. Either way, the out-of-band communication by the user pre-

vents man-in-the-middle attacks on the ECDH key exchange that

takes place over the in-band wireless channel. There is also a just-

works mode for devices that support neither output nor input of

six-digit codes. Obviously, this mode lacks secure authentication.

Research literature on Bluetooth security discusses several at-

tacks that are relevant to pairing protocols in general. It may be

possible to spy on the OOB channel or to misrepresent the device

capabilities so that the devices negotiate the insecure just-works

mode [19] . The attacker can trick remote devices into believing

that they are in direct communication by relaying unmodified pro-

tocol messages between their locations [20] . In the legacy version

of Bluetooth where session encryption was not mandatory, relay-

ing of the authentication messages could result in pairing of the

wrong devices. In modern protocols, this attack is relevant when

the primary goal is the device authentication and not protection of

the following communication, for example, when a Bluetooth de-

vice is used as a door key or as a location beacon. Moreover, the

Bluetooth just-works mode can lead to accidental or maliciously

induced association with a wrong peer device, as noted among

others by Suomalainen et al. [21] . If the device supports multiple

simultaneous key exchanges, there can be confusion between the

resulting sessions [22] . The end result in these attacks is akin to

identity misbinding because the reality of the created security as-

sociations does not correspond to the device’s or user’s perception.

Poorly designed internal architecture of a Bluetooth endpoint,

such as a mobile phone, may also lead to attacks. Naveed

et al. [23] describe how malicious applications on an Android

smartphone can hijack connections from attached Bluetooth (medi-

cal) devices in order to steal data. The problem arises from the fact

that the Android permission and security model allows any appli-

cation with the Bluetooth permission to communicate with all ex-

ternal Bluetooth-paired devices. A more general lesson that we can

draw from the paper is that it is important to pay attention to ma-

licious insiders, such as untrusted apps, residing in the endpoint

devices, which may be able to interfere with the communication

without fully compromising the device.

The pairing protocols critically depend on user actions, such as

comparing or delivering codes. Ellison [24] introduced the concept

of security ceremonies where the users are participants to the pro-

tocol and their actions are specified, modelled and analyzed just

like those of the communicating endpoints. Carlos et al. [25] use

Bluetooth as an example for reasoning about basic security prop-

erties of a security ceremony. We will continue this line of inves-

tigation by including the user and user actions in our models of

pairing protocols including Bluetooth SSP.

2.5. Trusted computing and cuckoo attack

The published work closest to ours comes from the trusted-

computing community. In trusted computing, a computer or a mo-

bile device incorporates a secure hardware component that is cer-

tified by the manufacturer and acts as a trusted entity inside the

device. The most common secure hardware component is a trusted

platform module (TPM) [26] , which supervises the boot process of

the device and either enforces secure boot or measures (as a cu-

mulative hash value) the loaded software. The latter case is also

called dynamic root of trust for measurement (DRTM). The latest

microprocessors have more advanced trusted execution environ-

ments (TEE), such as ARM TrustZone 1 and Intel SGX

2 , which allow

trusted software to be isolated and launched after the device has

booted. A common feature in these technologies is that, in addi-

tion to enforcing some security policies inside the computer, they

can attest the integrity of the device and its software configura-

tion to an external verifier. This could allow, for example, the user

to cryptographically verify the integrity of a cryptocurrency wal-

let before storing high-value secrets to it. The attestation naturally

needs to be cryptographically linked to a secure communication

channel [27] with the verifier.

Parno et al. [28] first pointed out the problem that, while users

may be able to cryptographically verify that they are communicat-

ing with a trusted hardware module and measured software, it is

difficult to be certain that they are physically accessing the very

device where that module is embedded. In the cuckoo attack , the

device in the verifier’s physical proximity is not actually trusted

but tricks the verifier into believing so. The cuckoo device achieves

this by forwarding the communication to another device which has

the correct configuration and a DRTM for attesting it.

Fink at al. [29] suggest measuring the round-trip times of re-

quests to the trusted device to detect if it is in the proximity of

the verifier. Zhang et al. [30] also investigate the problem of a hu-

man user distinguishing genuine secure hardware from adversar-

ial devices. They divide the presence attestation into two phases:

first, existence checking, which uses the standard remote attesta-

tion protocols, and second, residence checking, which provides as-

surance that the attesting hardware module is, in fact, in the spe-

cific physical device. We will return to the suggested mechanisms

for residence checking in Section 6 . Ding et al. [31] further argue

that presence attestation with DRTM differs significantly from de-

vice pairing where both devices are trusted. The current paper sets

out to investigate whether this is always the case.

2.6. Formal modelling

Formal modelling and model checking are standard method-

ology in the development and analysis of key-exchange proto-

cols [32–34] . Various protocol flaws have been found with these

methods but, perhaps more significantly, formal models are a way

to lift the security-protocol design to a higher abstraction level

than message formats and state machines, and to define precisely

the security properties that the protocol is expected to have.

The model checkers for security protocols are special compared

to other formal modelling tools in that, in addition to taking the

system design as input, they typically have a built-in model of

the Dolev-Yao type powerful attacker, which the researcher does

not need to explicitly define. Instead, the researcher has to spec-

ify the desired security properties. The model checker then deter-

mines whether the attacker is able to play a game against the hon-

est parties and trick them into violating these properties. There is,

however one type of attack that the researchers need to explic-

itly consider: corrupt insiders. The corruption of an insider is often

modelled as a previously honest party handing out its secrets and

capabilities to the attacker, after which it is subsumed into the at-

tacker.

Jia and Hsu [35] develop a formal model of the Bluetooth SSP

for the Murphi model checker [34] . They discuss two potential vul-

nerabilities in the numeric-comparison authentication mode. First,

an impersonator device can pretend to be a good one and trick the

user into pairing an honest initiator device with it. The example

given in the paper is one where the entertainment system in a

1 https://developer.arm.com/technologies/trustzone .
2 https://software.intel.com/en-us/sgx .

https://developer.arm.com/technologies/trustzone
https://software.intel.com/en-us/sgx

A. Peltonen, M. Sethi and T. Aura / Journal of Information Security and Applications 51 (2020) 102461 5

Fig. 4. Device pairing (a) in the normal case and (b) with identity misbinding.

rental car has been replaced with one that is under the adversary’s

control. Once the unsuspecting user has paired her phone with it,

the system can steal confidential data. Second, a proxy MitM device

can forward the unmodified connection to another device (similar

to [20]). While these threats might be considered obvious and un-

avoidable, the formal analysis focuses our attention to them and

enables systematic consideration of the threats.

The most interesting idea of Jia and Hsu for us is the notion of

intention preservation . It means that the initiating device is paired

with the device with which the user originally intended to pair it,

even if the non-initiating device belongs to an intruder. They show

that Bluetooth pairing with numeric comparison has this property.

We develop further the idea of modelling user intention, which we

state as a correspondence assertion. Because of subtly different se-

curity definitions, we end with a different result regarding Blue-

tooth pairing.

3. Misbinding in device pairing

We will now look at identity misbinding attacks against wire-

less device pairing where user authenticates the key exchange be-

tween two physical devices. Fig. 4 (a) shows a common structure

for many such pairing protocols. The unauthenticated key exchange

takes place over an insecure in-band channel, and the user with

physical access to the devices authenticates the in-band exchange

over a secure out-of-band channel. The two phases may not al-

ways be distinguishable by time, but they are distinguishable by

the channel.

The authentication in user-assisted pairing protocols is typically

based on physical access to the device. That is, the user must see

or touch the devices directly. The devices could have serial num-

bers, public keys, or other unique identifiers, but it is the physical

access that defines which devices need to be paired.

We consider a scenario where one of the devices selected by

the user for the pairing is compromised. (Recall that identity mis-

binding is an insider attack where one of the intended commu-

nication endpoints is corrupt.) The device has to be compromised

at least to the extent that the user can control the device’s inputs

and outputs on the OOB channel. In Fig. 4 (b), the user wants to

pair devices A and E . However, device E is malicious and relays the

authentication messages to another device B . Devices A and B end

up paired, which does not correspond to the user’s intention. De-

vice B does not need to collude with E and may be entirely honest,

except that the attacker can put it into the pairing mode and in-

teract with it.

Let’s try to understand why this attack is not easy to prevent.

If we take guide from other authenticated key-exchange protocols,

such as SIGMA, we might try to prevent the attack by checking

that the two endpoints agree on the identifiers A and B . This com-

parison can be done either on the in-band or on the OOB channel,

as long as the identifiers are cryptographically bound to the cre-

ated session. Sadly, that does not help in device pairing. The attack

by E will cause A and B to be paired, but if the user is not aware

of the identifiers communicated in band, the user still thinks A

is paired with E . As the next step towards a solution, we would

need to check that the device identifiers A and B correspond to

the user’s expectations. For example, if device A shows the peer

identifier to the user, the user sees that it is B and not E as in-

tended. However, the typical user in device pairing does not have

any expectations about the device identifiers: the user just sees

two physical devices and wants them to be paired.

Many pairing protocols are like this: the user’s physical access

to the device defines its identity. Since the physical device identity

cannot be communicated in bits and bytes, it cannot be included

into the messages sent over the in-band or out-of-band channel,

and it cannot be used as input to a cryptographic function. Cryp-

tographic protocol vulnerabilities of the early days could often be

fixed by adding a missing identifier to the right message, but that

is not the case with device pairing where the endpoints either

have no identifiers or, if identifiers exist, user intentions are not

expressed in terms of them.

So far, our discussion of misbinding may appear as rehashing

of the relay attack in the context of device pairing. This perception

is partly true, but the misbinding attack is easier to implement.

As hinted in Fig. 4 (b), if all three devices are within the wireless

range from each other, E does not actually need to relay the wire-

less in-band traffic. It can let A and B communicate directly over

the wireless channel and focus on relaying the authentication mes-

sages between the two OOB channels. E can then pull out after the

authentication is complete, which leaves A and B communicating

directly.

Comparing with the cuckoo attack against trusted computing

hardware, there are also similarities. The problem there was the

lack of secure binding between the physical device and the long-

term public key of the DRTM inside it. Our problem is the lack

of secure binding between the physical devices and the ephemeral

session key. The similarity extends to the lack of definite solu-

tions by the means of traditional security protocol design. How-

ever, there are ways of mitigating the threats, as we will see in

Section 6 .

Next, we will look at some examples of the attack in actual

pairing protocols. That will help us assess the impact of the vul-

nerability in a more concrete way.

3.1. Bluetooth case study

We use the widely-studied Bluetooth SSP as a case study of

misbinding in pairing protocols. The attack is shown in Fig. 5 . The

human user Alice is trying to pair the computer A with the phone

E . She is unaware that the phone E has a malicious app that is con-

trolled by the attacker Mallory. The malicious app is able to spoof

the pairing user interface on the phone at Mallory’s command. The

attacker also has a third device B , which is hidden from the user’s

view. The attacker’s goal is to pair Alice’s device A with the third

device B while Alice believes that A is paired with E . For a suc-

cessful misbinding attack, A and B must be within Bluetooth radio

6 A. Peltonen, M. Sethi and T. Aura / Journal of Information Security and Applications 51 (2020) 102461

Fig. 5. Misbinding attack against Bluetooth SSP numeric comparison.

range from each other. For example, Mallory and device B could be

in the next room from where Alice performs the pairing process.

A brief explanation of the notation is required here: For the

purposes of telling the story, we denote the three devices A, E

and B . Two of these match the notation of the Bluetooth specifi-

cation, where the initiating device is A and the non-initiating device

is B . The user intends device E to play the non-initiating role, but

the attacker prevents it from participating in the protocol. Here,

these symbols only denote the physical device, and they are not

names or identifiers that could be communicated in the protocol.

For that purpose, each device has a unique 48-bit Bluetooth ad-

dress (BD_ADDR) and a name, which is non-unique and often can

be modified by the user.

From the user’s and the attacker’s points of view, the following

steps occur in the misbinding attack of Fig. 5 :

1. Alice makes device E discoverable and starts a search for

other devices on device A . Mallory makes device B discov-

erable. Device A presents Alice with a list of the names of

discoverable devices in its vicinity. Alice chooses the one she

thinks is E . At this point, Mallory needs to arrange things

so that Alice mistakenly chooses B from the list. To achieve

this, the malicious app in device E should keep that device

non-discoverable, even though Alice thinks otherwise. Mal-

lory should also ensure that the name of device B matches

the name that Alice expects to see for device E . (We will

discuss the naming in more detail below.) As the result of

the attacker’s meddling, the wrong devices A and B start the

cryptographic pairing protocol with each other.

2. During the pairing, devices A and E display six-digit codes

and expect the user to compare them. Mallory reads the six-

digit code from the screen of device B and forwards it to the

malicious app in device E .

3. The malicious app in device E displays the replayed six-digit

code to Alice.

4. Seeing the same six-digit verification code on the screens of

devices A and E , Alice confirms the pairing on both devices.

The action on the compromised device E has no real effect;

instead, Mallory confirms the pairing on device B . This al-

lows the pairing of A and B to complete. In the end, Alice

believes A and E have successfully paired when, in fact, de-

vice A is paired with B .

To understand why the Bluetooth SSP protocol does not pre-

vent the attack above, we need to look at the protocol in more

detail. The hardest practical obstacle for the attacker is, in fact,

not the actual SSP protocol but the device naming and selection

that takes place before the actual pairing. Bluetooth core specifi-

cation [12] defines Inquiry and Paging procedures for discovering

Fig. 6. Bluetooth Secure Simple Pairing with numeric comparison [12] .

nearby devices and subsequently connecting to one of them. The

user typically selects the name of the non-initiating device from a

list of nearby devices on the initiating device. The device names

are strings that aid the user in identifying the correct peer de-

vice. Each device has a default name that often indicates its make

and model, for example “Nokia8” or “Alice’s iPhone”. Depending on

the device, the name may be user configurable. In the attack, Mal-

lory needs to trick Alice into choosing device B from the list by its

name. Thus, Mallory should rename B to have the same name as E .

The rare tricky case for Mallory is if she wants to use a device

B that does not have a configurable name, or if Mallory does not

have the permission to change the device name. In that case, Mal-

lory may be able to choose a device B that has the same make

and model as device E and thus the same default name. If Mal-

lory absolutely needs to use a device B with a Bluetooth name

that is not configurable and does not match device E , there is still

a way forward. The Inquiry and Paging procedure is not authen-

ticated, and the attacker can manipulate the device names on the

in-band wireless channel. While that requires more skill and tools

than changing the name of device B on its user interface, message

modification on a wireless channel is within the expected capabil-

ities of a Dolev-Yao attacker.

Once Alice has been fooled into choosing the wrong device, the

SSP security protocol starts between devices A and B . We will re-

view the pairing protocol to be certain that it does not present ob-

stacles to the attack. The numeric-comparison mode of SSP, shown

in Fig. 6 , has several phases that must be completed before an

initiating device A and a non-initiating device B are paired se-

curely. In phase 1, the devices perform an ECDH key exchange. In

phase 2, the non-initiating device B commits to a random nonce

Nb , which it reveals after the initiating device A has sent its own

nonce Na . Device A checks the commitment to ensure that the

nonces have been fairly chosen. The user-assisted authentication

then takes place. Each of the devices displays to the human user

a six-digit verification code, which it computes from the ECDH key

shares and nonces. If the codes match, the user confirms successful

pairing on both devices, which allows them to continue. In phase

3, the devices confirm cryptographically the derived ECDH secret

and their input and output capabilities, which were used to select

the authentication mode in the beginning. In phase 4, the devices

derive a link key, i.e. a shared session key. Finally, in phase 5, they

use the link key for encryption in the Link Manager Protocol.

A. Peltonen, M. Sethi and T. Aura / Journal of Information Security and Applications 51 (2020) 102461 7

The critical thing to observe about the SSP protocol is that it

does not even try to verify the device names (or other device prop-

erties like make, model and serial number). This is understandable

because Bluetooth device names do not uniquely identify a device.

The protocol does bind the link key to the link-layer addresses of

the two devices but, during the pairing, each device will accept any

peer address.

Note that only the software in device E needs to be compro-

mised for the misbinding attack, while devices A and B can be en-

tirely normal. The only access the attacker needs on device B is to

make it discoverable, to change its name if necessary, and to con-

firm the code comparison. Moreover, the attack requires device E

to be compromised only to the extent that the attacker can spoof

the pairing user interface. We implemented the attacker in device

E as a full-screen app that receives the six-digit code over the 4G

data connection and emulates the pairing process without actually

participating in the pairing protocol on the in-band channel. Thus,

the vulnerability occurs relatively often in practice, even though

we do not know of attack implementations outside our laboratory.

The above attack against Bluetooth pairing will work for any

version of SSP or Legacy Pairing. Indeed, we believe it will work

for all device-pairing protocols where the device identity is deter-

mined only by physical access to the device.

4. Misbinding in device bootstrapping

4.1. EAP-NOOB Case study

We will now look at a protocol for security-bootstrapping and

registration of Internet-of-Things (IoT) devices to an online server.

Although the protocol differs considerably from device pairing,

they are similar in the sense that the identity of the correct de-

vice is defined by physical access to it. This makes the protocol

vulnerable to identity misbinding attacks.

Extensible Authentication Protocol (EAP) [36] is an authentica-

tion framework used, for example, in enterprise wireless networks.

It normally assumes that the wireless devices are pre-registered at

a back-end authentication server. This means that the deployment

of new wireless devices is a multi-step process that includes de-

vice registration and credential provisioning.

Nimble out-of-band authentication for EAP (EAP-NOOB) [37] is

an authentication method for EAP that also supports user-assisted

bootstrapping and registration of new devices. It is intended for

off-the-shelf IoT devices that initially have no known identifiers, no

credentials, and no knowledge of their intended owner and net-

work. EAP-NOOB registers the new devices to the authentication

server and associates them with the user’s account on the server.

The device, called peer , first performs an ECDH key exchange with

the server. The authentication takes place when the user delivers

a single out-of-band (OOB) message from the peer device to the

server, or in case of peer devices with only input capability such

as cameras, from the server to the peer device. Information de-

livered in the OOB message enables mutual authentication of the

peer and server, and it authorizes, on one hand, the server and

user to take control of the device and, on the other, the device

to be registered to the server and user account. The protocol does

not limit the ways in which the OOB message is transferred; the

implemented ways include a QR code, an NFC message, LED light,

and an audio clip. After the OOB message has been delivered, the

device registration completes in-band between the peer and the

server.

The misbinding attack (shown in Fig. 7) arises when the peer

device is compromised. Alice has a new device E , which she wants

to register to the network and to the authentication server. In this

case, the device has an NFC interface from which the OOB mes-

sage can be read with a mobile phone app. Unknown to Alice, the

attacker Mallory has compromised the device E to the extent that

Mallory can control the NFC output. By mounting the misbinding

attack, the attacker can trick the user into registering a different

peer device B to the user’s account in the server. From the user’s

and the attacker’s points of view, the following steps take place in

the attack:

1. Alice initiates the registration of device E to the wireless

network and authentication server A . Device E starts (or pre-

tends to start) the EAP-NOOB protocol with the server. At

the same time, Mallory initiates the registration of another

new device B to the same network and authentication server

A . Device B starts the EAP-NOOB protocol with the server.

2. Unknown to Alice, the attacker reads an OOB message from

the NFC output of device B and relays the message to the

compromised device E . Device E is now ready to output the

relayed message.

3. Alice logs into her user account on server A with the mo-

bile phone app. She then taps the NFC output on device E to

read the OOB message. The compromised device E outputs

the relayed message.

4. The app on Alice’s phone delivers the OOB message to the

server. Since the message originated from device B , this ac-

tion registers device B to Alice’s account in the server and

establishes credentials for future authentication and wireless

network access of device B . Alice mistakenly believes that

device E has been registered.

The above attack will work regardless of the direction and the

number or the messages sent over the OOB channel. The compro-

mised device E simply relays all OOB messages between the user’s

phone and device B , until device B is authorized to register to Al-

ice’s account ton the server.

A slight complication arises when the OOB communication is

initiated by the server. In that case, there could be multiple de-

vices attempting to register at the same time to the same server.

Since the OOB messages are specific to the device, the user has

to choose the correct device on the server. To trick the user into

choosing the wrong device B , the attacker must match the make,

model and any other metadata of device E by which the user se-

lects the correct device from those available for registration. It is

easiest for the attacker to clone the metadata of device E by creat-

ing a virtual device B whose behavior is fully under the attacker’s

control. On the other hand, if the attacker wants to register an ac-

tual physical device B , it may have to choose one of the same make

and model as device E .

Unlike in device pairing with Bluetooth, Mallory’s device B does

not need to be in close proximity to Alice or to A . Mallory can run

the EAP-NOOB protocol on her device B from anywhere in the cov-

erage area of the wireless networks served by the same authenti-

cation server. She only needs the capability of sending or receiving

the OOB message to or from the compromised device B .

Device bootstrapping and registration with EAP-NOOB is de-

signed to be efficient for deploying large numbers of devices. Thus,

the person installing the devices might not be the eventual user,

and the failure of device E to associate with the server might go

unnoticed for some time. In comparison, device pairing with Blue-

tooth is often followed by another user action such as transfer of

media, which may lead to the user detecting the failure of device

E to pair.

4.2. DPP Case study

Device Provisioning Protocol (DPP) [38] is a bootstrapping

mechanism recently standardized by the Wi-Fi Alliance for con-

figuring Wi-Fi network information on devices with limited user

8 A. Peltonen, M. Sethi and T. Aura / Journal of Information Security and Applications 51 (2020) 102461

Fig. 7. Misbinding attack against EAP-NOOB.

Fig. 8. Misbinding attack against DPP.

interfaces. We discuss the misbinding threat separately for DPP be-

cause of its expected wide deployment.

DPP relies on a configurator , e.g. a smartphone application, for

bootstrapping all other devices, called enrollees , in the network.

In the most typical use case, every enrollee has a public boot-

strapping key, which is communicated to the configurator in the

bootstrapping phase over an out-of-band channel. The OOB data

includes communication metadata such as the radio channel on

which the enrollee device is listening. The configurator authenti-

cates the enrollee using the bootstrapping key and then configures

it for Wi-Fi access.

The misbinding attack against DPP (Fig. 8) is almost trivial:

when the user is configuring a compromised device E , the attacker

replaces the public key and communication metadata output from

E with those of another device B . This requires the attacker to com-

promise the interface, such as NFC, which outputs the OOB mes-

sage. In one variant of DPP, the public bootstrapping key is printed

as a QR code, and in that case, the device compromise is equal to

replacing this piece of paper in the retail packaging. In other vari-

ants, the configurator and device exchange one or more dynamic

messages, and the attacker has to relay them in real time between

the two devices.

5. Formal analysis of misbinding

We modelled the case-study protocols and their security re-

quirements with ProVerif [32,39] . First, we wanted to enhance pre-

vious models of device pairing and especially Bluetooth SSP to cap-

ture the misbinding attack. It was not clear to us why the existing

models missed the attack when so many other, even more subtle

issues have been detected. We also wondered if the attack and the

security goals it violates can be reduced to previously known ones.

As a result, we learned that the formal models can be made more

complete so that they discover the misbinding attack, and that the

violated security properties are different from what has previously

been analyzed. Another goal of our modelling work was to un-

derstand how pairing protocols differ from each other in relation

to the misbinding vulnerability, and whether registering a physical

device to an online service is fundamentally different from pairing

two physical devices. We found that misbinding occurs in a wide

range of protocols where endpoints are defined by physical access.

We also found that the attacks can be classified into a small num-

ber of variants, and not all protocols are vulnerable to all of them.

5.1. Modelling device pairing

We will mainly discuss Bluetooth SSP with numeric compari-

son because of its familiarity to many readers. The full model is

included in Appendix Appendix A . However, we also modelled the

SSP OOB mode and Wi-Fi Direct [40] with similar results.

In addition to the protocol messages and the device state ma-

chines, we model the security ceremony that includes user inten-

tions, choices and actions . We follow the example of Carlos [41] and

model the user as a separate process in ProVerif. However, while

Carlos considers pairing between two devices belonging to differ-

ent users, we consider pairing where a single user has physical ac-

cess to both intended endpoints. Thus, our model consists of three

kinds of processes: user, initiating device A , and non-initiating de-

vice B . Both types of devices can become compromised and, thus,

take the role of E , which corresponds to the two scenarios of Fig. 1 .

The challenging part of the model was capturing the user in-

tention, i.e. decision to pair specific two devices, when the devices

A. Peltonen, M. Sethi and T. Aura / Journal of Information Security and Applications 51 (2020) 102461 9

are identified by physical access and do not have names or other

identifiers . In the end, the solution is fairly simple and intuitive:

the users and devices have identifiers in the model (see below),

but the identifiers can never be communicated over a channel or

used as input to a cryptographic function. Instead, they are used

for marking local events and for checking correspondence proper-

ties between the events, such as whether the user intended the

devices to be paired. This inability to communicate the identifiers

goes a long way towards explaining why the traditional solutions

of adding explicitly or implicitly communicated identifiers are not

applicable to device pairing.

Similar to Chang et al. [22] , we use private channels in ProVerif

to model the physical access by the user to the devices. These chan-

nels protect both secrecy and integrity of the communication. In

the case of Bluetooth, the private channels are used both for read-

ing the numeric codes and, if the values match, for confirming the

match to the devices. To initiate pairing, user needs to have ac-

cess to two private channels, PhysicalChannelA to an initia-

tor device and PhysicalChannelB to a non-initiator device. We

use these physical channels as the device identifiers, which is both

practical and semantically correct. For the users, on the other hand,

we simply create new identifiers.

Compromised endpoints are commonly modelled by leaking

their secrets, such as private keys, to a public channel. Conse-

quently, the built-in attacker model of the model-checking tool can

emulate any honest or malicious behavior by that endpoint. In the

Bluetooth model, however, the devices do not have any master se-

crets. Instead, we model the compromise of a device by leaking its

private channel to the network . This allows the attacker to take con-

trol of that channel.

In addition to modelling the compromise of devices, we also

model the compromise of a user. This is done to conceptually dis-

tinguish between a tampered device and a malicious user having

physical access to an intact device. There is no real difference be-

tween the two in the Bluetooth case. However, the distinction be-

comes significant when we compare mitigation techniques and dif-

ferent levels of user access to the device.

The user model is shown below. The user (i) selects two de-

vices and logs her decision to pair them as an event, (ii) compares

the six-digit verification codes displayed by the devices, and (iii)

confirms a match to the devices. The user may be compromised

any time, yielding control of the physical access channels to the

attacker.

Intuitively, misbinding is a violation of the following security

property: two devices are paired only if their user intended them to

be . When formalizing the absence of misbinding as a correspon-

dence property in ProVerif, we need to be more precise: If two

devices complete the pairing with the same link key and a user has

physical control of at least one of them, then either the user previ-

ously intended the two devices to be paired, the user is compromised,

or both devices are compromised. In ProVerif, this correspondence

property can be defined as follows:

10 A. Peltonen, M. Sethi and T. Aura / Journal of Information Security and Applications 51 (2020) 102461

Fig. 9. Five variants of misbinding found with ProVerif.

As expected, ProVerif returned false for the query and pro-

duced a counterexample, i.e. an execution trace that violates the

security property. There are two versions of the query, one with

PhysicalChannelA and another with PhysicalChannelB on

the second line. The queries can be refined to exclude already an-

alyzed attacks or to focus on specific cases.

Investigating further, we found five different types of misbind-

ing attacks with ProVerif, which are summarized in Fig. 9 . Each

sub-figure shows two rooms. The honest user tries to pair two de-

vices, initiator A 1 and non-initiator B 1, in her room. One of these

devices is compromised, and the other ends up being paired (indi-

cated by the thick red arrow) with a device in the room above. The

sub-figures show the locations of the honest users, compromised

users, and compromised devices. The black one-directional arrow

is specific to Bluetooth SSP with numeric comparison. It shows

how the attacker forwards the six-digit code from one device to

another.

The first one of the attack variants, seen in Fig. 9 (a), is the ba-

sic misbinding attack described in Section 3 . In that attack, the

compromised device is the non-initiator B 1, and there is a com-

promised user with physical access to the third device B 2. This

corresponds to Figs. 4 (b) and 5 , where E corresponds to B 1. Other

attacks arise as variations of the first one. On one hand, the com-

promised device in the user’s physical possession can be the ini-

tiator A 1 or the non-initiator B 1. On the other hand, the third may

be a compromised one or an uncompromised device accessed by a

compromised user. These choices make the four different variants

of the misbinding attack in Figs. 9 (a)-(d).

It came as a surprise to us that there is a fifth type of misbind-

ing attack, which we call double misbinding . In this attack, seen in

Fig. 9 (e) and more clearly illustrated in Fig. 10 , there are two hon-

est users. Each one of them is trying to pair two devices, one of

which is compromised. The compromised devices collude so that,

as the result, the two uncompromised devices are paired.

Double misbinding is easiest to understand in the out-of-band

mode of Bluetooth SSP, where the user transfers some information

out-of-band from one device to another. In that case, one compro-

mised device receives the OOB message from the first honest user

and forwards it secretly to the second compromised device, which

outputs it to the second honest user. The attack is also possible

in SSP with numeric comparison because all the values needed for

computing the verification codes Va and Vb are transmitted on the

wireless link (see Fig. 6). The attacker can sniff these values, com-

pute Va and Vb , and show them on the displays of the two com-

promised devices.

Afterward finding the five attack variants by formal verification,

we systematically enumerated the different combinations of ini-

tiator and non-initiator devices, compromised and uncompromised

users and devices, and user physical access in a setting of maxi-

mum two users and four devices. This analysis confirmed that, af-

ter removing impossible and equivalent cases, the five attack vari-

ants remain. Increasing the number of users and devices does not

seem to give raise to any new types of attacks because there is

maximum that can be involved in a single pairing.

5.2. Modelling device bootstrapping

Although the ProVerif models of EAP-NOOB and Bluetooth dif-

fer greatly, the parts relevant to detecting misbinding are similar.

The main difference is that, in EAP-NOOB, only the peer device

is identified by the physical access channel. The EAP-NOOB server

has a strong cryptographically verifiable identity (HTTPS URL and

web certificates), and we assume that the server cannot be com-

promised. The query for the absence of misbinding attacks is as

follows:

Again, ProVerif finds a counterexample to this query. Because

only the peer side can be compromised, there are only two pos-

sible variants of misbinding. They correspond to Fig. 9 (a) and (c).

In the first one, the server is A 1, the compromised peer device B 1,

and the uncompromised peer device B 2. In the other attack vari-

ant, both peer devices are compromised and there is no need for a

user to operate device B 2. The first of these two variants matches

the attack discussed earlier and shown in Fig. 7 .

We also modelled DPP with ProVerif and verified its vulnerabil-

ity to misbinding of the enrollee, as explained in Section 4.2 .

6. Mitigation

6.1. Authentication solutions

As explained in Section 2.2 , the STS and SIGMA protocols and

their variants [2,3,7] tackle misbinding by binding endpoint iden-

tities cryptographically to the created session. These solutions are

A. Peltonen, M. Sethi and T. Aura / Journal of Information Security and Applications 51 (2020) 102461 11

Fig. 10. Double misbinding.

suitable for situations where the devices have certificates, public

keys for authentication, and unique names. This is typically not the

case in device pairing. Moreover, as we explained in Section 3 , the

endpoints in device pairing have no a-priory knowledge of each

other’s identifiers, and neither does the typical user who is assist-

ing the key exchange.

The common way to communicate the device identifier, such

as model and serial number, to the user is printing them on an

identification plate attached to the device. Together with a certifi-

cate issued by the manufacturer, this information can be used for

authenticating the device. Another possibility is to print a finger-

print of the device’s public-key onto the device, e.g. as a hexadec-

imal value. If a metal plate, sticker or printing on the device is not

considered tamper-proof enough, the identifiers could be etched to

the device enclosure. While such physical indicators can ultimately

be counterfeited, the burden on the attacker is increased signifi-

cantly. The disadvantage of these solutions is that the user needs

to compare the authenticated device identifiers with the serial-

number plates or key fingerprints, which complicates the pairing

process.

6.2. Presence checking

As noted in Section 2.5 , trusted-computing research has not

put much faith in the printed serial numbers or public-key fin-

gerprints. Instead, the researchers have tried to find more secure

ways of checking the presence of a DRTM inside a physical device.

We can generalize these approaches from DRTM to any device with

a trusted computing base (TCB) that is surrounded by potentially

compromised layers of software. The techniques for DRTM pres-

ence checking could be applied to checking the physical presence

of the pairing endpoint for a given device, which could prevent the

misbinding attacks.

The round-trip time measurement suggested by Fink [29] de-

pends on the latency caused by the cuckoo in the communica-

tion chain. In our attacks against device pairing, the in-band com-

munication takes place directly with the third device, and tim-

ing measurement is unlikely to be able distinguish between two

devices within the Bluetooth radio range. This issue of distance

bounding has been widely studied in relation to RFIDs and wire-

less keys [42,43] .

Ding et al. [31] provide a summary of several other solu-

tions. One is a hardware-based secure channel, i.e. a trusted path ,

that allows the user to communicate directly with the DRTM or

TCB inside the device. This could, for example, be an LED indi-

cator light or a special-purpose USB port. The need for such a

feature in smart devices is well known, but the idea has never

been widely adopted by device manufacturers. The great variety

of manufacturers and form factors in smart devices would also

make it difficult for the user to know which feature can be truly

trusted. Another solution is to enclose the devices into a Faraday

cage to prevent them from communicating with external entities

during the key-presence checking. This approach was previously

suggested for bootstrapping sensor nodes wirelessly [44] . Zhang

et al. [30] propose several presence checking methods based on

analog channels, which do not provide strong security guarantees

but make the attacks impractical. One method is based on com-

paring the GPS location measurements by the two endpoints, and

another on comparing images captured by co-located devices of

their immediate environment. They also propose measuring the

timing of a screen-to-camera video channel, which would be dif-

ficult to forward to a remote device without causing a detectable

delay.

In one practical form of presence checking, which is already

widely deployed, the user can ask a peer device to blink an LED

indicator light. The primary purpose for this is to help the user to

identify a specific physical device among many similar ones. For

example, the pairing process of Apple Homekit devices relies pri-

marily on a static code that is attached to the device or inside the

retail packaging. Before scanning the static code during the pairing

process, the user can optionally ask the selected device to blink its

LED. If we consider this a security feature, the assumption must

be that the attacker cannot make the LED blink, at least not at

the right time. Naturally, if the device is compromised, the attacker

might be able to make the LED blink at the right time. Neverthe-

less, even such a weak device identification mechanism increases

the burden of the attacker compared to not having one; without

it, the attacker could achieve misbinding simply by replacing the

static code on the user’s new device.

6.3. Asset tracking

We believe the practical approach to detecting misrepresented

device identities might be asset tracking , i.e. bookkeeping of the

physical assets that belongs to an organization or an individual.

This requires each device to have a unique identifier, which is reg-

istered into a database when the user purchases a device. In the

simplest case, the database is accessed only by human users, in

which case any existing asset tracking system or database can be

used.

When the organization knows the models and serial numbers

of its devices and the purpose assigned to each one, the informa-

tion can be used for cross-checking during device pairing. For ex-

ample, if there is only one new display device allocated for Alice,

Alice can compare the device information from the database with

the identifier authenticated in the device pairing process when she

deploys the device.

For this to work, each device needs to know its own identifier

and learn the peer identifier during the key exchange. The identi-

fiers should be bound to the cryptographic key exchange in such

a way that agreement on session key cannot be reached without

also agreeing on the identifiers. Each device should show the iden-

12 A. Peltonen, M. Sethi and T. Aura / Journal of Information Security and Applications 51 (2020) 102461

tifier of its peer to the user, e.g. when initiating the pairing pro-

tocol or when confirming the numeric comparison. In Bluetooth

SSP protocol, this would require changes to the input of the ver-

ification codes, while EAP-NOOB already has a built-in authenti-

cated message field (PeerInfo) for communicating such auxiliary

peer information. Of course, the software of an uncompromised

device should not allow the users to modify the device identi-

fier. As the result of these measures, device A in the scenario of

Fig. 4 (b) would show the identifier of the unknown device B to the

user and the attacker cannot replace it with the expected identifier

of device E .

Manufacturer-issued device certificates [45,46] can further help

the process by providing secure information about the types and

models of the devices. This will reduce the reliance on the as-

set database because all other information except correctness of

the device identifier can be communicated in the certificate. One

downside of certificates when compared to purely ad-hoc OOB

based pairing mechanisms is that the certificates can reveal the

identities of the participating devices to both passive and active

observers. The identities can be encrypted with the SIGMA 3-round

protocol by encrypting the identity and certificate payloads [47] .

However, in these protocols, one side must reveal its identity

first, thereby putting it at disadvantage. Wu et al. [48] propose

a policy mechanism for mitigating this weakness with identity-

based encryption and hierarchical human-readable names. Such

mechanisms could be used for protecting the manufacturer cer-

tificates in any pairing or device bootstrapping protocol includ-

ing those where the main authentication method is an OOB

channel.

For the average consumer, it is difficult to keep track of pur-

chased devices over any longer span of time. However, this obsta-

cle may be disappearing as smart devices are increasingly cloud

connected and their ownership is therefore often registered by the

manufacturer or some other cloud service. The same online ser-

vice can replace the corporate asset-tracking system for an indi-

vidual user. Furthermore, there are proposals for logging Internet-

of-Things devices to a blockchain [49,50] , which could also be used

for asset tracking.

Above, we have mostly discussed device pairing and Bluetooth,

but the same solutions also work for EAP-NOOB and device regis-

tration to the cloud. The main difference is that only one endpoint

of the key exchange is a physical asset that needs to be tracked.

The fact that the authentication server is online and provided to

the user as a service means that it could help with ownership

tracking or connect directly to the manufacturers on the user’s be-

half.

6.4. On bluetooth SSP and double misbinding

As noted in Section 5.1 , SSP with numeric comparison is vul-

nerable to double misbinding because all the inputs for computing

the verification codes Va and Vb are transmitted on the wireless

link and can be sniffed. If Va and Vb were computed as function

of the ECDH shared secret, the two compromised devices could

not show the value on their displays. This would prevent dou-

ble misbinding, although not the simpler misbinding attacks. Sim-

ilar protocols in the future might consider taking advantage of

the secrecy to limit the space that the attacker has for maneu-

vering. A possible disadvantage is that the devices would have to

compute the ECDH shared secret before displaying the verification

codes, which could impact the user experience on devices with

slow processors. The current SSP protocol also has a clean design

where the six-digit verification codes are not at all expected to be

secret.

7. Discussion

It remains to be discussed how serious the misbinding vulner-

ability is and whether we should be worried about it. We do not

want to be alarmist but instead try to provide balanced arguments

for thinking about the issue.

First, the vulnerability exists in a wide range of protocols and

systems. Any pairing or bootstrapping protocol that relies solely on

the user’s physical identification of the endpoints will be equally

vulnerable regardless of the protocol design. In fact, even strong

authentication of the endpoint identifiers does not prevent mis-

binding unless each endpoint knows what the other’s identifier

should be.

The risk of misbinding attacks against out-of-band authentica-

tion is increased by the fact that the attacks are easy to imple-

ment. The compromised device only needs to forward authenti-

cation messages on the user-interface level. This is considerably

easier for the typical attacker than, for example, relaying commu-

nication at the radio or logical link layer. It is also easier than

continuously forwarding application-layer messages to and from a

compromised device. This makes misbinding an attractive attack

for technically less competent attackers. In our attack implementa-

tions against Bluetooth or EAP-NOOB, device E was compromised

by simply installing a malicious app that emulates the pairing user

interface at the attacker’s command.

Misbinding depends on the user trying to pair with or regis-

ter a device E that is compromised. Thus, there must be a (par-

tially) corrupt insider involved. The user is misled because the user

makes a bad decision and trusts the corrupt device. Some protocol

designers might dismiss the problem at this point, thinking that

it is outside their threat model. One counterargument to such dis-

missal is that the corrupt device is not the one that ends up being

paired, and thus the honest device B also suffers. Another coun-

terargument is that the Internet of Things will be full of corrupt

insiders, just like the regular Internet. Also, we should protect the

users from their own mistakes whenever possible.

The practical impact of misbinding attacks is somewhat difficult

to grasp. It has been demonstrated with the help of two example

scenarios, one presented by Diffie et al. in the original STS paper

and the other by Krawczyk in a lecture:

• A connects to bank B , over a supposedly secure session, to

deposit an electronic coin. Since E mounted a misbinding at-

tack, bank B thinks the coin was deposited by E . This is the

scenario of Fig. 1 (b).

• E and B are fighter jets, and A is their commander. E has

been compromised by the enemy. A tells E to self-destruct,

but because E mounted a misbinding attack, the command

goes to B . This is the scenario of Fig. 1 (a).

The banking scenario does not seem to have obvious equiva-

lents in the world of physical devices. The fighter jets, on the other

hand, are devices, and we can construct a related IoT example:

• E and B are IoT devices, and A is the user’s computer. E has

been infected by malware. User wants to connect from A to

E and wipe E ’s memory. Because E mounts a misbinding at-

tack, the user wipes device B instead.

Note that all these scenarios require some prior relation be-

tween the endpoints, and the misbinding attack leads to a fail-

ure of correspondence between that prior relation and the newly-

established secure connection. In pairing and bootstrapping, there

often is no such common history. Either one of the endpoints is a

new, fresh device, or the history is not significant because the end-

points have no secure way of knowing that they have reconnected

A. Peltonen, M. Sethi and T. Aura / Journal of Information Security and Applications 51 (2020) 102461 13

to the same peer. This may be one reason why the practical impact

of misbinding for IoT devices remains somewhat elusive.

We also need to compare misbinding to alternative attacks. In

Fig. 4 (b), the attacker in device E can achieve almost the same re-

sults by accepting the connection from A , establishing another con-

nection to B , and then forwarding the application-layer messages

between A and B . The main difference between misbinding and

such relaying of communication is that the misbinding attacker

can remove itself from the communication chain after the pairing.

Thus, in misbinding, the continuation of the attack does not de-

pend on the compromised device E being online or within radio

range. Furthermore, the user is in physical control of the compro-

mised device E but not of B . In misbinding, if the user disables de-

vice E , e.g. by disconnecting it from the network or even by phys-

ically destroying it, device B and its connection with A will never-

theless persists — unknown to the user.

Since the design of STS and IKE, there has been consensus

among security protocol designers that misbinding vulnerabilities

are not acceptable in authenticated key-exchange protocols for

computer networks and for the Internet. In device pairing, there is

no similar consensus, and the attack has been mostly ignored with

the exception of the trusted-computing community. We do not

expect this paper to stop people from using protocols like Blue-

tooth SSP. The misbinding attacks and impact scenarios are rela-

tively marginal compared to the advantage of encrypting wireless

communication and having basic authentication in place, and the

value of these is not nullified by misbinding. The attacks should,

however, not be ignored because they are so widely applicable to

device-pairing and IoT bootstrapping protocols. Our message is that

protocol and system designers should understand the misbinding

vulnerability for physical devices, keep eyes open for unexpected

consequences in new situations, and make an informed judgment

about whether additional countermeasures are needed.

8. Conclusion

We studied identity-misbinding (or unknown-key-share) at-

tacks in device pairing protocols where the devices are identi-

fied by physical access rather than cryptographic credentials. We

showed that Bluetooth and other similar device-pairing protocols

are vulnerable to this attack regardless of their cryptographic de-

tails. The same vulnerability also exists in protocols for security-

bootstrapping IoT devices. We confirmed the attacks by imple-

menting them. Formal modelling allowed us to discuss the precise

definition of misbinding, which led to the discovery of a new at-

tack variant, double misbinding. We also discussed potential mit-

igation mechanisms, arguing in favor of solutions based on asset

tracking. While the vulnerability to identity misbinding does not

make the existing device pairing protocols completely insecure, it

is a threat that needs to be fully understood also in device pairing,

and this paper is a step towards that goal.

Author Statement

The entire article is teamwork by the authors.

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Acknowledgments

We would like to thank Eric Rescorla for his inspiring com-

ments on EAP-NOOB and Kaisa Nyberg for insightful discussion on

Bluetooth SSP. This work was supported by Academy of Finland

(grant number 296693).

https://doi.org/10.13039/501100002341

14 A. Peltonen, M. Sethi and T. Aura / Journal of Information Security and Applications 51 (2020) 102461

Appendix A. Bluetooth Model

A. Peltonen, M. Sethi and T. Aura / Journal of Information Security and Applications 51 (2020) 102461 15

16 A. Peltonen, M. Sethi and T. Aura / Journal of Information Security and Applications 51 (2020) 102461

References

[1] Sethi M, Peltonen A, Aura T. Misbinding attacks on secure device pairing and
bootstrapping. In: Proceedings of the 2019 ACM Asia conference on computer

and communications security. New York, NY, USA: ACM; 2019. p. 453–64. ISBN

978-1-4503-6752-3. doi: 10.1145/3321705.3329813 .
[2] Krawczyk H . SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie-Hell-

man and its use in the IKE protocols. In: Annual international cryptology con-
ference. Berlin, Heidelberg: Springer Berlin Heidelberg; 2003. p. 400–25 .

[3] Blake-Wilson S , Menezes A . Unknown key-share attacks on the station-to-sta-
tion (STS) protocol. In: Proceedings of the international workshop on public

key cryptography. Berlin, Heidelberg: Springer-Verlag; 1999. p. 154–70 .

[4] Dolev D , Yao A . On the security of public key protocols. Trans Inf Theory
1983;29(2):198–208 .

[5] Abadi M , Needham R . Prudent engineering practice for cryptographic proto-
cols. Trans Softw Eng 1996;22(1):6–15 .

[6] Lowe G . An attack on the needham-Schroeder public-key authentication pro-
tocol. Inf Process Lett 1995;56(3):131–3 .

[7] Diffie W , Van Oorschot PC , Wiener MJ . Authentication and authenticated key
exchanges. Design Codes Cryptogr 1992;2(2):107–25 .

[8] Lowe G . A hierarchy of authentication specifications. In: Proceedings of the

10th computer security foundations workshop. Washington, DC, USA: IEEE
Computer Society; 1997. p. 31–43 .

[9] Woo TY , Lam SS . A semantic model for authentication protocols. In: Proceed-
ings of the IEEE computer society symposium on research in security and pri-

vacy. Washington, DC, USA: IEEE Computer Society; 1993. p. 178–94 .

[10] Kaufman C., Hoffman P.E., Nir Y., Eronen P., Kivinen T.. Internet key exchange

protocol version 2 (IKEv2). http://tools.ietf.org/rfc/rfc7296.txt RFC 7296; 2014.
[11] ISO . It security techniques – entity authentication – part 3: mechanisms using

digital signature techniques. International standard; 1993 .
[12] SIG B. Bluetooth specification version 5.0. Core Specification. Bluetooth SIG;

2016 . https://www.bluetooth.com/specifications/bluetooth- core- specification .

[13] IEEE . IEEE standard for information technology–telecommunications and infor-
mation exchange between systems local and metropolitan area networks–spe-

cific requirements - part 11: wireless LAN medium access control (MAC) and
physical layer (PHY) specifications. Tech. Rep.. IEEE; 2016 .

[14] Alliance Z . ZigBee specification. ZigBee Alliance Document. ZigBee Alliance;
2012 .

[15] Kainda R , Flechais I , Roscoe AW . Usability and security of out-of-band channels

in secure device pairing protocols. In: Proceedings of the 5th symposium on
usable privacy and security. New York, NY, USA: ACM; 2009. 11:1–11:12 .

[16] Saxena N , Ekberg J-E , Kostiainen K , Asokan N . Secure device pairing based on
a visual channel. In: Proceedings of the symposium on security and privacy.

IEEE; 2006 .
[17] Gajbhiye S , Sharma M , Karmkar S , Sharma S . Design, implementation and se-

curity analysis of Bluetooth pairing protocol in NS2. In: Proceedings of the in-

ternational conference on advances in computing, communications and infor-
matics (ICACCI). IEEE; 2016. p. 1711–17 .

[18] Hassan SS , Bibon SD , Hossain MS , Atiquzzaman M . Security threats in blue-
tooth technology. Comput Secur 2018;74:308–22 .

[19] Haataja K , Toivanen P . Two practical man-in-the-middle attacks on blue-

https://doi.org/10.1145/3321705.3329813
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0002
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0002
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0003
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0003
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0003
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0004
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0004
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0004
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0005
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0005
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0005
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0006
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0006
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0007
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0007
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0007
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0007
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0008
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0008
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0009
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0009
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0009
http://tools.ietf.org/rfc/rfc7296.txt
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0010
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0010
https://www.bluetooth.com/specifications/bluetooth-core-specification
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0012
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0012
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0013
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0013
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0014
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0014
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0014
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0014
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0015
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0015
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0015
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0015
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0015
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0016
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0016
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0016
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0016
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0016
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0017
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0017
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0017
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0017
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0017
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0018
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0018
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0018

A. Peltonen, M. Sethi and T. Aura / Journal of Information Security and Applications 51 (2020) 102461 17

tooth secure simple pairing and countermeasures. Trans Wirel Commun
2010;9(1):384–92 .

[20] Levi A , Çetinta ̧s E , Aydos M , Koç ÇK , Ça ̆glayan MU . Relay attacks on Blue-
tooth authentication and solutions. In: International symposium on computer

and information sciences. Berlin, Heidelberg: Springer Berlin Heidelberg; 2004.
p. 278–88 .

[21] Suomalainen J , Valkonen J , Asokan N . Security associations in personal net-
works: acomparative analysis. In: Proceedings of the European workshop on

security in Ad-hoc and sensor networks. Berlin, Heidelberg: Springer Berlin

Heidelberg; 2007. p. 43–57 .
[22] Chang R , Shmatikov V . Formal analysis of authentication in Bluetooth device

pairing. In: Proceedings of the joint workshop on foundations of computer se-
curity and automated reasoning for security protocol analysis; 2007 .

[23] Naveed M , Zhou X , Demetriou S , Wang X , Gunter CA . Inside job: Under-
standing and mitigating the threat of external device mis-binding on Android.

In: Proceedings of the network and distributed system security symposium

(NDSS); 2014 .
[24] Ellison CM . Ceremony design and analysis. IACR Cryptology ePrint Archive

2007 .
[25] Carlos MC , Martina JE , Price G , Custódio RF . An updated threat model for se-

curity ceremonies. In: Proceedings of the 28th annual ACM symposium on ap-
plied computing. New York, NY, USA: ACM; 2013. p. 1836–43 .

[26] 11889-1:2015 I . Information technology – trusted platform module library –

part 1: Architecture. Standard. International Organization for Standardization;
2015 .

[27] Goldman K , Perez R , Sailer R . Linking remote attestation to secure tunnel end-
points. In: Proceedings of the first workshop on scalable trusted computing.

New York, NY, USA: ACM; 2006. p. 21–4 .
[28] Parno B , McCune JM , Perrig A . Bootstrapping trust in modern computers.

Springer Science & Business Media; 2011 .

[29] Fink RA , Sherman AT , Mitchell AO , Challener DC . Catching the cuckoo: verify-
ing tpm proximity using a quote timing side-channel. In: Proceedings of the

international conference on trust and trustworthy computing. Berlin, Heidel-
berg: Springer-Verlag; 2011. p. 294–301 .

[30] Zhang Z , Ding X , Tsudik G , Cui J , Li Z . Presence attestation: the missing link
in dynamic trust bootstrapping. In: Proceedings of the ACM SIGSAC conference

on computer and communications security. New York, NY, USA: ACM; 2017.

p. 89–102 .
[31] Ding X , Tsudik G . Initializing trust in smart devices via presence attestation.

Comput Commun 2018;131:35–8 .
[32] Blanchet B . An efficient cryptographic protocol verifier based on Prolog rules.

In: Proceedings of the 14th computer security foundations workshop. IEEE;
2001. p. 82–96 .

[33] Armando A , Basin D , Boichut Y , Chevalier Y , Compagna L , Cuéllar J , et al. The

AVISPA tool for the automated validation of internet security protocols and ap-
plications. In: Proceedings of the international conference on computer aided

verification. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005. p. 281–5 .

[34] Dill DL . The Murphi verification system. In: Proceedings of the international
conference on computer aided verification. London, UK, UK: Springer-Verlag;

1996. p. 390–3 .
[35] Jia D., Hsu R.. Formal modeling and analysis of Bluetooth 4.0 pairing protocol.

2013.
[36] Aboba B., Blunk L.J., Vollbrecht J.R., Carlson J., Levkowetz H.. Extensible authen-

tication protocol (EAP). http://tools.ietf.org/rfc/rfc3748.txt RFC 3748; 2004.
[37] Aura T , Sethi M . Nimble out-of-band authentication for EAP (EAP-NOOB). In-

ternet-Draft. Internet Engineering Task Force; 2019 .

[38] Alliance W-F . Device provisioning protocol specification version 1.0. Tech. Rep..
Wi-Fi Alliance; 2018 .

[39] Blanchet B., Smyth B., Cheval V., Sylvestre M.. ProVerif 2.00: automatic crypto-
graphic protocol verifier, user manual and tutorial. INRIA; 2018.

[40] Alliance W-F . Wi-Fi peer-to-peer (P2P) technical specification, v. 1.7. Tech. Rep..
Wi-Fi Alliance; 2016 .

[41] Carlos MC . Towards a multidisciplinary framework for the design and analysis

of security ceremonies. Royal Holloway, University of London; 2014 .
[42] Hancke GP , Kuhn MG . An RFID distance bounding protocol. In: Security and

privacy for emerging areas in communications networks, 2005. SecureComm

2005. First international conference on. Washington, DC, USA: IEEE Computer

Society; 2005. p. 67–73 .
[43] Rasmussen KB , Capkun S . Realization of RF distance bounding. In: Proceedings

of the USENIX security symposium. Berkeley, CA, USA: USENIX Association;

2010. p. 389–402 .
[44] Kuo C , Luk M , Negi R , Perrig A . Message-in-a-bottle: user-friendly and secure

key deployment for sensor nodes. In: Proceedings of the 5th international con-
ference on Embedded networked sensor systems. New York, NY, USA: ACM;

2007. p. 233–46 .
[45] IEEE. IEEE standard for local and metropolitan area networks - secure device

identity. Tech. Rep.. IEEE; 2009. doi: 10.1109/IEEESTD.2009.5367679 .

[46] DigiCert. Device certificates. https://www.digicert.com/device-certificates/ Ac-
cessed: 11.5.2019; 2019.

[47] Aiello W , Bellovin SM , Blaze M , Canetti R , Ioannidis J , Keromytis AD , et al. Just
fast keying: key agreement in a hostile internet. Trans Inf Syst Secur 2004;7(2) .

[48] Wu DJ , Taly A , Shankar A , Boneh D . Privacy, discovery, and authentication for
the internet of things. Lect Notes Comput Sci 2016:301–19 .

[49] Nuss M , Puchta A , Kunz M . Towards blockchain-based identity and access

management for Internet of Things in enterprises. In: Proceedings of the in-
ternational conference on trust and privacy in digital business. Cham: Springer

International Publishing; 2018. p. 167–81 .
[50] Kravitz DW , Cooper J . Securing user identity and transactions symbiotically:

IoT meets blockchain. In: Proceedings of the global internet of things summit
(GIoTS). IEEE; 2017. p. 1–6 .

http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0018
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0019
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0019
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0019
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0019
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0019
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0019
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0020
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0020
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0020
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0020
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0021
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0021
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0021
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0022
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0022
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0022
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0022
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0022
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0022
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0023
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0023
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0024
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0024
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0024
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0024
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0024
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0025
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0025
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0026
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0026
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0026
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0026
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0027
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0027
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0027
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0027
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0028
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0028
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0028
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0028
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0028
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0029
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0029
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0029
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0029
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0029
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0029
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0030
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0030
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0030
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0031
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0031
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0032
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0032
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0032
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0032
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0032
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0032
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0032
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0032
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0033
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0033
http://tools.ietf.org/rfc/rfc3748.txt
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0034
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0034
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0034
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0035
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0035
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0036
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0036
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0037
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0037
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0038
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0038
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0038
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0039
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0039
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0039
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0040
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0040
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0040
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0040
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0040
https://doi.org/10.1109/IEEESTD.2009.5367679
https://www.digicert.com/device-certificates/
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0042
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0042
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0042
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0042
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0042
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0042
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0042
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0042
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0043
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0043
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0043
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0043
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0043
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0044
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0044
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0044
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0044
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0045
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0045
http://refhub.elsevier.com/S2214-2126(19)30721-5/sbref0045

