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Abstract— Recently, the integration of inverter-based wind 

turbine generation systems (WTGS) and plug-in electric vehicles 
(PEV) has remarkably been expanded into distribution systems 
throughout the world. These distributed resources could have 
various technical benefits to the grid. However, they are also 
associated with potential operation problems due to their 
stochastic nature, such as high power losses and voltage 
deviations. An optimization-based approach is introduced in this 
paper to properly allocate multiple WTGS in distribution 
systems in the presence of PEVs. The proposed approach 
considers 1) uncertainty models of WTGS, PEV, and loads, 2) 
DSTATCOM functionality of WTGS, and 3) various system 
constraints. Besides, the realistic operational requirements of 
PEVs are addressed, including initial and preset conditions of 
their state of charge (SOC), arriving and departing times, and 
various controlled/uncontrolled charging schemes. The WTGS 
planning paradigm is established as a bi-level optimization 
problem which guarantees the optimal integration of multiple 
WTGS, besides optimized PEV charging in a simultaneous 
manner. For this purpose, a bi-level metaheuristic algorithm is 
developed for solving the planning model. Intensive simulations 
and comparisons with various approaches on the 69-bus 
distribution system interconnected with four PEV charging 
stations are deeply presented considering annual datasets. The 
results reveal the effectiveness of the proposed approach. 

Index Terms—Distribution systems, PEV charging; energy 
losses; system constraints; WTGS allocation. 

I. INTRODUCTION 
 ENEWABLE energy sources (RESs) are growing year by  
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year throughout the world. Since greenhouse-gas emissions 
are highly problematic, breakthroughs are required for the 
future forms of electrical energy productions. Indeed, inverter-
based wind turbine generation systems (WTGS) can be 
considered one of the most promising categories of RESs. 
Such distributed units along the feeders of medium voltage 
(MV) distribution systems could have pronounced positive 
impacts on the consumers, and especially utilities. 
Specifically, WTGS with their DSTATCOM control 
functionalities could increase the supply reliability rate, 
regulate voltage, mitigate power quality issues, reduce the 
stress over the traditional voltage control devices, and reduce 
power losses [1]–[3]. However, the uncertainty feature of 
WTGS profiles could cause considerable technical and 
operational consequences, thereby limiting their maximum 
allowed hosting capacities. 

In conjunction with the great interest in WTGS, the 
penetration of plug-in electric vehicles (PEVs) has widely 
been growing throughout the world [4]–[6]. A multi-
government policy forum labeled 'Electric Vehicle Initiative' 
was dedicated to accelerating the introduction of electric 
vehicles where their number is aimed to be raised to 20 
million within 2020 [7]. From the perspective of utility, PEVs 
are considered electric-based units involving storage 
capability to be employed during the parking time while 
fulfilling their charging target [8]–[10]. It is a statistical fact 
that the typical parking period of PEVs is higher than ninety 
percent of the day [11], and so their energy storage capability 
can be managed by the aggregators [12]. Nevertheless, they 
could cause line congestions and voltage violations in 
distribution systems if uncontrolled schemes are utilized [13].  

Several methods and studies have been performed on the 
optimal allocation of WTGS while highlighting their positive 
impacts on MV distribution systems. In [14], a probabilistic 
planning model of RESs including WTGS with unity power 
factors is presented to minimize energy losses and fulfill 
operational constraints. Analytic methods have been 
introduced in [15]–[17] for the optimal sizing and placement 
of WTGS with considering the rated condition of the 
distribution system, i.e. ignoring their intermittent nature. A 
multi-objective probabilistic framework for planning WTGS 
and other RES types has been proposed in [18] for reducing 
costs and emissions whereas an augmented ɛ-constraint 
equipped with fuzzy roles have been utilized. In [19]–[21], a 
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hydro-turbine governing system with actuator failures and 
disturbance have been investigated. Driven by the recent 
innovations in metaheuristic based optimizers, several variants 
are applied to solve the RES planning problem, such as ant 
colony optimizer [22], genetic-based methods [23], simulated 
annealing [24], and tabu search algorithm [25]. Authors of 
[12] have emphasized the essential role of flexible energy 
storage systems, especially PEVs, to expand the penetration of 
various RESs in the distribution system. In [26], various fleets 
of PEV have been controlled by smart strategies to investigate 
their contribution to increasing RES penetration.  

As illustrated above, considerable methods and studies have 
focused on the optimal WTGS allocation in power distribution 
systems. Nevertheless, to reduce the computational 
complexity of the WTGS planning model, various existing 
approaches assume a single allocation of WTGS without 
considering their DSTATCOM functionalities while utilizing 
deterministic models instead of the probabilistic ones. Most 
importantly, many of these approaches ignore the intermittent 
and uncertain nature of PEVs or even ignore their presence. 
Indeed, these fast-growing mobile energy storage devices play 
a vital role in current/future distribution systems, and so their 
impact on WTGS planning is significant. For this purpose, 
detailed PEVs modeling complying with their charging 
requirement is necessary, including the control schemes of 
PEVs and their various stochastic variables. To fill the gap in 
the literature, this work has been directed to this vital recent 
research topic, where further investigations and developments 
are required in distribution systems with PEVs and WTGS.  

An optimization-based approach is proposed in this work to 
accurately allocate multiple WTGS for maximizing annual 
energy loss reductions. It is worth mentioning that the location 
of WTGS is determined by windy locations, rather than the 
requirements of the power system. However, in the 
distribution systems, the wind speeds at all locations are 
almost the same. Therefore, determining the optimal locations 
of WTGS is considered in this work. The proposed approach 
considers DSTATCOM functionalities of the interfacing 
inverter of WTGS and complying with existing PEV 
infrastructures. The comprehensive planning model 
incorporates the uncertainty of WTGS generation and load 
demand, and the various operational limits of the distribution 
system, the allocated WTGS units, and PEVs. To accurately 
solve the comprehensive optimization model, a bi-level gray 
wolf optimization (GWO) algorithm is introduced in which 
the upper level guarantees an optimal allocation of multiple 
WTGS while the lower level optimizes PEV charging in a 
simultaneous manner. The effect of the PEV charging scheme 
on the optimal calculated results of WTGS (in terms of 
locations and capacities) are investigated and verified. 
Furthermore, various comparisons with existing approaches 
are introduced, and the effect of the inverter oversizing in 
WTGS is studied.  

II. FORMULATION OF THE ALLOCATION PROBLEM 

A. Objective function 
In this work, the optimal allocation of inverter-based WTGS 

is aimed to be computed in the presence of PEVs. Two 
uncertain parameters are considered in the optimization 

problem which are load demand and power generation by 
WTGS. The annual energy losses in the distribution system 
for all possible combination of the uncertain parameters in the 
presence of PEVs is utilized as an objective function to be 
minimized. At each time segment, which denotes Δ𝜏 hours, 
the probability distribution function (pdf) of the uncertain 
parameters are divided into numerous states. The energy 
losses must be computed and then weighted based on the 
occurrence probability of each individual state in the whole 
planning period. The mathematical formulation of the 
objective function is written as follows: 

,
1 1
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t t
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= =
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com sP  are the total energy losses and the 
combined probability set of wind speed and load demand, 
respectively; λs is a two columns matrix which includes all 
possible combinations of the states of power generation by 
WTGS and the load states; nt and ns denotes, the numbers of 
time segments and states, respectively. 

The next constraints are considered in the optimization 
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where Bij and Gij, are the susceptance and conductance of line ij, 
respectively; ,

t
i sV , and ,

t
ij s are the magnitude of voltage at node 

i, and the variance of the voltage angles at nodes i and j, 
respectively; ,1, , , ,, ,t t t

G s WTGS i s d sP P P , and , ,
t

CS j sP are the grid active 
power, WTGS power generation, load demand and power of 
the charging station, respectively; nb, nWTGS, and nl represent, 
respectively, the number of nodes, WTGS number, and 
number of loads,; ,1,

t
G sQ and ,

t
d iQ are the reactive power of the 

main distribution substation and reactive power demand, 
respectively. ,

, ,
min t

cs i sP and , ,
max,t

cs i sP  represent, respectively, the lowest 
and highest allowed active power of the charging station at 
bus i; ,

min
WTGS iP and ,

max
WTGS iP  represent, respectively, the lowest and 

highest allowed power of WTGS at bus i, respectively; 
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, ,
t
inv i sQ is the inverter reactive power at i; , , , ,andmax min

inv i s inv i sQ Q are the 
maximum and minimum reactive power of the inverter at bus 
i, respectively; Vmin and Vmax represent the upper and lower 
voltage boundaries, respectively. 1,

t
sV and 1,

t
s  represent, 

respectively, the voltage magnitude and the corresponding 
angle at the slack bus (bus 1). b  denotes a set of the system 
nodes. SOCn,d,g represents the value of the state of charge 
(SOC) for nth battery at parting instant, and SOCn,min,g is the 
lowest SOC selected by the corresponding vehicle owner, 
respectively. In this work, WTGS is defined as a wind farm, 
which contains multiple wind turbine (WT) units at a certain 
bus. 

B. PEV battery Model 
The main characteristic of the battery of PEV is its SOC. 

SOC is defined as the percentage of remained energy in a 
battery with respect to its total capacity. Based on the 
charging/discharging status of every PEV battery, its SOC at 
each time instant t is updated according to the following: 

, , , , , , , ,-t t -1 t t
n s n s ch n ch n s dc n s dc nSOC SOC P t t P   = +                (12) 

where , ,
t

ch n sP and , ,
t

dc n sP represent, respectively, the charging and 
discharging powers of nth PEV battery; δ and γ ∈ {0,1}, in 
which δ. γ = 0 because the PEV battery cannot charge and 
discharge simultaneously. ηch,n, and ηdc,n are the charging and 
discharging efficiencies of nth PEV, respectively. 

The charging/discharging power of each PEV represents a 
part of the total charging or discharging power of the PEV 
station. This part of the power affected by the capacity of the 
PEV battery (Cbatt,n), its SOC ( ,

t
n sSOC ), its arrival time (Tarr), 

and its departure times (Td,n). The charging/discharging power 
of nth PEV is formulated as follows:  
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in which 
, , ,rem n d n arr nT T T= −                                                            (15) 

The aggregator of PEVs divides the charging station active 
power which is computed via the optimization algorithm 
among the PEVs using (13)-(15) according to their present 
SOC and their departure time. Note that some PEVs have 
DSTATCOM functionality. However, the utilized PEV 
charger is considered to work at a unity power factor, and so 
this functionality is not enabled in this work. 

C. Stochastic Behavior of PEV 

The profile of PEVs contains many stochastic variables. 
These stochastic variables include the arrival time to the home 
from the last trip, daily milage, departure time, and driving 
habits. Furthermore, the total capacity and efficiency of the 
PEV batteries. Because of the stochastic nature of PEVs 

usage, they do not connect to the grid at the same time. Hence, 
all these stochastic variables should be taken into account 
since they are key characteristics that can define PEV owners’ 
behavior and preferences. 

In this work, we assume that each PEV is charged/ 
discharged only at the charging station. The arrival time of 
each PEV is a random variable with a normal probability 
density function (pdf) [27]. The daily arrival time pdf of PEV 
battery can be computed as follows: 

2 2( ) exp ( ) 2( ) ( 2 )
arr arr arr

t t t t
n arr arr T T Tf T T     = − −     (16) 

where 
arr

t
T and 

arr

t
T  are the mean and standard deviation of 

daily arrival time and they are 18 and 5 hours, respectively.  
The initial SOC of a PEV battery depends on daily mileage 

(dmn), all-electric range (AERn), and SOC of the battery at the 
preceding parting time (it is assumed to be 100%). To protect 
the PEV batteries against degradation, the depth of discharge 
(DOD) should not be more than 80% (i.e. the SOC should not 
be less than 20%). Hence, the initial value of SOC for a PEV 
battery can be calculated by: 

,
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(%)
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n n n n
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n n
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= 
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(17) 

, / ,batt n cons mile nAER C E=                                                      (18) 
where Cbatt,n, and Econs/mile,n are the capacity of the nth PEV 
battery and energy consumption per mile, respectively. The 
randomness of the PEV daily mileage can be represented 
using a lognormal pdf, considering the probability occurrence 
of negative distances is zero, and a tail extending to infinity 
for positive distance [27]. The pdf of PEV daily mileage can 
be expressed as follow: 

2
,

22
,,

(ln )1( ) exp , 0
2( )2 ( )

t
n dm nt

n ntt
dm nn dm n
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dm


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 − −
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  
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where t
dm and t

dm  are the mean and standard deviation of 
daily mileage and they are 22.3 and 12.3 miles, respectively.  

It is a fact that the historical/expected conditions that are 
considered in the planning phase can be not totally matched 
with the actual future situations, but this is a general trend in 
planning science. To deal with this issue in this paper, it is 
important to mention that the utilization of the probability 
model of PEVs (not a deterministic model) can represent their 
stochastic nature. Therefore, for any distribution system, it is 
required to gather full data of PEVs (i.e. including initial and 
preset conditions of their SOC, arriving and departing times, 
and various controlled/uncontrolled charging schemes) to 
construct the probabilistic model to be used in the planning 
phase. 

III. MODELING WIND SPEED AND LOAD 
Here, the stochastic behaviors of the output power by wind 
turbine and load demand are described. Weibull pdf and 
normal pdf are utilized to model hourly wind speed and hourly 
load demand, respectively [28]–[30].  

A. Hourly Wind Speed Modeling 
To model the hourly stochastic nature of wind speed and 

output power by WTGS, Weibull pdf is commonly used for 
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this purpose. The Weibull pdf (fW) at time segment t of the 
wind speed v can be determined as follows: 

( ) ( )
1( ) expk kt

Wf v k c v c v c−  = −
 

                                        (20) 

where c and k are the scale parameter and shape parameter, 
respectively. There are different methods that can be used to 
determine these parameters (c and k) [31], [32]. In this work, 
the Weibull parameters are calculated using the mean (µv) and 
the standard deviation (σv) of the wind speed as follows: 

( )
1.086

v vk  
−

=                                                                 (21) 
(1 (1/ ))vc k=  +                                                            (22) 

The probability of wind speed for each state can be 
computed as follows: 
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where ( )t
v wP G  is the wind speed probability in state w; 

vS1 and vS2 are the wind speed limits of state s 
The power generated by each WT of the WTGS for each 

state can be determined by using the characteristics of WT and 
the average value of the wind speed at this state as follows: 

0, 0
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,
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
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where vci, vco, and vr are cut-in speed, cut-off speed and rated 
speed of the WT, respectively; vavw and Prated are the average 
wind speed at state w and rated power of the WT, respectively; 

w

t
WTP is the output power of WT during state w of time segment 

t. It worth mentioning that we have used the linear not the 
cubic relation since it is widely used for planning purposes 
[14], [29], [33]. In this work, WT with a rated power of 200 
kW, cut-in speed of 2.5 m/s, rated speed of 11.5 m/s, and cut-
off speed of 20 m/s is used [34].  

B. Hourly Load Demand Modeling   
Because of the stochastic behavior of consumers, the load 

demand in the distribution system will be uncertain. To model 
this uncertainty of load demand, a normal pdf is used for this 
purpose. The pdf of the load demand can be defined by a mean 
(μl) and standard deviation (σl at time segment t as follows: 

2 2( ) exp ( ) 2( ) ( 2 )t t t t
l l l lf l l     = − −                        (25) 
The probability of the load demand for state u of time 

segment t is calculated by: 
2

1

( ) ( ).
u

u

l
t t

l u l
l

P G f v dv=                                                         (26) 

where ( )t
l sP G  is the load demand probability in state u; 

lu1 and lu2 represent the load limits of state u. 

C. Combined Wind-load pdf Model 
The probability models of wind speed and load demand are 

used for generating a combined wind-load model. The 
combined probability can be computed by convolving the 
wind speed and load probabilities, as follows: 

( ) ( ) ( )t t t
com s v w l uP P G P G =                                               (27) 

The complete wind–load model is calculated by 
listing the possible combinations of wind power and the load. 
Hence, the Wind–load model is calculated by using the 
flowing formula: 

 , ( ) : 1:s com s sP s n   = =                                            (28) 
where ϕ is the complete Wind-load model; Pcom(λs) includes 
the combined probability with respect to the matrix λ. It is 
important to note that the proposed model can consider other 
factors, such as solar PV generations and battery energy 
storage systems in distribution systems. To do so, these units 
will be treated as negative loads, and so the probabilistic 
model of the net loading in the distribution system will be 
built. However, we have not dealt with these factors in this 
work. 

IV. GRAY WOLF OPTIMIZATION (GWO) 
GWO is a population-based metaheuristic method that has 

been proposed in [35] by Mirjalili et al. The GWO method 
simulates the leadership hierarchy and hunting mechanism of 
grey wolves in nature. The leadership hierarchy is defined as 
alpha (α) for the best wolf, beta (β) for the second-best one, 
delta (δ) for the third-best one, and omega (ω) for all other 
individuals.  

During the hunting process, gray wolves encircle the 
prey at first. Encircling behavior is mathematically formulated 
by: 

| . ( ) ( ) |pD C X iter X iter
→ → → →

= −                                                 (29) 

( 1) ( ) .pX iter X iter A D
→ → → →

+ = −                                               (30) 
where iter is the present iteration; A and C represent coefficient 
vectors; Xp, X, and D are the position vector of the prey, position 
vector of the grey wolf, and distance from prey location, 
respectively. 

The coefficient vectors (A and C) can be computed by: 

12 .A a r a
→ → → →

= −                                                                        (31) 

22.C r
→ →

=                                                                               (32) 
where the components of a decreased linearly from two to zero 
over the iterations, and they are used to coordinate the 
exploration and exploitation ability; r1 and r2 represent random 
vectors.  

The hunting process is usually guided by α and called 
leaders followed by β and δ. Nevertheless, the location of the 
prey is unidentified in the abstract search space. To imitate the 
hunting behavior, α (best solution), β and δ are assumed to 
have better knowledge about the location of prey. Hence, the 
three best solutions on the decision level are saved and guide 
the other search agents to update their positions every 
iteration. The following formulas can be used in this regard: 

1 2 3| . |, | . |, | . |D C X X D C X X D C X X    

→ → → → → → → → → → → →

= − = − = − (33) 

1 1 2 2 3 3. , . , .X X A D X X A D X X A D     

→ → → → → → → → → → → →

= − = − = −       (34) 

1 2 3( 1) ( ) 3X iter X X X
→ → → →

+ = + +                                             (35) 
The GWO algorithm has merit in terms of the exploration 

phase, and so it provides very competitive results compared 
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with well-known meta-heuristic algorithms. Also, it was 
shown up to be a reliable and robust optimization algorithm 
that can be applied to the allocation problems of RES [36]. 
Therefore, it is used in this paper for solving the optimization 
model. 

V. SOLUTION PROCESS 
The solution process of the presented approach for deciding 

the proper capacities and locations of WTGS considering 
PEVs and DSTATCOM functionality of the interfacing 
inverters is explained in Fig. 1. As displayed in the figure, the 
historical/long-term forecast data of WTGS and load are read, 
and the corresponding probabilities are generated. 
Furthermore, all constraints of the distribution system are 
defined. Then, the optimal planning of the WTGS considering 
PEVs and DSTATCOM functionality of the inverter is 
deemed as a bi-level optimization problem and is solved by 
utilizing GWO. The main problem and sub-problem are solved 
at the upper level and lower level, respectively. 

The optimal capacities and locations of WTGS for the 
planning period should be determined in the upper level. For 
this purpose, the optimal charging/discharging power of the 
charging stations and the optimal injecting/absorbing reactive 
power of the interfacing inverter should be considered. The 
optimal scheduling of PEVs and the optimal reactive power of 
the interfacing inverters can be solved in the lower level as a 
sub-routine of the planning model. Therefore, the outputs of 
the lower level are the probabilistic optimal profiles of the 
charging/discharging power of PEVs and injecting/absorbing 
reactive power of the inverters. A load flow is used to 
determine the objective function during each state. In the next 
paragraph, the solution process to this combinatorial 
optimization model is explained.  

The upper level suggests the optimal capacities and 
locations of the WTGS. The lower level utilizes these 
capacities and locations and calculates the energy losses, 
optimal PEV charging/discharging power, and optimal 
injecting/absorbing reactive power of the inverters during the 
day. It is worth mentioning that the WTGS locations and 
capacities are kept the same during the performing of the 
lower level. The searching for optimal capacities and locations 
of the WTGS will not be affected, because the probability of 
the PEVs is used with each candidate capacity and location. 
With respect to Fig. 1, the problem is a bi-level optimization 
problem in which the upper level includes an inner 
optimization problem as a sub-problem (lower level). 
Therefore, for each iteration of the upper-level, the lower-level 
should be entirely executed many times for the corresponding 
capacities and locations of WTGS. On the other hand, for each 
iteration of the lower level, the power flow must be executed 
many times to calculate the optimal PEV power and 
injecting/absorbing reactive power of the interfacing inverters 
for every state of time segment t. Also, it calculates the value 
of the respective objective function. The individual objective 
functions for all time segments and states are collected and 
utilized as an objective function of the upper level. This 
process is repeated until the convergence of the upper level.  

VI. RESULTS AND DISCUSSION     
To demonstrate the effectiveness of the proposed approach, 

the IEEE 69-bus test distribution system is used as a case 
study as shown in Fig. 2. The complete details of this system 
can be found in [37]. The base active power, reactive power, 
and voltage of that system are 3.802 MW, 2.695 Mvar, and 
12.66 kV, respectively. A charging station is supposed to be 
connected at nodes 33, 36, 52, and 65 as illustrated in Fig. 2. 
Every PEV station is able to accommodate sixty PEVs. The 
PEV number that is connected to the charging station each 
hour follows the distribution given in Fig. 3 which was 

 

Read the  historical/long-term forecast data of WTGS and load

Input Data

Estimate the probabilities of WTGS power and  load  during the planning period

Upper Level

Lower L evel

Probabilis tic values 
are specified

Suggested  locations 
and capacities  are 

determined

M ain problem
Contro l variables are the locations and capacities o f WTGS

The annual energy 
losses is calculated
(objective function)

Sub-problem : 24-hour analysis considering PEVs and DSTATCOM  
functionality

Contro l variables are the charging /discharging powers of charging stations and reactive 
powers of the interfacing inverters

M inimum energy 
losses of all states are 

determined 

Define the  constraints of the distribution system

Load flow
Time step is 1  hour

Until upper level 
converges

Until low er level 
converges

 

Fig. 1.  Solution process for determining the optimal capacities and 
locations of WTGS. 
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Fig. 2.  Single line diagram of the 69-bus radial distribution system. 
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determined based on (16). The initial SOC of every PEV can 
be calculated using (17)-(19). 

Tesla Model S batteries with 85 kWh capacity are 
considered for PEVs in this work [38]. Most of PEVs 
normally back home after the working hours (around 18:00), 
and they leave in the morning (around 7:00). Therefore, every 
PEV is supposed to be connected to the distribution system for 
12 hours. To guarantee enough SOC of each PEV at its parting 
time for daily mileages, the vehicle-to-grid technology should 
consider the constraint provided in (11). The maximum 
charging/discharging rate of each PEV is 0.2Cbatt,n (Cbatt,n=85 
kWh) [39]. On the other hand, the pdf of the load demands 
each time segment for the whole day is shown in Fig. 4. The 
proposed approach is performed without and with considering 
the DSTATCOM functionality of the interfacing inverter of 
the WTGS. To establish the efficiency of the presented 
approach, it is assessed for single and multiple locations of 
WTGS. Three years of historical data for wind speed and load 
are used to generate their probability. These data are collected 
from [40] and [41], respectively. The three years are 
represented by a day throughout these years. The simulations 
are conducted on MATLAB. 

A. WTGS Allocation without DSTATCOM functionality  
Here, the proposed approach is tested and compared to the 

Base case and two different approaches without taking into 
account the DSTATCOM functionality of the interfacing 
inverters (i.e. unity power factor of the interfacing inverters). 
These different approaches are as follows:  
Base case: in this case, PEVs start to uncontrollably charge 
once they are connected to charging stations without WTGS. 
Approach 1: the optimal allocation of the WTGS is 
determined while the uncontrolled charging effect of PEVs is 
not considered.  
Approach 2: the optimal WTGS allocation is computed with 
considering uncontrolled PEV charging. 
 Approach 3: the optimal WTGS allocation is computed by 
considering optimal PEV charging/discharging (full proposed 

approach). 
The results of the base case and the three approaches are 

given in Figs. 5-8 and Table I in which the lines represent the 
power losses (Ploss) while the bars represent the percentage of 
loss reduction for different approaches. Specifically, Figs. 5, 6, 
and 7 compare power losses and power loss reduction by the 
three approaches with 1, 2, and 3 WTGS, respectively. It can 
be seen from Figs. 5-6 that by applying the different three 
approaches, the hourly energy losses are significantly reduced 
compared with the base case. However, considering the PEVs 
in the planning problems (Approach 2 and Approach 3) leads 
to a higher reduction in the energy losses compared to 
Approach 1 in which it does not consider the effect of PEVs. 
Furthermore, Approach 3 gives the highest reduction in the 
energy losses compared to other approaches where it considers 
the effect of PEVs in the planning problem with optimal 
charging/discharging technique. For instance, as given in 
Table I, the annual energy losses for Approach 3 are 696 
MWh, 635 MWh, and 610 MWh for 1 WTGS, 2 WTGS, and 
3 WTGS, respectively, compared to 1740 MWh for the base 
case. While they are 744 MWh, 672 MWh, and 654 MWh for 
Approach 2 and 822 MWh, 741 MWh, and 715 MWh for 
Approach 1 for 1 WTGS, 2 WTGS, and 3 WTGS, 
respectively. The locations and capacities (number of WT 
units) of WTGS differ based on the applied approach. Annual 
energy reduction of different approaches with respect to the 
base case is shown in Fig. 8. It can be noted from this figure 
that, for all approaches, with increasing the allocated WTGS 
number, the annual energy loss reduction is increased. This 

 
Fig. 5.  Hourly active power losses and loss 
reduction in the distribution system (1 WTGS). 

 
Fig. 6.  Hourly active power losses and loss 
reduction in the distribution system (2 WTGS). 

 
Fig. 7.  Hourly active power losses and loss 
reduction in the distribution system (3 WTGS). 

 

 
Fig. 4. The pdf of load demand for different time segments. 

 
 

TABLE I 
RESULTS OF THE APPROACHES WITH 1, 2, AND 3 WTGS  

Number of 
WTGS 

Utilized 
approach 

Optimal 
bus 

Number of WT 
units 

Energy losses 
(MWh) 

No WTGS Base case - - 1740 

1 WTGS 
Approach 1 64 12 822 
Approach 2 62 14 744 
Approach 3 61 14 696 

2 WTGS 

Approach 1 11 7 741 64 11 

Approach 2 12 6 672 62 13 

Approach 3 11 7 635 
61 13 

3 WTGS 

Approach 1 
11 5 

715 17 3 
64 11 

Approach 2 
12 3 

654 18 3 
62 13 

Approach 3 
11 4 

610 18 3 
61 13 
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implies that the benefits of these renewable units in terms of 
loss reduction can be increased by distributing such resources 
to multiple buses instead of a single bus. Further, the annual 
energy losses are significantly reduced by Approach 3 
compared with Approaches 1 and 2 for different WTGS 
numbers. 

The SOC of PEVs with uncontrolled charging (Base case, 
Approach 1, and Approach 2) are shown in Fig. 9. All 
charging stations have the same trend regardless of the number 
of WTGS that connected to the distribution system. With 
respect to this figure, the PEV batteries are fast filled, 
nevertheless, they still in the station for twelve hours.  

Fig. 10 illustrates the SOC of PEVs of the charging station 
connected to bus 33 with optimal charging/discharging 
technique for 1 WTGS, 2 WTGS, and 3 WTGS. It can be 
noted that each PEV can charge/discharge based on its SOC 
and departure time to minimize the energy losses. Moreover, 
at the departure time, the SOC of the PEV is sufficient for 
driving (more than 65% at the departure time). Also, the 
planning problem has considered the PEVs previous day that 
arrive at the day end since they intend to persist 
charging/discharging at the starting of the studied day. 
Regarding the other charging stations that are connected to 
buses 36, 52, and 65, the SOC of PEVs connected at these 
stations have different trends of SOC than that of the charging 
station at buss 33, but they satisfy the required SOC at the 
departure time. From these results, we can note that 
considering the PEVs with the optimal charging control in the 
planning model for optimal allocation of WTGS can greatly 
reduce the annual energy losses in the distribution system 
while keeping enough SOC for each PEVs at departure time. 

B. WTGS Allocation with enabled DSTATCOM Functionality 
Here, the presented approach (Approach 3) is executed 

considering the DSTATCOM functionality of the interfacing 
inverter for determining the optimal allocation of the WTGS.  

The results of Approach 3 considering the DSTATCOM 
functionality of the interfacing inverters of WTGS are shown 

in Table II. With respect to this table, we can observe that the 
locations of the WTGS are like those in Table I (Approach 3), 
but the capacities of WTGS are little different. Compared to 
the Base case, the energy losses are obviously decreased by 
employing the DSTATCOM functionality of the interfacing 
inverters. The annual energy loss reduction in the case of 1 
WTGS, 2 WTGS, and 3 WTGS are 82%, 87%, and 88% 
respectively. Furthermore, by comparing Approach 3 in Table 
I with Table II, it can be observed that the consideration of 
DSTATCOM feature of the inverters yields a higher energy 
loss reduction. The hourly reactive powers of the interfacing 
inverters and average active power output in the case of 1 
WTGS, 2 WTGS, and 3 WTGS are given in Figs. 11 and 12, 
respectively. It worth mentioning that by allocating 2 WTGS 
and 3 WTGS, there is no big difference in energy loss 
reduction. This means that the increase of WTGS numbers 
more than 3 has no further effect on energy loss reduction. For 

 
Fig. 8.  Annual energy reduction of different approaches compared to the 
base case. 

 
Fig. 9.  SOC of PEV batteries with uncontrolled charging scheme (Base 
case, Approaches 1 and 2). 

 
(a)                                                              

 
(b) 

 
(c) 

Fig. 10.  SOC of PEV batteries with the optimal charging/discharging scheme for Approach 3. a) 1 WTGS, b) 2 WTGS, and c) 3 WTGS. 
 

TABLE II 
RESULTS OF APPROACH 3 CONSIDERING DSTATCOM FUNCTIONALITY 

Number 
of WTGS 

Optimal 
bus 

Number of WT 
units 

Energy losses 
(MWh) 

Energy loss 
reduction (%) 

1 WTGS 61 13 312 82 

2 WTGS 11 6 225 87 61 13 

3 WTGS 
11 4 

203 88 18 3 
61 12 

 

 
Fig. 11.  Reactive power of the interfacing inverters of WTGS.  
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instance, the energy loss reduction value with 2 WTGSs is 87 
% which is almost equal to that with 3 WTGSs (88 %). 

Fig. 13 shows the SOC of the PEVs in the case of allocating 
3 WTGS in the distribution system considering DSTATCOM 
functionality of the interfacing inverters. Compared to Fig. 10 
(c), the SOC values at departure time in Fig. 13 are higher 
than those in Fig. 10 (c). Therefore, the consideration of 
DSTATCOM functionality has positive impacts on the SOC 
of PEVS. 

C.  Impacts of Inverter oversizing on WTGS allocation  
During high power generation from WTGS, the interfacing 

inverter is often fully loaded. To allow further reactive power 
capability, oversizing the interfacing inverters is a solution. 
For example, the IEEE 1547 standard suggests oversizing the 
interfacing inverter with 10% of its rated capacity [42]. By 
oversizing the inverter with 10%, the further reactive power 
capability will be about 46% of its rated capacity. In this 
subsection, we have allocated 3 WTGS by applying the 
proposed approach considering DSTATCOM functionality of 
oversized inverters by 10%. The results of this case are given 
in Table III. We can note that by allowing further reactive 
power capability of the interfacing inverters, the annual energy 
losses are greatly decreased compared to the Base case and 
Approach 3 in Tables I and II.  

D. WTGS Allocation without PEVs and DSTATCOM 
Functionality  

Here, we demonstrate the further benefits that can be 
accomplished by the consideration of PEVs and the 
DSTATCOM functionality of the interfacing inverter in the 
planning problem. To do so,  we show the allocation results 
attained by a conventional approach [14], [43] that allocates 
WTGS  without considering PEVs while the DSTATCOM 
functionality of the interfacing inverter is disabled. The results 
of this conventional approach for allocating 3 WTGS are listed 
in Table IV. By comparison of these results with the results of 
the proposed approach in Tables II and III, the efficiency and 

superiority of the proposed approach over the conventional 
approach in minimizing the annual energy losses can be 
demonstrated. For example, the value of energy loss reduction 
is only 60% for the conventional approach while it has a much 
higher value of 91% by applying the proposed approach. This 
implies that considering the DSTATCOM functionality of the 
interfacing inverter and PEVs in the planning model can 
significantly decrease the annual energy losses.  

VII. CONCLUSIONS 
A bi-level optimization-based approach has been proposed 

in this paper for the optimal allocation of uncertain WTGS in 
the presence of PEVs. The proposed approach minimizes the 
energy losses, considers system constraints while complying 
with DSTATCOM functionalities of WTGS and the 
requirements of existing PEV infrastructures. A bi-level GWO 
algorithm has been proposed to accurately solve the 
comprehensive uncertain planning model. The upper and 
lower levels determine, respectively, the accurate WTGS 
allocation solution and the optimal PEV charging scheme in a 
simultaneous way. In particular, the lower level addresses the 
realistic operational requirement of PEVs, including initial and 
preset conditions of their state of charge, arriving and 
departing times, variously controlled and uncontrolled 
charging schemes. Various simulations on the 69-bus 
distribution system have been presented to demonstrate the 
effectiveness of the proposed approach. The charging scheme 
of PEVs and the inverter size of WTGS have resulted in 
considerable impacts on specifying the optimal capacities and 
locations of WTGS in distribution systems as well as 
minimizing the energy losses. The proposed approach is a 
helpful tool to be used by the system planners of distribution 
utilities for optimizing/quantifying future WTGS integration 
plans in the distribution system with PEVs. 
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