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Abstract
Micro four-point probes (M4PP) provide rapid and automated lithography-free transport
properties of planar surfaces including two-dimensional materials. We perform sheet
conductance wafer maps of graphene directly grown on a 100 mm diameter SiC wafer using a
multiplexed seven-point probe with minor additional measurement time compared to a four-
point probe. Comparing the results of three subprobes we find that compared to a single-probe
result, our measurement yield increases from 72%–84% to 97%. The additional data allows for
correlation analysis between adjacent subprobes, that must measure the same values in case the
sample is uniform on the scale of the electrode pitch. We observe that the relative difference in
measured sheet conductance between two adjacent subprobes increase in the transition between
large and low conductance regions. We mapped sheet conductance of graphene as it changed
over several weeks. Terahertz time-domain spectroscopy conductivity maps both before and
after M4PP mapping showed no significant change due to M4PP measurement, with both
methods showing the same qualitative changes over time.

Supplementary material for this article is available online

Keywords: graphene, SiC, conductance, micro four-point probe, terahertz spectroscopy,
metrology, mapping

(Some figures may appear in colour only in the online journal)

1. Introduction

Graphene is an atomically-thin two-dimensional material [1–3]
which has properties suitable for a large number of practical
technologies from corrosion protection [4–6] to OLEDS [7–9] to
sensors [10–12]. Now that the capability of large-scale growth
[13–15], transfer [16–18], and lithography techniques [19, 20] of
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graphene are well established, methods for assessing the quality
[21, 22] and homogeneity of wafer-scale graphene are required
to mature graphene-based technologies. Despite these advances
in growth and processing, graphene inhomogeneity remains an
issue for large-scale graphene. Areas of bilayer graphene are
very difficult to eliminate and affect device properties [23–25].
In addition, significant variations in sheet conductance and
carrier density are challenging to eliminate on large scale [18,
26–28]. Finding accurate strategies to probe thin-film properties
is important for future research into the optimisation and com-
mercialisation of graphene. Ideally, these methods should not
require any wafer dicing (so the characterized wafer can be
further processed), or contact with liquids or polymers so to not
change the properties of the material [29]. Several techniques
can probe thin-film properties without lithography.

1.1. Micro-Raman spectroscopy

Due to extensive work on the Raman spectral response of
graphite and carbon nanotubes [30] prior to the graphene
research boom, micro-Raman analysis was a tool that fit
easily into the toolbox of the early graphene researcher.
Therefore micro-Raman spectroscopy has become one of the
key technologies used in the characterization of graphene
because it is able to imply many metrics of graphene quality,
including, but not limited to, number of layers [31, 32], defect
density [33, 34], strain [35, 36], and doping [37, 38].

The resolution of micro-Raman depends on the laser
wavelength and objective, full width at half maximum is
typically <1 μm. Although micro-Raman is useful for gra-
phene characterisation the technique cannot obtain direct
measurement of sheet conductance ( )G .S

1.2. Terahertz time-domain spectroscopy

Terahertz time-domain spectroscopy (THz-TDS) is a non-con-
tact method where a THz pulse attenuated by graphene is
translated into GS [39, 40]. Graphene GS measurements can be
performed in either transmission-mode [41] or reflection-mode
[42]. The beam spot diameter of a 1 THz pulse is ≈1 mm,
however, for typical graphene the mean free path for one pulse is
≈10 nm [21]. This results in each THz pixel being the average
of≈10 nm transport properties in an mm-sized area. The probed
area must be several millimetres away from metal contacts/
contamination, as the large number of carriers can significantly
affect the THz signal [43]. THz-TDS can also extract GS for
graphene on polymer [44] and has been used for tracking gra-
phene properties before and after processing [43, 45].

1.3. Micro four-point probes

Micro four-point probes (M4PPs) consist of micron-sized metal-
coated cantilevers that are attached to a silicon carrier [46]. The
electrodes are brought into contact with the sample using a strain
gauge sensor to detect the surface [47]. GS is then measured
using lock-in technique applying dual configuration van der
Pauw type correction [48]. GS measured with M4PPs typically
have errors less than 0.1% [49] even when measuring in con-
fined regions on a scale similar to the probe size [50]. Hall

measurements are also possible [51] as well as determination if
current flows in a 1D or 2D path [28, 52, 53]. The resolution and
probing area of M4PPs is on the order of the probe pitch ≈10
μm. Fully automated M4PP systems are commercially available
and are typically used for GS characterisation of metallic and
semiconductor thin films [54].

1.4. GS mapping of graphene

The discussed methods can all be used to generate high
resolution spatial maps of graphene properties. Micro-Raman
cannot probeG ,S and there are several differences betweenGS

maps obtained via THz-TDS and M4PP. M4PP has higher
spatial resolution (≈10 μm versus ≈mm) whereas THz-TDS
probes on the order of 10 nm versus 10 μm for M4PP. The
differences in mean-free path could lead to different results if
graphene has grain boundaries between 10 nm and 10 μm,
which should be considered when choosing a mapping
method or performing analysis. Transmission-mode THz-
TDS has specific wafer requirements: the substrate should be
flat on both sides and be (near) transparent in the THz range.
Reflection-mode THz-TDS does not require a specialized
THz-transparent wafer, but has a lower tolerance for align-
ment error. M4PP does not have any specific wafer require-
ments other than a substrate that is less conducting than the
thin film to be measured. But M4PP requires probes to be in
direct contact with graphene.

Previously we have analyzed a 100 mm diameter gra-
phene-coated SiC wafer using GS maps obtained via THz-TDS
and a single-probe M4PP [28] in order to examine wafer-scale
variations. During this study a potential weakness of the M4PP
method became apparent, dead pixels could occur because of
failed contact for an individual probe engage (all four electrodes
are required to be in good electrical contact for any measure-
ment to be performed) or due to probe failure typically after few
thousands measurements. In order to make the M4PP technique
more robust we repeated the measurements with an equidistant
seven-point probe, enabling us to significantly increase mea-
surement yield, as well as provide novel homogeneity infor-
mation that can be applied to thin film analysis in general.

2. Methods

Graphene was grown on a four-inch silicon carbide wafer as
described previously [28, 55]. Electrical measurements were
performed with a CAPRES microRSP-A300 using lock-in
technique at 12 Hz, and with a current of 250 μA. In this
work we have used a probe with seven nickel-coated elec-
trodes as shown in figure 1(a), which are based on three-way
flexible electrodes [56, 57] to minimize lateral forces. The
right-hand-side of figure 1(a) shows a strain gauge, which is
used to control the contact force when the probe is engaged
on the surface [47]. A low contact force and three-way flex-
ible electrodes [56, 57] are used to prevent unnecessary
damage to the probe and surface. During a single engage of
the probe to the surface, electrical measurements were per-
formed in A-configuration, and then B-configuration as
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defined in figures 1(b)–(c), respectively. With seven electro-
des available, we can select four electrodes of the seven to
create a subprobe. The three subprobes used in this paper are
shown in figures 1(d)–(f), where subprobes 1 and 2 have 10
μm electrode pitch and subprobe 3 has 20 μm electrode pitch.
Subprobes 1 and 2 were chosen since they are the smallest
possible subprobes with the least overlap. Subprobe 3 is the
largest possible subprobe. Each engage involves movement of
the probe to the new measurement position, surface approach,
and measurement. Based on 24 measurements and 400 μm
pixel-pitch our measurement time per pixel is 7 s.

During each engage a total of 24 resistance measurements
were performed (8 for each subprobe). These multiplexed
measurements enabled a variety of error-checking measures to
increase result accuracy as previously described [58]. Firstly,
because the measurements were performed with lock-in tech-
nique, the phase of each individual measurement was assessed,
and individual resistance measurements rejected if outside a set
tolerance. The sheet resistance (RS) is determined from the
modified van der Pauw equation [48, 50] using resistance values
measured in A configuration (RA) and B configuration (RB)

- =
p p

e e 1.
R
R

R
R

2 2A

s

B

s

All accepted sheet resistance values were then subjected to a
median filter and the mean of the remaining sheet resistance
values á ñRS which pass the filter gave a single sheet conductance

= á ñ-G RS S
1 value for the subprobe. If no á ñRS values pass the

filters with the set tolerances, then we define the sheet con-
ductance =G 0S in subsequent analysis and mapping. Probes
were replaced automatically every 2000 engages from the M4PP
probe cassettes loaded in the microRSP-A300. In order to
combine the three subprobe maps (figures 2(a)–(c)) to the com-
bined map (figure 2(d)), each pixelGS values from all subprobes
that had previously passed the median filter, were combined

using an additional median filter. The median of the remaining
values is used for the combined subprobe map. In this work our
phase tolerance was 1°, and all median filter tolerances were 2%.

3. Results and discussion

Wafer-scaleGS maps performed with each of the three subprobes
are shown in figures 2(a)–(c) with a map combining the data
from all three subprobes is shown in figure 2(d). Previously,
M4PP data from this wafer was compared with a THz-TDS
conductance map [28]. Here, we compare GS results obtained
from different subprobes during the same probe engage. For a
perfectly uniform material using multiple subprobes provides a
redundancy in the measurement, in case of subprobe failure or
localized sample defects. In either case, a measurement from one
of the other subprobes may be successful.

Qualitatively, all the subprobe maps in figures 2(a)–(c) are
similar, each having different regions where noGS values passed
the filters described in the methods section. The most prominent
of these features appear as annulus sectors (circular ring sectors)
and are attributed to subprobe failure as it matches the spiral-like
measurement order. Thus, there is no reason to attribute these
measurement failures to the local thin-film properties.

When GS from the three subprobes are combined
(figure 2(d)) all the null-GS annulus sectors disappear. We
then find that for this combined map only 385 out of 11 310
engages did not return an accepted GS value (10 925 accep-
ted, 97%). In contrast, the successful measurements for
individual subprobes was 9528 (84% accepted), 9135 (81%
accepted) and 8163 (72% accepted), for subprobe 1, subprobe
2, subprobe 3, respectively. For our measurements choosing
more than one subprobe offered a level of measurement
redundancy, with significant higher measurement yield from

Figure 1. M4PP configurations and subprobes. (a) Optical microscope image of the l-shaped cantilever-based seven-point-probe used for
measurements equipped with strain gauge. (b)–(c) Measurement configurations A and B. (d) Subprobe 1 with 10 μm pitch. (e) Subprobe 2
with 10 μm pitch. (f) Subprobe 3 with 20 μm pitch.
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72%–84% to 97%. Although some regions of the wafer have
over an order of magnitude lower G ,S by studying the RA/RB

ratio of the measurements (figure S1 is available online at
stacks.iop.org/NANO/31/225709/mmedia), it can be con-
cluded that this graphene does not exhibit any significant
quasi 1D electrical behaviour.

Increasing the number of subprobes also increases the
total measurement time. The time to measure one subprobe,
disengage, move and reengage took approximately five sec-
onds. Measurement time was increased by one second per
additional subprobe. Three subprobes were chosen as a good
compromise between measurement yield and measurement
time. For a non-uniform sample, multiple subprobe analysis
can reveal the spatial and quantitative information about the
extent of inhomogeneities.

Multi-subprobe GS maps can be a useful metrology tool
for evaluating the variation in thin film/2D material quality
across a wafer. With a wafer map of GS enough data is
available to perform analysis that would otherwise be impos-
sible or imprecise with a linescan, reduced-area map, or single
probe scan. For example, a comparison between GS values for
different subprobes can be compared to give an insight into
homogeneity on the order of the probe length. Figure 3(a)
shows a uniformity map of figure 2(d), which was calculated
using the relative standard deviation of each pixel and its 15

nearest neighbours (uniformity maps for different number
of nearest neighbours are shown in figure S2). The single-
subprobe uniformity maps for data from figures 2(a)–(c) are
shown in figures S3(a)–(c), where the lack of data coverage
conceals many uniformity features. Homogeneity is known to
be important for two-dimensional device performance [59, 60],
so it is important to know if the entire wafer, or certain areas
are suitable for device processing.

The subprobe-to-subprobe conductance correlation is
shown in figure 3(b), where four regions are defined:
GS<0.3 mS (black region), 0.3 mS�GS<0.75 mS (blue
region), 0.75 mS�GS<7.5 (green region), 7.5 mS�GS

(red region). We observe good subprobe-to-subprobe agree-
ment for high and low values of G ,S the blue and red regions,
but poorer agreement in the green region. The fact the
subprobe-to-subprobe error decreases again for the red region
shows the subprobe-subprobe error is not simply proportional
to the magnitude of G ,S and is likely an indication the green
region has variations on the order of the probe length, a result
which is in good agreement with previous analysis [28].
When figure 2(b) is replotted using the colourscale from
figure 3(b), we in fact do observe most of the green pixels as a
transition area separating the regions of high and low values
of G .S Because the width of the transition areas are

Figure 2. Conductance maps measured with M4PP. (a) Subprobe 1 (10 μm pitch). (b) Subprobe 2 (10 μm pitch). (c) Subprobe 3 (20 μm
pitch). (d) Combination of data from subprobes from (a) to (c). Dead pixels/wafer outline shown in grey.
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significantly larger than the size of the probe, it can be con-
cluded this data represents a true variation in the sample G .S

When the GS data for all subprobes is plotted as a his-
togram three distinct peaks emerge, as shown in figure 3(c),
where the peaks are labelled I through III, and in addition
between peak II and peak III a plateau in the data where the
counts are roughly constant. Measurements representing the
three peaks all originate from connected regions of graphene.
The plateau between the second and third peak originates
from measurements made in the transition area. Representing
the data as a histogram allows for easy comparison of changes
to the wafer over time.

GS was also mapped at different times over several weeks
using THz-TDS and M4PP, expanding on the work from [28].
After the maps shown above, a THz-TDS map of the wafer
was performed, followed by an additional M4PP map, and

then by a second THz-TDS map. Damage to graphene is
easily detected by THz-TDS, for example damage attributed
to mishandling by using a wafer tweezer is visible when
comparing figure S4b and figure S4d, with the damage fea-
tures matching the dimensions of the tweezer tines. Histogram
analysis of the THz-TDS/M4PP maps are shown in figure S5
and show that the two THz-TDS maps are almost identical,
suggesting that the intervening M4PP map has not made
significant changes the sample. These repeated maps suggest
that the contact forces used to directly probe of graphene with
an M4PP is very well controlled by the strain gauge and
microRSP-A300 hardware and lead to no significant graphene
damage.

Overall, we observe slightly higher GS values in the
M4PP map in comparison to both THz-TDS results, which
is expected due to the fact that M4PP analyses GS over

Figure 3. (a) Uniformity map of data from figure 2(d) showing the relative standard deviation of 24 nearest neighbours. (b) Subprobe-to-
subprobe correlation comparing subprobe 3 with subprobe 1 (triangles) and subprobe 2 (circles). Four regions ofGS are defined byGS <0.3
mS (black region), 0.3 mS�GS<0.75 mS (blue region), 0.75 mS�GS<7.5 (green region), 7.5 mS�GS (red region). (c) Figure 2(d)
replotted in colourscale from figure 3(b). (d) Histogram of the conductance as measured by all three subprobes with three peaks in the data
I–III.
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micron-sized areas whereas THz-TDS at 1 THz probes over
tens of nanometres [21]. We also note that peak I and II
observed in figure 3(d) have now combined as part of the
change in GS over time. The progression of wafer changes
over nine weeks are shown in figure S4. The changes over
time are quantitatively similar for both M4PP and THz-TDS
showing that either method has the resolution required to
track changes in graphene over time.

We have the following recommendations when GS

mapping graphene. THz-TDS and M4PP both provide
information about graphene uniformity. Both methods deliver
equivalent results in some cases- for uniform graphene where
the GS on the few-nm scale matches that on the μm scale.
THz-TDS is faster, non-contact and performs well on uniform
samples. However, when device processing requires GS

knowledge on the order of microns to millimetres, then M4PP
mapping is still preferred. If metal is present near test regions
M4PP mapping is more reliable than THz-TDS. Beyond
graphene, 2D materials/thin films of various THz opacities
are possible to map with a M4PP system. Generally, choosing
to use a M4PP with more than four electrodes allows for
additional subprobe measurements while adding negligible
additional measurement time. This also allows a level of
measurement redundancy for failed measurements, and
allows insightful additional analysis. We have shown in
figure 2 that a higher accuracyG ,S with fewer dead pixels was
achieved by combining the data from subprobes into a single
map. In addition, the combined map can be used via both
uniformity assessment (e.g. Figure 3(a)) and subprobe-
correlational assessment of GS to determine spatial quality.
The technique is sensitive enough to track changes in the
graphene over time.

4. Conclusion

In summary, we have investigated wafer conductance maps of
graphene using multiple subprobe M4PPs. Combining subp-
robes increased measurement yield from under 85% to 97%
without adding significant measurement time. GS varied
across the wafer by over an order of magnitude, leading to
local regions with different GS landscapes. Producing wafer-
scale analysis can be used to determine overall growth qual-
ity, identify graphene areas which are suitable for further
device processing, or to reject/accept an entire wafer and
such analysis can be performed for M4PP maps of other
materials. The M4PP map was compared to THz-TDS which
showed qualitatively similar maps, even when the wafer
changed over many weeks, further suggesting that M4PP
produces accurate GS data. THz-TDS conductivity maps
performed before and after the M4PP mapping showed no
decrease in conductivity attributable to the M4PP process.
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